Therapeutic Prospection of Animal Venoms-Derived Antimicrobial Peptides against Infections by Multidrug-Resistant Acinetobacter baumannii: A Systematic Review of Pre-Clinical Studies
Abstract
:1. Introduction
2. Results
2.1. Study Selection
2.2. In Vitro Biological Proprieties
2.3. Physicochemical Proprieties
2.4. In Vivo Biological Proprieties
2.4.1. Infection Models
2.4.2. Treatment Schemes
2.4.3. Lethality Assay
2.4.4. Bacterial Load
2.4.5. Physical Results
2.4.6. Inflammatory and Oxidative Responses
3. Discussion
4. Materials and Methods
4.1. Search Strategy
4.2. Inclusion and Exclusion Criteria
4.3. Selection of Studies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howard, A.; O’Donoghue, M.; Feeney, A.; Sleator, R.D. Acinetobacter baumannii. Virulence 2012, 3, 243–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens 2021, 10, 373. [Google Scholar] [CrossRef]
- Elwakil, W.H.; Rizk, S.S.; El-Halawany, A.M.; Rateb, M.E.; Attia, A.S. Multidrug-Resistant Acinetobacter baumannii Infections in the United Kingdom versus Egypt: Trends and Potential Natural Products Solutions. Antibiotics 2023, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Lima, W.G.; Silva Alves, G.C.; Sanches, C.; Antunes Fernandes, S.O.; de Paiva, M.C. Carbapenem-resistant Acinetobacter baumannii in patients with burn injury: A systematic review and meta-analysis. Burns 2019, 45, 1495–1508. [Google Scholar] [CrossRef] [PubMed]
- Lima, W.G.; Brito, J.C.M.; Cardoso, B.G.; Cardoso, V.N.; de Paiva, M.C.; de Lima, M.E.; Fernandes, S.O.A. Rate of polymyxin resistance among Acinetobacter baumannii recovered from hospitalized patients: A systematic review and meta-analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1427–1438. [Google Scholar] [CrossRef]
- Jawad, A.; Seifert, H.; Snelling, A.M.; Heritage, J.; Hawkey, P.M. Survival of Acinetobacter baumannii on Dry Surfaces: Comparison of Outbreak and Sporadic Isolates. J. Clin. Microbiol. 1998, 36, 1938–1941. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.; Joshi, S.G. Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital-acquired infections: A scientific review. J. Appl. Microbiol. 2021, 131, 2715–2738. [Google Scholar] [CrossRef] [PubMed]
- Lima, W.G.; Alves, M.C.; Cruz, W.S.; Paiva, M.C. Chromosomally encoded and plasmid-mediated polymyxins resistance in Acinetobacter baumannii: A huge public health threat. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1009–1019. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States. 2019. Available online: https://www.cdc.gov/drugresistance/Biggest-Threats.html (accessed on 19 January 2023).
- Anunnatsiri, S.; Tonsawan, P. Risk factors and clinical outcomes of multidrug-resistant Acinetobacter baumannii bacteremia at a university hospital in Thailand. Southeast Asian J. Trop. Med. Public Health. 2011, 42, 693–703. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Yao, Y.; Zhu, B.; Ren, D.; Yang, Q.; Fu, Y.; Yu, Y.; Zhou, J. Risk factors for acquisition and mortality of multidrug-resistant Acinetobacter baumannii bacteremia. Medicine 2019, 98, e14937. [Google Scholar] [CrossRef]
- World Health Organization. Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis. 2021. Available online: https://www.who.int/publications/i/item/9789240047655 (accessed on 19 January 2023).
- Li, X.; Zuo, S.; Wang, B.; Zhang, K.; Wang, Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022, 27, 2675. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, J.; Hao, X.; Lai, R.; Zhang, Z.Y. Antimicrobial peptides: New hope in the war against multidrug resistance. Zool Res. 2019, 40, 488–505. [Google Scholar] [CrossRef] [PubMed]
- Moravej, H.; Moravej, Z.; Yazdanparast, M.; Heiat, M.; Mirhosseini, A.; Moghaddam, M.M.; Mirnejad, R. Antimicrobial Peptides: Features, Action, and Their Resistance Mechanisms in Bacteria. Microb. Drug Resist. 2018, 24, 747–767. [Google Scholar] [CrossRef]
- Dan, X.; Wuyuan, L. Defensins: A Double-Edged Sword in Host Immunity. Front. Immunol. 2020, 11, 764. [Google Scholar]
- Mba, I.L.; Nweze, E.I. Antimicrobial Peptides Therapy: An Emerging Alternative for Treating Drug-Resistant Bacteria. Yale J. Biol. Med. 2022, 95, 445–463. [Google Scholar]
- Zhang, C.; Yang, M. Antimicrobial Peptides: From Design to Clinical Application. Antibiotics 2022, 11, 349. [Google Scholar] [CrossRef]
- Sarkar, T.; Chetia, M.; Chatterjee, S. Antimicrobial Peptides and Proteins: From Nature’s Reservoir to the Laboratory and Beyond. Front. Chem. 2021, 9, 691532. [Google Scholar] [CrossRef]
- Rádis-Baptista, G. Cell-Penetrating Peptides Derived from Animal Venoms and Toxins. Toxins 2021, 13, 147. [Google Scholar] [CrossRef]
- Magana, M.; Pushpanathan, M.; Santos, A.L.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.A.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.L.; et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 2020, 20, e216–e230. [Google Scholar] [CrossRef]
- Cardoso, P.; Glossop, H.; Meikle, T.G.; Aburto-Medina, A.; Conn, C.E.; Sarojini, V.; Valery, C. Molecular engineering of antimicrobial peptides: Microbial targets, peptide motifs and translation opportunities. Biophys. Rev. 2021, 13, 35–69. [Google Scholar] [CrossRef]
- Brito, J.C.M.; Lima, W.G.; Resende, J.M.; de Assis, D.C.S.; Boff, D.; Cardoso, V.N.; Amaral, F.A.; Souza-Fagundes, E.M.; Fernandes, S.O.A.; de Lima, M.E. Pegylated LyeTx I-b peptide is effective against carbapenem-resistant Acinetobacter baumannii in an in vivo model of pneumonia and shows reduced toxicity. Int. J. Pharm. 2021, 609, 121156. [Google Scholar] [CrossRef] [PubMed]
- Brito, J.C.M.; Carvalho, L.R.; de Souza, A.N.; Carneiro, G.; Magalhães, P.P.; Farias, L.M.; Guimarães, N.R.; Verly, R.M.; Resende, J.M.; Lima, M.E. PEGylation of the antimicrobial peptide LyeTx I-b maintains structure-related biological properties and improves selectivity. Front. Mol. Biosci. 2022, 9, 1001508. [Google Scholar] [CrossRef] [PubMed]
- Neshani, A.; Sedighian, H.; Mirhosseini, S.A.; Ghazvini, K.; Zare, H.; Jahangiri, A. Antimicrobial peptides as a promising treatment option against Acinetobacter baumannii infections. Microb. Pathog. 2020, 146, 104238. [Google Scholar] [CrossRef]
- Askari, P.; Namaei, M.H.; Ghazvini, K.; Hosseini, M. In vitro and in vivo toxicity and antibacterial efficacy of melittin against clinical extensively drug-resistant bacteria. BMC Pharmacol. Toxicol. 2021, 22, 42. [Google Scholar] [CrossRef] [PubMed]
- López-Rojas, R.; Docobo-Pérez, F.; Pachón-Ibáñez, M.E.; de la Torre, B.G.; Fernández-Reyes, M.; March, C.; Bengoechea, J.A.; Andreu, D.; Rivas, L.; Pachón, J. Efficacy of cecropin A-melittin peptides on a sepsis model of infection by pan-resistant Acinetobacter baumannii. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 1391–1398. [Google Scholar] [CrossRef]
- Rishi, P.; Vashist, T.; Sharma, A.; Kaur, A.; Kaur, A.; Kaur, N.; Kaur, I.P.; Tewari, R. Efficacy of designer K11 antimicrobial peptide (a hybrid of melittin, cecropin A1 and magainin 2) against Acinetobacter baumannii-infected wounds. Pathog. Dis. 2018, 76, 30184071. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J.; Kang, H.K.; Park, E.; Kim, M.K.; Park, Y. Bactericidal activities and action mechanism of the novel antimicrobial peptide Hylin a1 and its analog peptides against Acinetobacter baumannii infection. Eur. J. Pharm. Sci. 2022, 175, 106205. [Google Scholar] [CrossRef]
- Pashaei, F.; Bevalian, P.; Akbari, R.; Bagheri, K.P. Single dose eradication of extensively drug resistant Acinetobacter spp. In a mouse model of burn infection by melittin antimicrobial peptide. Microb. Pathog. 2019, 127, 60–69. [Google Scholar] [CrossRef]
- Hassan, A.; Ikram, A.; Raza, A.; Saeed, S.; Paracha, R.Z.; Younas, Z.; Khadim, M.T. Therapeutic Potential of Novel Mastoparan-Chitosan Nanoconstructs Against Clinical MDR Acinetobacter baumannii: In silico, in vitro and in vivo Studies. Int. J. Nanomed. 2021, 16, 3755–3773. [Google Scholar] [CrossRef]
- Lima, W.G.; Brito, J.C.M.; de Lima, M.E.; Pizarro, A.C.S.T.; Vianna, M.A.M.M.; de Paiva, M.C.; de Assis, D.C.S.; Cardoso, V.N.; Fernandes, S.O.A. A short synthetic peptide, based on LyeTx I from Lycosa erythrognatha venom, shows potential to treat pneumonia caused by carbapenem-resistant Acinetobacter baumannii without detectable resistance. J. Antibiot. 2021, 74, 425–434. [Google Scholar] [CrossRef]
- Kumar, S.; Anwer, R.; Azzi, A. Virulence Potential and Treatment Options of Multidrug-Resistant (MDR) Acinetobacter baumannii. Microorganisms 2021, 9, 2104. [Google Scholar] [CrossRef] [PubMed]
- Lima, W.G.; de Brito, J.C.M.; Cardoso, V.N.; Fernandes, S.O.A. In-depth characterization of antibacterial activity of melittin against Staphylococcus aureus and use in a model of non-surgical MRSA-infected skin wounds. Eur. J. Pharm. Sci. 2021, 156, 105592. [Google Scholar] [CrossRef]
- Zeng, Z.Z.; Huang, S.H.; Alezra, V.; Wan, Y. Antimicrobial peptides: Triumphs and challenges. Future Med. Chem. 2021, 13, 1313–1315. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 71, 372. [Google Scholar]
- Lima, W.G.; Maia, C.Q.; de Carvalho, T.S.; Leite, G.O.; Brito, J.C.M.; Godói, I.P.D.; de Lima, M.E.; Ferreira, J.M.S. Animal venoms as a source of antiviral peptides active against arboviruses: A systematic review. Arch. Virol. 2022, 167, 1763–1772. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.Y.; Chowdhury, M.; Huang, Y.D.; Yu, X.Q. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 2014, 98, 5807–5822. [Google Scholar] [CrossRef] [Green Version]
- Lima, W.G.; Batista Filho, F.L.; Lima, I.P.; Simião, D.C.; Brito, J.C.M.; da Cruz Nizer, W.S.; Cardoso, V.N.; Fernandes, S.O.A. Antibacterial, anti-biofilm, and anti-adhesive activities of melittin, a honeybee venom-derived peptide, against quinolone-resistant uropathogenic Escherichia coli (UPEC). Nat. Prod. Res. 2022, 36, 6381–6388. [Google Scholar] [CrossRef] [PubMed]
- Lima, W.G.; Brito, J.C.M.; da Cruz Nizer, W.S. Bee products as a source of promising therapeutic and chemoprophylaxis strategies against COVID-19 (SARS-CoV-2). Phytother. Res. 2021, 35, 743–750. [Google Scholar] [CrossRef]
- Memariani, H.; Memariani, M.; Shahidi-Dadras, M.; Nasiri, S.; Akhavan, M.M.; Moravvej, H. Melittin: From honeybees to superbugs. Appl. Microbiol. Biotechnol. 2019, 103, 3265–3276. [Google Scholar] [CrossRef]
- Aurilio, C.; Sansone, P.; Barbarisi, M.; Pota, V.; Giaccari, L.G.; Coppolino, F.; Barbarisi, A.; Passavanti, M.B.; Pace, M.C. Mechanisms of Action of Carbapenem Resistance. Antibiotics 2022, 11, 421. [Google Scholar] [CrossRef]
- de Castro, A.P.; de Lima, W.G.; Sanches, C.; de Paiva, M.C. Mechanisms involved in resistance to carbapenems among Acinetobacter baumannii isolates recovered in Brazil: A systematic review and meta-analysis. Rev. Colomb. Cienc. Quím Farm. 2022, 51, 641–671. [Google Scholar]
- World Health Organization. Global Report on the Epidemiology and Burden of Sepsis: Current Evidence, Identifying Gaps and Future Directions. Available online: https://apps.who.int/iris/bitstream/handle/10665/334216/9789240010789-eng.pdf (accessed on 26 January 2023).
- Dafopoulou, K.; Tsakris, A.; Pournaras, S. Changes in antimicrobial resistance of clinical isolates of Acinetobacter baumannii group isolated in Greece, 2010–2015. J. Med. Microbiol. 2018, 67, 496–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vivo, A.; Fitzpatrick, M.A.; Suda, K.J.; Jones, M.M.; Perencevich, E.N.; Rubin, M.A.; Ramanathan, S.; Wilson, G.M.; Evans, M.E.; Evans, C.T. Epidemiology and outcomes associated with carbapenem-resistant Acinetobacter baumannii and carbapenem-resistant Pseudomonas aeruginosa: A retrospective cohort study. BMC Infect. Dis. 2022, 22, 491. [Google Scholar] [CrossRef] [PubMed]
- Ciumac, D.; Gong, H.; Hu, X.; Lu, J.R. Membrane targeting cationic antimicrobial peptides. J. Colloid Interface Sci. 2019, 537, 163–185. [Google Scholar] [CrossRef]
- Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules 2018, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Malmsten, M. Interactions of Antimicrobial Peptides with Bacterial Membranes and Membrane Components. Curr. Top. Med. Chem. 2016, 16, 16–24. [Google Scholar] [CrossRef]
- Loza-Correa, M.; Perkins, H.; Kumaran, D.; Kou, Y.; Qaisar, R.; Geelhood, S.; Ramirez-Arcos, S. Noninvasive pH monitoring for bacterial detection in platelet concentrates. Transfusion 2016, 56, 1348–1355. [Google Scholar] [CrossRef]
- Hommais, F.; Laurent-Winter, C.; Labas, V.; Krin, E.; Tendeng, C.; Soutourina, O.; Danchin, A.; Bertin, P. Effect of mild acid pH on the functioning of bacterial membranes in Vibrio cholerae. Proteomics 2002, 2, 571–579. [Google Scholar] [CrossRef]
- Deng, W.; Fu, T.; Zhang, Z.; Jiang, X.; Xie, J.; Sun, H.; Hu, P.; Ren, H.; Zhou, P.; Liu, Q.; et al. L-lysine potentiates aminoglycosides against Acinetobacter baumannii via regulation of proton motive force and antibiotics uptake. Emerg. Microbes Infect. 2020, 9, 639–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taber, H.W.; Mueller, J.P.; Miller, P.F.; Arrow, A.S. Bacterial uptake of aminoglycoside antibiotics. Microbiol. Rev. 1987, 51, 439–457. [Google Scholar] [CrossRef]
- Lu, Z.; Imlay, J.A. When anaerobes encounter oxygen: Mechanisms of oxygen toxicity, tolerance and defence. Nat. Rev. Microbiol. 2021, 19, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Acker, H.V.; Gielis, J.; Acke, M.; Cools, F.; Cos, P.; Coenye, T. The Role of Reactive Oxygen Species in Antibiotic-Induced Cell Death in Burkholderia cepacia Complex Bacteria. PLoS ONE 2016, 11, e0159837. [Google Scholar]
- Vatansever, F.; de Melo, W.C.M.A.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N.A.; Yin, R.; et al. Antimicrobial strategies centered around reactive oxygen species-bactericidal antibiotics, photodynamic therapy and beyond. FEMS Microbiol. Rev. 2013, 37, 955–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, W.; Blankenhaus, B.; Brunn, M.; Meiners, J.; Breloer, M. Elucidating different pattern of immunoregulation in BALB/c and C57BL/6 mice and their F1 progeny. Sci. Rep. 2021, 11, 1536. [Google Scholar] [CrossRef]
- Bernal, A.M.; Fernández-Brando, R.J.; Bruballa, A.C.; Fiorentino, G.A.; Pineda, G.E.; Vermeulen, E.Z.M.; Ramos, M.V.; Rumbo, M.; Palermo, M.S. Differential Outcome between BALB/c and C57BL/6 Mice after Escherichia coli O157:H7 Infection Is Associated with a Dissimilar Tolerance Mechanism. Infect. Immun. 2021, 89, e00031-21. [Google Scholar] [CrossRef]
- Bergamini, G.; Perico, M.E.; Di Palma, S.; Sabatini, D.; Andreetta, F.; Defazio, R.; Felici, A.; Ferrari, L. Mouse pneumonia model by Acinetobacter baumannii multidrug resistant strains: Comparison between intranasal inoculation, intratracheal instillation and oropharyngeal aspiration techniques. PLoS ONE 2021, 16, e0260627. [Google Scholar] [CrossRef]
- Harris, G.; Kuo Lee, R.; Xu, H.H.; Chen, W. Acute intraperitoneal infection with a hypervirulent Acinetobacter baumannii isolate in mice. Sci. Rep. 2019, 9, 6538. [Google Scholar] [CrossRef] [Green Version]
- Jackson, N.; Czaplewski, L.; Piddock, L.J.V. Discovery and development of new antibacterial drugs: Learning from experience? J. Antimicrob. Chemother. 2018, 73, 1452–1459. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.K.; Kim, C.; Seo, C.H.; Park, Y. The therapeutic applications of antimicrobial peptides (AMPs): A patent review. J. Microbiol. 2017, 55, 1–12. [Google Scholar] [CrossRef]
- Luo, Y.; Song, Y. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. Int. J. Mol. Sci. 2021, 22, 11401. [Google Scholar] [CrossRef]
- Dadar, M.; Shahali, Y.; Chakraborty, S.; Prasad, M.; Tahoori, F.; Tiwari, R.; Dhama, K. Antiinflammatory peptides: Current knowledge and promising prospects. Inflamm. Res. 2019, 68, 125–145. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley & Sons: Chichester, UK, 2019. [Google Scholar]
- Methley, A.M.; Campbell, S.; Chew-Graham, C.; McNally, R.; Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res. 2014, 14, 579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, W.G.; Souza, N.A.; Fernandes, S.O.A.; Cardoso, V.N.; Godói, I.P. Serum lipid profile as a predictor of dengue severity: A systematic review and meta-analysis. Rev. Med. Virol. 2019, 29, e2056. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Peptide | Resistance of Tested Isolates | Reference | |
---|---|---|---|
Name | Specie and Chemical Origin | ||
Melittin |
| Carbapenem (XDR) | Askari et al., 2021 [26] |
CecropinA/melittin analogues-(four compounds) |
| Colistin (PDR) | López-Rojas et al., 2011 [27] |
K11 |
| Cephalosporins (MDR) | Rishi et al., 2018 [28] |
Hylin a1-11K and Hylin a1-15K and |
| Carbapenem (XDR) | Park et al., 2022 [29] |
Melittin |
| Carbapenem (XDR) | Pashaei et al., 2019 [30] |
Mastoparan |
| Carbapenem (XDR) | Hassan et al., 2021 [31] |
LyeTx I-b |
| Carbapenem (XDR) | Brito et al., 2021 [23] |
LyeTx I mnΔK |
| Carbapenem (XDR) | Lima et al., 2021 [32] |
Name | Reference | Sequence | Residues Number | Molecular Mass (Da) | Net Charge at pH 7 A | Polarity B | Amino Acids Residues | ||
---|---|---|---|---|---|---|---|---|---|
Basic | Acid | Cys | |||||||
Melittin | [26,30] | GIGAVLKVLTTGLPALISWIKRKRQQ | 26 | 2847.45 | Positive (5+) | Hydrophobic | 5 | 0 | 0 |
Cecropin A-melittin analogues | CA(1–8)M(1–18)—KWKLFKKIGIGAVLKVLTTGLPALIS-NH2 | 26 | 2793.78 | Positive (6+) | Hydrophobic | 5 | 0 | 0 | |
[27] | CA(1–7)M(2–9)—KWKLFKKIGAVLKVL-NH2 | 15 | 1770.19 | Positive (6+) | Hydrophilic | 5 | 0 | 0 | |
Oct-CA(1–7)M(2–9)—octyl-KWKLFKKIGAVLKVL-NH2 | 15 | 1898.50 | Positive (6+) | Hydrophobic | 5 | 0 | 0 | ||
CA(1–7)M(5–9)—KWKLFKKVLKVL-NH2 | 12 | 1544.07 | Positive (6+) | Hydrophilic | 5 | 0 | 0 | ||
K11 | [28] | KWKSFIKKLTKKFLHSAKKF-NH2 | 20 | 2493.09 | Positive (9+) | Hydrophilic | 9 | 0 | 0 |
Hylin a1 analogues | [29] | Hylin a1-11K—IAKAILPLALKALKNLIK-NH2 | 18 | 1930.51 | Positive (5+) | Hydrophobic | 4 | 0 | 0 |
Hylin a1-15K—IAKAILPLALKALKKLIK-NH2 | 18 | 1944.58 | Positive (6+) | Hydrophilic | 5 | 0 | 0 | ||
Mastoparan | [31] | INLKALAALAKKIL-NH2 | 14 | 1478.91 | Positive (4+) | Hydrophobic | 3 | 0 | 0 |
LyeTx I-b | [23] | IWLTALKFLGKNLGKLAKQQLAKL-NH2 | 24 | 2695.34 | Positive (6+) | Hydrophobic | 5 | 0 | 0 |
LyeTx I mnΔK | [32] | IWLTALKFLGKNLGKL-NH2 | 16 | 1814.26 | Positive (4+) | Hydrophobic | 3 | 0 | 0 |
In Vivo Model (Mice Lineage, Infection Type and Infection Protocol) | Treatment (Molecule, Dose and Therapeutic Regime) | Main Outcomes Associated with the Treated Group | Reference |
---|---|---|---|
107 CFU/mouse dissolved in 500 µL PBS i.p. | Melittin 2.4 mg/kg 1 h post-infection and repeated every 12 h up to 36 h (four injections) (i.p.; diluted in 500 µL of PBS) |
| Askari et al., 2021 [26] |
106 CFU/mouse dissolved in 250 µL of saline i.p. | CA(1–8)M(1–18), CA(1–7)M(2–9), Oct-CA(1–7)M(2–9) and CA(1–7)M 16 mg/kg 4 h post-infection with a single dose of each peptide (i.p.; diluted in 500 µL of saline) | ↓ Bacterial load in peritoneal fluid (all peptides) | López-Rojas et al., 2011 [27] |
107 CFU/mouse pipetted into the wound (a 6 mm disposable skin biopsy Punch) at a volume of 0.01 mL in saline | K11 4 µg/dose/mouse 4 h post-infection followed by application every 24 h for 21 days (topical; hydrogel) | ↓ Body weight loss ↑ Bacterial clearance in wounds ↑ Healing ↓ Levels of malondialdehyde in wounds ↑ Levels of catalase in wounds | Rishi et al., 2018 [28] |
108 CFU/mL dissolved in 500 µL PBS i.p. | Hylin a1-11K and Hylin a1-15K 1 and 2 mg/kg 1 h post-infection with a single dose of each peptide (i.p.; diluted in 500 µL of PBS) | ↓ Lethality ↓ Inflammation in the spleen, lung, liver, and kidney | Park et al., 2022 [29] |
105 CFU/mouse (20 µL in Mueller–Hinton broth) was inoculated in the burn wound area (using a metallic plate of pure iron with a surface area of 0.785 cm2 heated in water at 100 °C added on the skin by 10–20 s) | Melittin 8, 16, and 32 μg/mL 1 h post-infection with a single dose of each concentration (topical; diluted in water). After the addition of peptide, it was incubated on the infected area for 2 h | ↓ Bacterial load in burn wound (all concentrations) | Pashaei et al., 2019 [30] |
107 CFU/mL dissolved in 500 µL saline i.p. | Mastoparan and Chitosan–mastoparan nanoconstruct Not shown 1 h post-infection with a single dose (i.p.) | ↓ Bacterial load in blood (chitosan–mastoparan nanoconstruct)
| Hassan et al., 2021 [31] |
108 CFU/mice dissolved in 20 µL saline i.n. | LyeTx I-b and LyeTx I-b pegylated 0.5, 1, and 2 mg/kg 2 h post-infection with a single dose of each concentration (i.v.; 100 µL of saline) | ↓ Bacterial load in the lung (LyeTx I-b pegylated)
| Brito et al., 2021 [23] |
108 CFU/mice dissolved in 20 µL saline i.n. | LyeTx I mnΔK 1, 5, and 2 mg/kg 2 h post-infection with a single dose of each concentration (i.n.; 20 µL of saline) | ↓ Bacterial load in the lung | Lima et al., 2021 [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, W.G.; de Lima, M.E. Therapeutic Prospection of Animal Venoms-Derived Antimicrobial Peptides against Infections by Multidrug-Resistant Acinetobacter baumannii: A Systematic Review of Pre-Clinical Studies. Toxins 2023, 15, 268. https://doi.org/10.3390/toxins15040268
Lima WG, de Lima ME. Therapeutic Prospection of Animal Venoms-Derived Antimicrobial Peptides against Infections by Multidrug-Resistant Acinetobacter baumannii: A Systematic Review of Pre-Clinical Studies. Toxins. 2023; 15(4):268. https://doi.org/10.3390/toxins15040268
Chicago/Turabian StyleLima, William Gustavo, and Maria Elena de Lima. 2023. "Therapeutic Prospection of Animal Venoms-Derived Antimicrobial Peptides against Infections by Multidrug-Resistant Acinetobacter baumannii: A Systematic Review of Pre-Clinical Studies" Toxins 15, no. 4: 268. https://doi.org/10.3390/toxins15040268
APA StyleLima, W. G., & de Lima, M. E. (2023). Therapeutic Prospection of Animal Venoms-Derived Antimicrobial Peptides against Infections by Multidrug-Resistant Acinetobacter baumannii: A Systematic Review of Pre-Clinical Studies. Toxins, 15(4), 268. https://doi.org/10.3390/toxins15040268