RNA Interference-Mediated Knockdown of Bombyx mori Haemocyte-Specific Cathepsin L (Cat L)-Like Cysteine Protease Gene Increases Bacillus thuringiensis kurstaki Toxicity and Reproduction in Insect Cadavers
Abstract
:1. Introduction
2. Results
2.1. Cat L-Like Expression in Response to DiPel
2.2. RNAi of Cat L-Like Increased DiPel Toxicity
2.3. RNAi of Cat L-Like Enhances Btk Reproduction within Cadavers
2.4. Phylogenetic Analysis of Cat L-Like Sequence
3. Discussion
4. Materials and Methods
4.1. Insect Strain
4.2. B. thuringiensis and Bioassays
4.3. RNA Extraction and cDNA Synthesis
4.4. Quantitative RT-PCR (qRT-PCR) Experiments
4.5. Synthesis of Double-Stranded RNA (dsRNA)
4.6. dsRNA Injection for RNAi Induction
4.7. Btk Reproduction within RNAi Insect Cadavers
4.8. Phylogenetic Analysis
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanahuja, G.; Banakar, R.; Twyman, R.M.; Capell, T.; Christou, P. Bacillus thuringiensis: A century of research, development and commercial applications. Plant Biotechnol. J. 2011, 9, 283–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palma, L.; Muñoz, D.; Berry, C.; Murillo, J.; Caballero, P. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins 2014, 6, 3296–3325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malovichko, Y.V.; Nizhnikov, A.A.; Antonets, K.S. Repertoire of the Bacillus thuringiensis virulence factors unrelated to major classes of protein toxins and its role in specificity of host-pathogen interactions. Toxins 2019, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Roberts, H.L.S.; Sarjan, M.; Asgari, S.; Schmidt, O. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc. Nat. Acad. Sci. USA 2004, 101, 2696–2699. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Roberts, H.L.S.; Schmidt, O. Tolerance to Bacillus thuringiensis endotoxin in immune-suppressed larvae of the flour moth Ephestia kuehniella. J. Invertebr. Pathol. 2007, 96, 125–132. [Google Scholar] [CrossRef]
- Ericsson, J.D.; Janmaat, A.F.; Lowenberger, C.; Myers, J.H. Is decreased generalized immunity a cost of Bt resistance in cabbage loopers Trichoplusia ni? J. Invertebr. Pathol. 2009, 100, 61–67. [Google Scholar] [CrossRef]
- Grizanova, E.V.; Dubovskiy, I.M.; Whitten, M.M.; Glupov, V.V. Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. J. Invertebr. Pathol. 2014, 119, 40–46. [Google Scholar] [CrossRef]
- Pinto, C.P.G.; Azevedo, E.B.; Dos Santos, A.L.Z.; Cardoso, C.P.; Fernandes, F.O.; Rossi, G.D.; Polanczyk, R.A. Immune response and susceptibility to Cotesia flavipes parasitizing Diatraea saccharalis larvae exposed to and surviving an LC25 dosage of Bacillus thuringiensis. J. Invertebr. Pathol. 2019, 166, 107209. [Google Scholar] [CrossRef]
- Govind, S. Innate immunity in Drosophila: Pathogens and pathways. Insect Sci. 2008, 15, 29–43. [Google Scholar] [CrossRef]
- Haine, E.R.; Moret, Y.; Siva-Jothy, M.T.; Rolff, J. Antimicrobial defence and persistent infection in insects. Science 2008, 322, 1257–1259. [Google Scholar] [CrossRef]
- Lavine, M.D.; Strand, M.R. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 2002, 32, 1295–1309. [Google Scholar] [CrossRef]
- Strand, M.R. The insect cellular immune response. Insect Sci. 2008, 15, 1–14. [Google Scholar] [CrossRef]
- Bartholomay, L.C.; Mayhew, G.F.; Fuchs, J.F.; Rocheleau, T.A.; Erickson, S.M.; Aliota, M.T.; Christensen, B.M. Profiling infection responses in the haemocytes of the mosquito, Aedes aegypti. Insect Mol. Biol. 2007, 16, 761–776. [Google Scholar] [CrossRef]
- Moreira, R.; Balseiro, P.; Planas, J.V.; Fuste, B.; Beltran, S.; Novoa, B.; Figueras, A. Transcriptomics of in vitro immune-stimulated hemocytes from the Manila Clam Ruditapes philippinarum using high-throughput sequencing. PloS ONE 2012, 7, e35009. [Google Scholar] [CrossRef] [Green Version]
- Pan, G.; Zhang, K.; Li, C.; Hu, X.; Kausar, S.; Gu, H.; Yang, L.; Cui, H. A hemocyte-specific cathepsin L-like cysteine protease is involved in response to 20-hydroxyecdysone and microbial pathogens stimulation in silkworm, Bombyx mori. Mol. Immunol. 2021, 131, 78–88. [Google Scholar] [CrossRef]
- Wang, G.; Liu, C.; Xia, Q.; Zha, X.; Chen, J.; Jiang, L. Cathepsin B protease is required for metamorphism in silkworm, Bombyx mori. Insect Sci. 2008, 15, 201–208. [Google Scholar] [CrossRef]
- Lee, K.S.; Kim, B.Y.; Choo, Y.M.; Yoon, H.J.; Kang, P.D.; Woo, S.D.; Sohn, H.D.; Roh, J.Y.; Gui, Z.Z.; Je, Y.H.; et al. Expression profile of cathepsin B in the fat body of Bombyx mori during metamorphosis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2009, 154, 188–194. [Google Scholar] [CrossRef]
- Zhang, K.; Su, J.; Chen, S.; Yu, S.; Tan, J.; Xu, M.; Liang, H.; Zhao, Y.; Chao, H.; Yang, L.; et al. Molecular cloning, characterization and expression analysis of cathepsin O in silkworm Bombyx mori related to bacterial response. Mol. Immunol. 2015, 66, 409–417. [Google Scholar] [CrossRef]
- Caccia, S.; Di Lelio, I.; La Storia, A.; Marinelli, A.; Varricchio, P.; Franzetti, E.; Banyuls, N.; Tettamanti, G.; Casartelli, M.; Giordana, B.; et al. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proc. Natl. Acad. Sci. USA 2016, 113, 9486–9491. [Google Scholar] [CrossRef] [Green Version]
- Caccia, S.; Astarita, F.; Barra, E.; Di Lelio, I.; Varricchio, P.; Pennacchio, F. Enhancement of Bacillus thuringiensis toxicity by feeding Spodoptera littoralis larvae with bacteria expressing immune suppressive dsRNA. J. Pest Sci. 2020, 93, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, L.M.S.; Wanderley-Teixeira, V.; Siqueira, H.A.A.; Oliveira, A.C.B.; Lemos, A.J.J.M.; Teixeira, A.A.C. Midgut histopathology of resistant and susceptible Plutella xylostella exposed to commercial formulations of Bacillus thuringiensis. Bull. Insectology 2013, 66, 161–171. [Google Scholar]
- Dubovskiy, I.M.; Krukova, N.A.; Glupov, V.V. Phagocytic activity and encapsulation rate of Galleria mellonella larval haemocytes during bacterial infection by Bacillus thuringiensis. J. Invertebr. Pathol. 2008, 98, 360–362. [Google Scholar] [CrossRef]
- Nakahara, Y.; Shimura, S.; Ueno, C.; Kanamori, Y.; Mita, K.; Kiuchi, M.; Kamimura, M. Purification and characterization of silkworm hemocytes by flow cytometry. Dev. Comp. Immunol. 2009, 33, 439–448. [Google Scholar] [CrossRef]
- Guo, Z.; Kang, S.; Sun, D.; Gong, L.; Zhou, J.; Qin, J.; Guo, L.; Zhu, L.; Bai, Y.; Ye, F.; et al. MAPK-dependent hormonal signaling plasticity contributes to overcoming Bacillus thuringiensis toxin action in an insect host. Nat. Commun. 2020, 11, 3003. [Google Scholar] [CrossRef]
- Gilbert, L.I.; Goodman, W. Chemistry, metabolism, and transport of hormones controlling insect metamorphosis. In Metamorphosis; Gilbert, L.I., Frieden, E., Eds.; Springer: Boston, MA, USA, 1981; pp. 139–175. [Google Scholar]
- Schwedes, C.C.; Carney, G.E. Ecdysone signaling in adult Drosophila melanogaster. J. Insect Physiol. 2012, 58, 293–302. [Google Scholar] [CrossRef]
- Sun, W.; Shen, Y.H.; Zhou, L.X.; Zhang, Z. Ecdysone titer determined by 3DE-3β-reductase enhances the immune response in the silkworm. J. Immunol. 2016, 196, 1646–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, C.; Sucena, É.; Koyama, T. Endocrine regulation of immunity in insects. FEBS J. 2021, 288, 3928–3947. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, R.A.; Kwon, H.; Smith, R.C. 20-Hydroxyecdysone primes innate immune responses that limit bacterial and malarial parasite survival in Anopheles gambiae. mSphere 2020, 5, e00983-e19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, D.; Cheng, T.; Yang, X.; Zhang, Q.; Fu, J.; Feng, T.; Gong, J.; Xia, Q. The genome-wide transcriptional regulatory landscape of ecdysone in the silkworm. Epigenetics Chromatin 2018, 11, 48. [Google Scholar] [CrossRef] [PubMed]
- Broderick, N.A.; Raffa, K.F.; Handelsman, J. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 2006, 103, 15196–15199. [Google Scholar] [CrossRef] [Green Version]
- Broderick, N.A.; Robinson, C.J.; McMahon, M.D.; Holt, J.; Handelsman, J.; Raffa, K.F. Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. BMC Biol. 2009, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- CABI. 2022. Available online: https://www.cabi.org/isc/datasheet/29810 (accessed on 30 May 2022).
- Storer, N.P.; Babcock, J.M.; Schlenz, M.; Meade, T.; Thompson, G.D.; Bing, J.W.; Huckaba, R.M. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 2010, 103, 1031–1038. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Blanco, C.A.; Portilla, M.; Adamczyk, J.; Luttrell, R.; Huang, F. Evidence of multiple/cross resistance to Bt and organophosphate insecticides in Puerto Rico population of the fall armyworm, Spodoptera frugiperda. Pestic. Biochem. Physiol. 2015, 122, 15–21. [Google Scholar] [CrossRef]
- Wang, L.F.; Chai, L.Q.; He, H.J.; Wang, Q.; Wang, J.X.; Zhao, X.F. A cathepsin L-like proteinase is involved in moulting and metamorphosis in Helicoverpa armigera. Insect Mol. Biol. 2010, 19, 99–111. [Google Scholar] [CrossRef]
- Sayyed, A.H.; Wright, D.J. Cross-resistance and inheritance of resistance to Bacillus thuringiensis toxin Cry1Ac in diamondback moth (Plutella xylostella L.) from low land Malaysia. Pest Manag. Sci. 2001, 57, 413–421. [Google Scholar] [CrossRef]
- Muller, P.Y.; Janovjak, H.; Miserez, A.R.; Dobbie, Z. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 2002, 32, 1372–1374, 1376, 1378–1379. [Google Scholar]
- Siragusa, G. Statistical validation of the track-dilution plating method from ground beef and carcass surface samples. J. Rapid Meth. Aut. Mic. 2011, 7, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Lemoine, F.; Correia, D.; Lefort, V.; Doppelt-Azeroual, O.; Mareuil, F.; Cohen-Boulakia, S.; Gascuel, O. NGPhylogeny.fr: New generation phylogenetic services for non-specialists. Nucleic Acids Res. 2019, 47, W260—W265. [Google Scholar] [CrossRef] [Green Version]
- NGPhylogeny.fr. Available online: https://ngphylogeny.fr/ (accessed on 4 April 2022).
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- ITOL: Interactive Tree of Live. Available online: https://itol.embl.de/ (accessed on 4 April 2022).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. Available online: http://www.R-project.org/ (accessed on 19 September 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Sun, Y.; Chang, M.; Zhang, Y.; Qiao, H.; Huang, S.; Kan, Y.; Yao, L.; Li, D.; Ayra-Pardo, C. RNA Interference-Mediated Knockdown of Bombyx mori Haemocyte-Specific Cathepsin L (Cat L)-Like Cysteine Protease Gene Increases Bacillus thuringiensis kurstaki Toxicity and Reproduction in Insect Cadavers. Toxins 2022, 14, 394. https://doi.org/10.3390/toxins14060394
Yang L, Sun Y, Chang M, Zhang Y, Qiao H, Huang S, Kan Y, Yao L, Li D, Ayra-Pardo C. RNA Interference-Mediated Knockdown of Bombyx mori Haemocyte-Specific Cathepsin L (Cat L)-Like Cysteine Protease Gene Increases Bacillus thuringiensis kurstaki Toxicity and Reproduction in Insect Cadavers. Toxins. 2022; 14(6):394. https://doi.org/10.3390/toxins14060394
Chicago/Turabian StyleYang, Linlin, Yanyan Sun, Meiling Chang, Yun Zhang, Huili Qiao, Siliang Huang, Yunchao Kan, Lunguang Yao, Dandan Li, and Camilo Ayra-Pardo. 2022. "RNA Interference-Mediated Knockdown of Bombyx mori Haemocyte-Specific Cathepsin L (Cat L)-Like Cysteine Protease Gene Increases Bacillus thuringiensis kurstaki Toxicity and Reproduction in Insect Cadavers" Toxins 14, no. 6: 394. https://doi.org/10.3390/toxins14060394
APA StyleYang, L., Sun, Y., Chang, M., Zhang, Y., Qiao, H., Huang, S., Kan, Y., Yao, L., Li, D., & Ayra-Pardo, C. (2022). RNA Interference-Mediated Knockdown of Bombyx mori Haemocyte-Specific Cathepsin L (Cat L)-Like Cysteine Protease Gene Increases Bacillus thuringiensis kurstaki Toxicity and Reproduction in Insect Cadavers. Toxins, 14(6), 394. https://doi.org/10.3390/toxins14060394