Identification of Acid Hydrolysis Metabolites of the Pimelea Toxin Simplexin for Targeted UPLC-MS/MS Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. HRAM Analysis of Simplexin and MS Fragments
2.2. HCl Mediated Hydrolysis of Simplexin
2.3. H2SO4 Mediated Hydrolysis of Simplexin
2.4. Analysis of Biological Samples for Acid Hydrolysed (H2SO4) Simplexin Products
2.5. UPLC-MS/MS Method for Simplexin Quantification and Simplexin Metabolite Identification in Lyophilised Cattle Blood
3. Conclusions
4. Materials and Methods
4.1. Plant Material Collection and Processing
4.2. Simplexin Isolation from Pimelea elongata Roots
4.3. Hydrochloric Acid Hydrolysis of Simplexin to Give Products 5, 6 and 7
4.4. Sulfuric Acid Hydrolysis of Simplexin to Give Products 8, 9, 10 and 11
4.5. Analysis of Simplexin and Simplexin Hydrolysed Products by UPLC-MS/MS
4.6. Analysis of Biological Samples for Acid Hydrolysed (H2SO4) Simplexin Products
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chow, S.; Fletcher, M.T.; McKenzie, R.A. Analysis of daphnane orthoesters in poisonous Australian Pimelea species by liquid chromatography−tandem mass spectrometry. J. Agric. Food. Chem. 2010, 58, 7482–7487. [Google Scholar] [CrossRef]
- Fletcher, M.; Silcock, R.; Ossedryver, S.; Milson, J.; Chow, S. Understanding Pimelea Poisoning of Cattle; Department of Employment, Economic Development and Innovation: Brisbane, Australia, 2009.
- Pegg, G.G.; Oberoi, G.; Aspden, W.J.; D’Occhio, M.J. Pimelea poisoning of cattle. Chapter 20. In Vaccines in Agriculture: Immunological Applications to Animal Health and Production; Wood, P.R., Willadsen, P., Vercoe, J.E., Hoskinson, R.M., Demeyer, D., Eds.; Commonwealth Scientific and Industrial Research Organisation: East Melbourne, Australia, 1994; pp. 155–159. [Google Scholar]
- Clark, I. The pathogenesis of St George disease of cattle. Res. Vet. Sci. 1973, 14, 341. [Google Scholar] [CrossRef] [PubMed]
- McClure, T.J.; Farrow, B.R. Chronic poisoning of cattle by desert rice flower (Pimelea simplex) and its resemblance to St. George disease as seen in north-western New South Wales. Aust. Vet. J. 1971, 47, 100–102. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R.J.; Hungerford, N.L.; Laycock, B.; Fletcher, M.T. A review on Pimelea poisoning of livestock. Toxicon 2020, 186, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Lambert, B.A. Methods for Reducing Pimelea Poisoning of Cattle. Master’s Thesis, Central Queensland University, Rockhampton, Australia, 1996. [Google Scholar]
- Freeman, P.; Ritchie, E.; Taylor, W. The constituents of Australian Pimelea spp. I. The isolation and structure of the toxin of Pimelea simplex and P. trichostachya form B responsible for St. George disease of cattle. Aust. J. Chem. 1979, 32, 2495–2506. [Google Scholar] [CrossRef]
- Fletcher, M.T.; Chow, S.; Ossedryver, S.M. Effect of increasing low-dose simplexin exposure in cattle consuming Pimelea trichostachya. J. Agric. Food. Chem. 2014, 62, 7402–7406. [Google Scholar] [CrossRef]
- Ahluwalia, S.; Toor, A.P.; Singh, P.; Sharma, J.G. Parametric optimisation for detoxification of non-oil Jatropha residual material using Taguchi method. Adv. Mater. Process. Technol. 2023, 9, 655–664. [Google Scholar] [CrossRef]
- Cunha, J.R.B.; Wischral, D.; Pelaez, R.D.R.; de Jesus, M.A.; Sales-Campos, C.; Campanha, R.B.; Mendes, T.D.; Mendonça, S.; Dias, E.S.; de Siqueira, F.G. Bioactives and extracellular enzymes obtained from fermented macrofungi cultivated in cotton and Jatropha seed cakes. Microorganisms 2022, 10, 1670. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, Y.; Wen, M.; Zhao, H.; Chen, X.; Tian, G.; Liu, G.; Cai, J.; Jia, G. Rapid detoxification of Jatropha curcas cake by fermentation with a combination of three microbial strains and characterization of their metabolic profiles. J. Appl. Microbiol. 2022, 133, 743–757. [Google Scholar] [CrossRef]
- Loh, Z.H.; Ouwerkerk, D.; Klieve, A.V.; Hungerford, N.L.; Fletcher, M.T. Toxin degradation by rumen microorganisms: A review. Toxins 2020, 12, 664. [Google Scholar] [CrossRef]
- Pindur, U.; Müller, J.; Flo, C.; Witzel, H. Ortho esters and dialkoxycarbenium ions: Reactivity, stability, structure, and new synthetic applications. Chem. Soc. Rev. 1987, 16, 75–87. [Google Scholar] [CrossRef]
- Ahmad, M.; Bergstrom, R.; Cashen, M.; Chiang, Y.; Kresge, A.; McClelland, R.; Powell, M. Orthoester hydrolysis: Direct evidence for a three-stage reaction mechanism. J. Am. Chem. Soc. 1979, 101, 2669–2677. [Google Scholar] [CrossRef]
- Stanoeva, E.; He, W.; De Kimpe, N. Natural and synthetic cage compounds incorporating the 2,9,10-trioxatricyclo [4.3.1.03,8]decane type moiety. Bioorg. Med. Chem. 2005, 13, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Sakata, K.; Kawazu, K.; Mitsui, T. Studies on a piscicidal constituent of Hura crepitans. Part II. Chemical structure of huratoxin. Agric. Biol. Chem. 1971, 35, 2113–2126. [Google Scholar] [CrossRef]
- Paswan, V.K.; Kumar, K.; Shehata, A. Rumen Microbiology and Microbial Degradation of Feedstuffs; Springer International Publishing: Cham, Switzerland, 2022; pp. 45–60. [Google Scholar]
- Gandhi, N.N.; Patil, N.S.; Sawant, S.B.; Joshi, J.B.; Wangikar, P.P.; Mukesh, D. Lipase-catalyzed esterification. Cat. Rev. Sci. Eng. 2000, 42, 439–480. [Google Scholar] [CrossRef]
- Dong, H.; Xu, Y.; Ye, H.; Huang, M.; Hu, J.; Xian, Y.; Zeng, X.; Bai, W.; Luo, D. Advances in analysis of contaminants in foodstuffs on the basis of orbitrap mass spectrometry: A review. Food Anal. Methods 2022, 15, 803–819. [Google Scholar] [CrossRef]
- Trinel, M.; Jullian, V.; Lamer, A.C.L.; Mhamdi, I.; Mejia, K.; Castillo, D.; Cabanillas, B.J.; Fabre, N. Profiling of Hura crepitans L. latex by ultra-high-performance liquid chromatography/atmospheric pressure chemical ionisation linear ion trap Orbitrap mass spectrometry. Phytochem. Anal. 2018, 29, 627–638. [Google Scholar] [CrossRef]
- Fletcher, M.; Ouwerkerk, D.; Hungerford, N.; Gilbert, R. Improving Beef Production through Management of Plant Toxins (2018–2022); Meat and Livestock Australia: Brisbane, Australia, 2022; pp. 1–198. [Google Scholar]
- Makkar, H.P.S.; Becker, K. Are Jatropha curcas phorbol esters degraded by rumen microbes? J. Sci. Food Agric. 2010, 90, 1562–1565. [Google Scholar] [CrossRef]
- Ehsan, O.; Norhani, A.; Wan, Z.S.; Abdul, R.O.; Ho, Y. Dose-response effects of phorbol esters isolated from Jatropha meal on rumen microbial activities. Asian J. Anim. Vet. Adv. 2014, 9, 37–46. [Google Scholar] [CrossRef]
- Ahluwalia, S.; Bidlan, R.; Sharma, J.; Singh, P. Review on phorbol ester degradation of Jatropha seed cake for its use as animal feed. Int. J. Pharm. Pharm. Sci. 2017, 9, 975–1491. [Google Scholar] [CrossRef]
- Joshi, C.; Mathur, P.; Khare, S.K. Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake. Bioresour. Technol. 2011, 102, 4815–4819. [Google Scholar] [CrossRef] [PubMed]
- Bose, A.; Keharia, H. Production, characterization and applications of organic solvent tolerant lipase by Pseudomonas aeruginosa AAU2. Biocatal. Agric. Biotechnol. 2013, 2, 255–266. [Google Scholar] [CrossRef]
- Gomes, T.G.; Hadi, S.I.I.A.; de Aquino Ribeiro, J.A.; Segatto, R.; Mendes, T.D.; Helm, C.V.; Júnior, A.F.C.; Miller, R.N.G.; Mendonça, S.; de Siqueira, F.G. Phorbol ester biodegradation in Jatropha curcas cake and potential as a substrate for enzyme and Pleurotus pulmonarius edible mushroom production. Biocatal. Agric. Biotechnol. 2022, 45, 102498. [Google Scholar] [CrossRef]
- Zhao, Y.N.; Wang, H.F.; Liu, J.X. Detoxification of Jatropha curcas seed cake by a new soil-borne Enterobacter cloacae strain. Lett. Appl. Microbiol. 2018, 67, 197–204. [Google Scholar] [CrossRef]
- Phengnuam, T.; Suntornsuk, W. Detoxification and anti-nutrients reduction of Jatropha curcas seed cake by Bacillus fermentation. J. Biosci. Bioeng. 2013, 115, 168–172. [Google Scholar] [CrossRef]
- Deschamps, E.; Calabrese, V.; Schmitz, I.; Hubert-Roux, M.; Castagnos, D.; Afonso, C. Advances in ultra-high-resolution mass spectrometry for pharmaceutical analysis. Molecules 2023, 28, 2061. [Google Scholar] [CrossRef]
- López-Ruiz, R.; Maldonado-Reina, A.J.; Marín-Sáez, J.; Romero-González, R.; Martínez-Vidal, J.L.; Garrido Frenich, A. Unravelling plant protection product analysis: Use of chromatography techniques (GC and LC) and high resolution mass spectrometry. Trends Environ. Anal. Chem. 2023, 37, e00191. [Google Scholar] [CrossRef]
- Mason, K. An in vitro study on effect of Pimelea plant extract on pulmonary vein smooth muscle. Toxicon 1976, 14, 175–178. [Google Scholar] [CrossRef]
- Nayyar, G. Pharmacological and Immunological Studies Aimed at Prevention of Pimelea Poisoning of Cattle. Master’s Thesis, Central Queensland University, Rockhampton, Australia, 1994. [Google Scholar]
- Cai, S.; Yang, Q.; Bagby, T.R.; Forrest, M.L. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv. Drug Del. Rev. 2011, 63, 901–908. [Google Scholar] [CrossRef]
- Grispoldi, L.; Karama, M.; Hadjicharalambous, C.; de Stefani, F.; Ventura, G.; Ceccarelli, M.; Revoltella, M.; Sechi, P.; Crotti, C.; D’Innocenzo, A. Bovine lymph nodes as a source of Escherichia coli contamination of the meat. Int. J. Food Microbiol. 2020, 331, 108715. [Google Scholar] [CrossRef]
- Streich, K.; Smoczek, M.; Hegermann, J.; Dittrich-Breiholz, O.; Bornemann, M.; Siebert, A.; Bleich, A.; Buettner, M. Dietary lipids accumulate in macrophages and stromal cells and change the microarchitecture of mesenteric lymph nodes. J. Adv. Res. 2020, 24, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, J.; Tang, Y.; Wu, L.; Tao, W.; Qian, Y.; Duan, J.-a. Pharmacokinetic profile and metabolite identification of yuanhuapine, a bioactive component in Daphne genkwa by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. J. Pharm. Biomed. Anal. 2015, 112, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Field, J.A.; Thurman, E. Glutathione conjugation and contaminant transformation. Environ. Sci. Technol. 1996, 30, 1413–1418. [Google Scholar] [CrossRef]
- Toda, K.; Kokushi, E.; Uno, S.; Shiiba, A.; Hasunuma, H.; Fushimi, Y.; Wijayagunawardane, M.P.; Zhang, C.; Yamato, O.; Taniguchi, M. Gas chromatography-mass spectrometry for metabolite profiling of Japanese black cattle naturally contaminated with zearalenone and sterigmatocystin. Toxins 2017, 9, 294. [Google Scholar] [CrossRef] [PubMed]
- Strott, C.A. Steroid sulfotransferases. Endocr. Rev. 1996, 17, 670–697. [Google Scholar] [CrossRef]
- King, C.; Rios, G.; Green, M.; Tephly, T. UDP-glucuronosyltransferases. Curr. Drug Metab. 2000, 1, 143–161. [Google Scholar] [CrossRef]
- Wang, B.-L.; Gao, H.-T.; Li, W.-D.Z. Total synthesis of (+)-iresin. J. Org. Chem. 2015, 80, 5296–5301. [Google Scholar] [CrossRef]
Molecular Formula (M) | RT | Adduct (Calculated m/z) | Selected Fragmentation Ions (% Relative Intensity) |
---|---|---|---|
C30H44O8 | 5.43 | [M + H]+ m/z 533.3109 | 343.1543 (2), 325.1433 (4), 307.1333 (7), 297.1492 (7), 279.1378 (17), 267.1381 (62), 253.1220 (100) |
Hydrolysis Method | Molecular Formula (M) | Species | Calculated Molecular Ion (m/z) [M + H]+ * | Normalised Collision Energy (eV) | Proposed Product and Structure Number |
---|---|---|---|---|---|
HCl | C30H44O8 | + H+ | 533.3109 | 30 | simplexin (1) |
C30H45ClO8 | + H+ | 569.2876 | 30 | chlorohydrin (5) | |
C20H29ClO8 | + H+ | 433.1624 | 30 | chloropolyol (6) | |
C30H47ClO9 | + H+ | 587.2981 | 30 | monoester chlorohydrin (7) | |
H2SO4 | C30H44O8 | + H+ | 533.3109 | 35 | simplexin (1) |
C20H24O6 | + H+ | 361.1646 | 35 | polyol (8) | |
C30H42O7 | + H+ | 515.3003 | 35 | monoester (9) | |
C30H46O9 | + H+ | 551.3215 | 35 | pentol (10) | |
C30H48O10 | + H+ | 569.3320 | 35 | monoester polyol (11) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loh, Z.H.; Hungerford, N.L.; Ouwerkerk, D.; Klieve, A.V.; Fletcher, M.T. Identification of Acid Hydrolysis Metabolites of the Pimelea Toxin Simplexin for Targeted UPLC-MS/MS Analysis. Toxins 2023, 15, 551. https://doi.org/10.3390/toxins15090551
Loh ZH, Hungerford NL, Ouwerkerk D, Klieve AV, Fletcher MT. Identification of Acid Hydrolysis Metabolites of the Pimelea Toxin Simplexin for Targeted UPLC-MS/MS Analysis. Toxins. 2023; 15(9):551. https://doi.org/10.3390/toxins15090551
Chicago/Turabian StyleLoh, Zhi Hung, Natasha L. Hungerford, Diane Ouwerkerk, Athol V. Klieve, and Mary T. Fletcher. 2023. "Identification of Acid Hydrolysis Metabolites of the Pimelea Toxin Simplexin for Targeted UPLC-MS/MS Analysis" Toxins 15, no. 9: 551. https://doi.org/10.3390/toxins15090551