Analysis of Mycotoxin and Secondary Metabolites in Commercial and Traditional Slovak Cheese Samples
Abstract
:1. Introduction
2. Results and Discussions
2.1. Mycotoxins and Metabolites Detected in Slovak Cheeses
2.1.1. Enniatin B
2.1.2. Tryptophol
2.1.3. 3-Nitropropionic Acid
2.1.4. Clavine Alkaloids, Isofumigaclavine, Festuclavine, and Chanoclavine
2.1.5. Andrastins
2.1.6. Roquefortine C (ROQC), Roquefortine D (ROQD), Mycophenolic Acid (MPA)
2.2. Method Performance Data
3. Conclusions
4. Materials and Methods
4.1. Chemicals
4.2. Sampling
4.3. Mycotoxin Extraction
4.4. LC-ESI-MS/MS Analysis
4.5. Validation Method
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage; Springer: Berlin/Heidelberg, Germany, 2009; Volume 519. [Google Scholar]
- Science, C.F.A. Mycotoxins: Risks in plant, animal, and human systems. Counc. Agric. 2003, 139, 101–103. [Google Scholar]
- Commission Regulation (EU) No 165/2010 of February 2010 Amending Regulation (EC) No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs as Regards Aflatoxins. 2010. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32010R0165 (accessed on 27 January 2022).
- Commission Regulation (EC) No. 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32006R1881 (accessed on 27 January 2022).
- Gallo, A.; Giuberti, G.; Frisvad, J.C.; Bertuzzi, T.; Nielsen, K. Review on mycotoxin issues in ruminants: Occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins 2015, 7, 3057–3111. [Google Scholar] [CrossRef] [PubMed]
- Becker-Algeri, T.A.; Castagnaro, D.; de Bortoli, K.; de Souza, C.; Drunkler, D.A.; Badiale-Furlong, E. Mycotoxins in bovine milk and dairy products: A review. J. Food Sci. 2016, 81, R544–R552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziarati, P.; Shirkhan, F.; Mostafidi, M.; Zahedi, M.T. An overview of the heavy metal contamination in milk and dairy products. Acta Sci. Pharm. Sci. 2018, 2, 1–14. [Google Scholar]
- Bryden, W. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Anim. Feed Sci. Technol. 2012, 173, 134–158. [Google Scholar] [CrossRef]
- Pardo, J. On phonetic convergence during conversational interaction. J. Acoust. Soc. Am. 2006, 119, 2382–2393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulyok, M.; Krska, R.; Schuhmacher, R. Application of an LC–MS/MS based multi-mycotoxin method for the semi-quantitative determination of mycotoxins occurring in different types of food infected by moulds. Food Chem. 2010, 119, 408–416. [Google Scholar] [CrossRef]
- Sulyok, M.; Krska, R.; Senyuva, H. Profiles of fungal metabolites including regulated mycotoxins in individual dried Turkish figs by LC-MS/MS. Mycotoxin Res. 2020, 36, 381–387. [Google Scholar] [CrossRef]
- Zhang, X.; Cudjoe, E.; Vuckovic, D.; Pawliszyn, J. Direct monitoring of ochratoxin A in cheese with solid-phase microextraction coupled to liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2009, 1216, 7505–7509. [Google Scholar] [CrossRef]
- Kure, C.F.; Skaar, I. The fungal problem in cheese industry. Curr. Opin. Food Sci. 2019, 29, 14–19. [Google Scholar] [CrossRef]
- Kure, C.F.; Skaar, I. Mould growth on the Norwegian semi-hard cheeses Norvegia and Jarlsberg. Int. J. Food Microbiol. 2000, 62, 133–137. [Google Scholar] [CrossRef]
- Decontardi, S.; Mauro, A.; Lima, N.; Battilani, P. Survey of Penicillia associated with Italian grana cheese. Int. J. Food Microbiol. 2017, 246, 25–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotton, L.A.; Kuang, X.T.; Le, A.Q.; Carlson, J.M.; Chan, B.; Chopera, D.R.; Brumme, C.J.; Markle, T.J.; Martin, E.; Shahid, A. Genotypic and functional impact of HIV-1 adaptation to its host population during the North American epidemic. PLoS Genet. 2014, 10, e1004295. [Google Scholar] [CrossRef] [PubMed]
- Anelli, P.; Haidukowski, M.; Epifani, F.; Cimmarusti, M.T.; Moretti, A.; Logrieco, A.; Susca, A. Fungal mycobiota and mycotoxin risk for traditional artisan Italian cave cheese. Food Microbiol. 2019, 78, 62–72. [Google Scholar] [CrossRef]
- Kandasamy, S.; Park, W.S.; Yoo, J.; Yun, J.; Kang, H.B.; Seol, K.-H.; Oh, M.-H.; Ham, J.S. Characterisation of fungal contamination sources for use in quality management of cheese production farms in Korea. Asian-Australas J. Anim. Sci. 2020, 33, 1002–1011. [Google Scholar] [CrossRef] [Green Version]
- Pattono, D.; Grosso, A.; Stocco, P.; Pazzi, M.; Zeppa, G. Survey of the presence of patulin and ochratoxin A in traditional semi-hard cheeses. Food Control 2013, 33, 54–57. [Google Scholar] [CrossRef]
- Dall’Asta, C.; Lindner, J.D.D.; Galaverna, G.; Dossena, A.; Neviani, E.; Marchelli, R. The occurrence of ochratoxin A in blue cheese. Food Chem. 2008, 106, 729–734. [Google Scholar] [CrossRef]
- Ansari, P.; Häubl, G. Determination of cyclopiazonic acid in white mould cheese by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) using a novel internal standard. Food Chem. 2016, 211, 978–982. [Google Scholar] [CrossRef]
- Zambonin, C.; Monaci, L.; Aresta, A. Determination of cyclopiazonic acid in cheese samples using solid-phase microextraction and high performance liquid chromatography. Food Chem. 2001, 75, 249–254. [Google Scholar] [CrossRef]
- Fontaine, K.; Passeró, E.; Vallone, L.; Hymery, N.; Coton, M.; Jany, J.-L.; Mounier, J.; Coton, E. Occurrence of roquefortine C, mycophenolic acid and aflatoxin M1 mycotoxins in blue-veined cheeses. Food Control 2015, 47, 634–640. [Google Scholar] [CrossRef]
- Kokkonen, M.; Jestoi, M.; Rizzo, A. Determination of selected mycotoxins in mould cheeses with liquid chromatography coupled to tandem with mass spectrometry. Food Addit. Contam. 2005, 22, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Vinokurova, N.; Boichenko, D.; Baskunov, B.; Zelenkova, N.; Vepritskaya, I.; Arinbasarov, M.; Reshetilova, T. Minor Alkaloids of the Fungus Penicillium roquefortiiThom 1906. Appl. Biochem. Microbiol. 2001, 37, 184–187. [Google Scholar] [CrossRef]
- Kalinina, S.A.; Jagels, A.; Hickert, S.; Mauriz Marques, L.M.; Cramer, B.; Humpf, H.-U. Detection of the cytotoxic penitrems A–F in cheese from the European single market by HPLC-MS/MS. J. Agric. Food Chem. 2018, 66, 1264–1269. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.F.; Dalsgaard, P.W.; Smedsgaard, J.; Larsen, T.O. Andrastins A−D, Penicillium roqueforti metabolites consistently produced in blue-mold-ripened cheese. J. Agric. Food Chem. 2005, 53, 2908–2913. [Google Scholar] [CrossRef]
- Malachová, A.; Sulyok, M.; Beltrán, E.; Berthiller, F.; Krska, R. Optimization and validation of a quantitative liquid chromatography–tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chromatogr. A 2014, 1362, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Izzo, L.; Rodríguez-Carrasco, Y.; Tolosa, J.; Graziani, G.; Gaspari, A.; Ritieni, A. Target analysis and retrospective screening of mycotoxins and pharmacologically active substances in milk using an ultra-high-performance liquid chromatography/high-resolution mass spectrometry approach. J. Dairy Sci. 2020, 103, 1250–1260. [Google Scholar] [CrossRef]
- Vaz, A.; Cabral Silva, A.C.; Rodrigues, P.; Venâncio, A. Detection methods for aflatoxin M1 in dairy products. Microorganisms 2020, 8, 246. [Google Scholar] [CrossRef] [Green Version]
- Sulyok, M.; Stadler, D.; Steiner, D.; Krska, R. Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of >500 mycotoxins and other secondary metabolites in food crops: Challenges and solutions. Anal. Bioanal. Chem. 2020, 412, 2607–2620. [Google Scholar] [CrossRef] [Green Version]
- Izzo, L.; Narváez, A.; Castaldo, L.; Gaspari, A.; Rodríguez-Carrasco, Y.; Grosso, M.; Ritieni, A. Multiclass and multi-residue screening of mycotoxins, pharmacologically active substances, and pesticides in infant milk formulations through UHPLC-Q-Orbitrap HRMS. J. Dairy Sci. 2022. [Google Scholar] [CrossRef]
- Laurenčík, M.; Sulo, P.; Sláviková, E.; Piecková, E.; Seman, M.; Ebringer, L. The diversity of eukaryotic microbiota in the traditional Slovak sheep cheese—Bryndza. Int. J. Food Microbiol. 2008, 127, 176–179. [Google Scholar] [CrossRef]
- Pangallo, D.; Šaková, N.; Koreňová, J.; Puškárová, A.; Kraková, L.; Valík, L.; Kuchta, T. Microbial diversity and dynamics during the production of May bryndza cheese. Int. J. Food Microbiol. 2014, 170, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Císarová, M.; Tančinová, D.; Barboráková, Z.; Mašková, Z.; Felšöciová, S.; Kučerková, V.; Sciences, F. Potential production of cyclopiazonic acid by penicillium camemberti strains isolated from camembert type cheese. J. Microbiol. Biotechnol. 2021, 2021, 434–445. [Google Scholar]
- Fink-Gremmels, J. Contaminants, Mycotoxins in cattle feeds and carry-over to dairy milk: A review. Food Addit. 2008, 25, 172–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshinari, T.; Suzuki, Y.; Sugita-Konishi, Y.; Ohnishi, T.; Terajima, J. Occurrence of beauvericin and enniatins in wheat flour and corn grits on the Japanese market, and their co-contamination with type B trichothecene mycotoxins. Food Addit. Contam Part A 2016, 33, 1620–1626. [Google Scholar] [CrossRef]
- Oana-Alina, B.-S.; Florica, C.; Aurelia, D.; Reta, D. Research approaches regarding biological control of Fusarium stem rot of sweet potato produced on sandy soils. Oltenia. Stud. Şi Comunicări. Ştiinţele Nat. 2017, 33, 171–178. [Google Scholar]
- Tolosa, J.; Font, G.; Mañes, J.; Ferrer, E. Mitigation of enniatins in edible fish tissues by thermal processes and identification of degradation products. Food Chem. Toxicol. 2017, 101, 67–74. [Google Scholar] [CrossRef]
- Rodríguez-Carrasco, Y.; Narváez, A.; Izzo, L.; Gaspari, A.; Graziani, G.; Ritieni, A. Biomonitoring of enniatin B1 and its phase I metabolites in human urine: First large-scale study. Toxins 2020, 12, 415. [Google Scholar] [CrossRef]
- Rodríguez-Carrasco, Y.; Izzo, L.; Gaspari, A.; Graziani, G.; Mañes, J.; Ritieni, A. Urinary levels of enniatin B and its phase I metabolites: First human pilot biomonitoring study. Food Chem. Toxicol. 2018, 118, 454–459. [Google Scholar] [CrossRef]
- Castaldo, L.; Graziani, G.; Gaspari, A.; Izzo, L.; Tolosa, J.; Rodríguez-Carrasco, Y.; Ritieni, A. Target analysis and retrospective screening of multiple mycotoxins in pet food using UHPLC-Q-Orbitrap HRMS. Toxins 2019, 11, 434. [Google Scholar] [CrossRef] [Green Version]
- Narváez, A.; Rodríguez-Carrasco, Y.; Izzo, L.; Castaldo, L.; Ritieni, A. Target quantification and semi-target screening of undesirable substances in pear juices using ultra-high-performance liquid chromatography-quadrupole orbitrap mass spectrometry. Foods 2020, 9, 841. [Google Scholar] [CrossRef]
- Narváez, A.; Rodríguez-Carrasco, Y.; Castaldo, L.; Izzo, L.; Graziani, G.; Ritieni, A. Occurrence and Exposure Assessment of Mycotoxins in Ready-to-Eat Tree Nut Products through Ultra-High Performance Liquid Chromatography Coupled with High Resolution Q-Orbitrap Mass Spectrometry. Metabolites 2020, 10, 344. [Google Scholar] [CrossRef] [PubMed]
- Narváez, A.; Rodríguez-Carrasco, Y.; Castaldo, L.; Izzo, L.; Ritieni, A. Ultra-high-performance liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry for multi-residue analysis of mycotoxins and pesticides in botanical nutraceuticals. Toxins 2020, 12, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juan, C.; Manyes, L.; Font, G.; Juan-García, A. Evaluation of immunologic effect of Enniatin A and quantitative determination in feces, urine and serum on treated Wistar rats. Toxicon 2014, 87, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Dagnac, T.; Latorre, A.; Fernández Lorenzo, B.; Llompart, M. Validation and application of a liquid chromatography-tandem mass spectrometry based method for the assessment of the co-occurrence of mycotoxins in maize silages from dairy farms in NW Spain. Food Addit. Contam Part A 2016, 33, 1850–1863. [Google Scholar] [CrossRef]
- Piątkowska, M.; Sulyok, M.; Pietruszka, K.; Panasiuk, Ł. Pilot study for the presence of fungal metabolites in sheep milk from first spring milking. J. Vet. Res. 2018, 62, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayle, D.L.; Purves, W.K. Isolation and identification of indole-3-ethanol (tryptophol) from cucumber seedlings. Plant Physiol. 1967, 42, 520–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gori, K.; Knudsen, P.B.; Nielsen, K.F.; Arneborg, N.; Jespersen, L. Alcohol-based quorum sensing plays a role in adhesion and sliding motility of the yeast D ebaryomyces hansenii. FEMS Yeast Res. 2011, 11, 643–652. [Google Scholar] [CrossRef] [Green Version]
- Peterson, D.; Kelsey, J.; Bauman, D.E. Analysis of variation in cis-9, trans-11 conjugated linoleic acid (CLA) in milk fat of dairy cows. J. Dairy Sci. 2002, 85, 2164–2172. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Fink, G.R. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev. 2006, 20, 1150–1161. [Google Scholar] [CrossRef] [Green Version]
- Attwood, G.; Li, D.; Pacheco, D.; Tavendale, M. Production of indolic compounds by rumen bacteria isolated from grazing ruminants. J. Appl. Microbiol. 2006, 100, 1261–1271. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud. Mycol. 2004, 49, 1–174. [Google Scholar]
- Hollmann, M.; Razzazi-Fazeli, E.; Grajewski, J.; Twaruzek, M.; Sulyok, M.; Böhm, J. Detection of 3-nitropropionic acid and cytotoxicity in Mucor circinelloides. Mycotoxin Res. 2008, 24, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, D.; Garcia, S. Guide to Foodborne Pathog; Wiley & Sons: New York, NY, USA, 2001; pp. 35–50. [Google Scholar]
- Burdock, G.A.; Carabin, I.G.; Soni, M.G. Safety assessment of β-nitropropionic acid: A monograph in support of an acceptable daily intake in humans. Food Chem. 2001, 75, 1–27. [Google Scholar] [CrossRef]
- Soni, M.G.; Carabin, I.G.; Griffiths, J.C.; Burdock, G.A. Nitropropionic Acid in the Diet: Toxicity Aspects. Rev. Food Nutr. Toxic. 2004, 2, 127. [Google Scholar]
- Iwasaki, T.; Kosikowski, F. Production of β-nitropropionic acid in foods. J. Food Sci. 1973, 38, 1162–1165. [Google Scholar] [CrossRef]
- Rigbers, O.; Li, S.-M. Ergot alkaloid biosynthesis in Aspergillus fumigatus: Overproduction and biochemical characterization of a 4-dimethylallyltryptophan N-methyltransferase. J. Biol. Chem. 2008, 283, 26859–26868. [Google Scholar] [CrossRef] [Green Version]
- Tudzynski, P.; Neubauer, L. Ergot alkaloids. In Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites; Springer: Berlin/Heidelberg, Germany, 2014; pp. 303–316. [Google Scholar]
- Nielsen, K.F.; Sumarah, M.W.; Frisvad, J.C.; Miller, J.D. Production of metabolites from the Penicillium roqueforti complex. J. Agric. Food Chem. 2006, 54, 3756–3763. [Google Scholar] [CrossRef]
- García-Estrada, C.; Martín, J.-F. Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses. Appl. Microbiol. 2016, 100, 8303–8313. [Google Scholar] [CrossRef]
- Fabian, S.J.; Maust, M.D.; Panaccione, D.G. Ergot alkaloid synthesis capacity of Penicillium camemberti. Appl. Environ. Microbiol. 2018, 84, e01583-18. [Google Scholar] [CrossRef] [Green Version]
- O'Brien, M.; Nielsen, K.F.; O'Kiely, P.; Forristal, P.D.; Fuller, H.T.; Frisvad, J.C. Mycotoxins and other secondary metabolites produced in vitro by Penicillium paneum Frisvad and Penicillium roqueforti Thom isolated from baled grass silage in Ireland. J. Agric. Food Chem. 2006, 54, 9268–9276. [Google Scholar] [CrossRef] [Green Version]
- Albillos, S.M.; García-Estrada, C.; Martín, J.-F. Spanish Blue Cheeses: Functional Metabolites. In Cheese: Types, Nutrition and Consumption; Richard, D.F., Ed.; Nova Science Publishers: New York, NY, USA, 2011; pp. 89–105. [Google Scholar]
- Rojas-Aedo, J.F.; Gil-Durán, C.; Del-Cid, A.; Valdés, N.; Álamos, P.; Vaca, I.; García-Rico, R.O.; Levicán, G.; Tello, M.; Chávez, R. The biosynthetic gene cluster for andrastin A in Penicillium roqueforti. Front Microbiol. 2017, 8, 813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Bodega, M.; Mauriz, E.; Gómez, A.; Martín, J. Proteolytic activity, mycotoxins and andrastin A in Penicillium roqueforti strains isolated from Cabrales, Valdeón and Bejes–Tresviso local varieties of blue-veined cheeses. Int. J. Food Microbiol. 2009, 136, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, K.; Hymery, N.; Lacroix, M.Z.; Puel, S.; Puel, O.; Rigalma, K.; Gaydou, V.; Coton, E.; Mounier, J. Influence of intraspecific variability and abiotic factors on mycotoxin production in Penicillium roqueforti. Int. J. Food Microbiol. 2015, 215, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Zambonin, C.; Monaci, L.; Aresta, A. Solid-phase microextraction-high performance liquid chromatography and diode array detection for the determination of mycophenolic acid in cheese. Food Chem. 2002, 78, 249–254. [Google Scholar] [CrossRef]
- Usleber, E.; Dade, M.; Schneider, E.; Dietrich, R.; Bauer, J.; Martlbauer, E. Enzyme immunoassay for mycophenolic acid in milk and cheese. J. Agric. Food Chem. 2008, 56, 6857–6862. [Google Scholar] [CrossRef] [PubMed]
- Finoli, C.; Vecchio, A.; Galli, A.; Dragoni, I. Roquefortine C occurrence in blue cheese. J. Food Prot. 2001, 64, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Hymery, N.; Vasseur, V.; Coton, M.; Mounier, J.; Jany, J.L.; Barbier, G.; Coton, E. Filamentous fungi and mycotoxins in cheese: A review. Compr. Rev. Food Sci. 2014, 13, 437–456. [Google Scholar] [CrossRef]
Type of Mycotoxin | Cow’s Cheeses/45 Samples | Sheep’s Cheeses/19 Samples | Goat’s Cheeses/4 Samples | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Commercial | Traditional | Concentration Range µg/kg | Commercial | Traditional | Concentration Range µg/kg | Commercial | Traditional | Concentration Range µg/kg | Numbers of Total Positive Samples | |
3-NPA * | 0/25 | 2/20 | 10.6–66.7 | 3/10 | 0/9 | 3.8–27.2 | 0/4 | - | - | 5/68 |
Andrastin A, B, C, D | 0/25 | 8/20 | 89.7–8890 | 8/10 | 0/9 | 96.7–9140 | 0/4 | - | - | 16/68 |
Chanoclavine | 0/25 | 2/20 | 3.1–7.5 | 2/10 | 0/9 | 4.8–6.9 | 0/4 | - | - | 4/68 |
Enniatin B | 25/25 | 20/20 | 0.02–0.71 | 10/10 | 9/9 | 0.04–0.57 | 4/4 | - | 0.09–0.17 | 4/68 |
Festuclavine | 0/25 | 2/20 | 1.2–2 | 2/10 | 0/9 | 0.21–1.3 | 0/4 | - | - | 4/68 |
iso-Fumigaclavine | 0/25 | 2/20 | 178–294 | 2/10 | 0/9 | 90–135 | 0/4 | - | - | 4/68 |
Mycophenolic acid | 0/25 | 2/20 | 20.7–29.4 | 2/10 | 0/9 | 16.1–28.7 | 0/4 | - | - | 4/68 |
Roquefortine C, D | 0/25 | 4/20 | 591.8–17900 | 4/10 | 0/9 | 679–13700 | 0/4 | - | - | 8/68 |
Tryptophol | 8/25 | 8/20 | 15–7930 | 4/10 | 2/9 | 13.4–171 | 0/4 | - | - | 22/68 |
Analyte | Apparent Recovery (%) | RSD (%) |
---|---|---|
3-Nitropropionic acid | 53.2 | 14.9 |
Aflatoxin B1 | 28.3 | 10.4 |
Aflatoxin M1 | 50.7 | 13.9 |
Alternariolmethylether | 75.1 | 13.9 |
Andrastin A | 54.9 | 18.2 |
Andrastin B | 59.5 | 12.7 |
Andrastin C | 60.8 | 7.4 |
Chanoclavine | 39.8 | 19.2 |
Citreoviridin | 84.1 | 16.2 |
Citrinin | 107 | 13.5 |
Cyclopiazonic acid | 102.9 | 13.9 |
Deoxynivalenol | 77.8 | 9 |
Enniatin B | 93 | 7.2 |
Fumigaclavine A | 48 | 15.9 |
Fumonisin B1 | 61.2 | 17.5 |
Fumonisin B2 | 72.3 | 15.5 |
Griseofulvin | 49.1 | 10.4 |
Mycophenolic acid | 71.6 | 14.2 |
Ochratoxin A | 68.7 | 9.3 |
Patulin | 47.8 | 18.9 |
Penitrem A | 116.8 | 12.8 |
Quinolactacin A | 43.5 | 17.2 |
Roquefortine C | 71.7 | 12.2 |
Roquefortine D | 36.3 | 13.3 |
Sterigmatocystin | 61 | 18.1 |
T-2 Toxin | 56.3 | 5.6 |
Tryptophol | 31.8 | 9.6 |
Zearalenone | 71.2 | 9.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izzo, L.; Mikušová, P.; Lombardi, S.; Sulyok, M.; Ritieni, A. Analysis of Mycotoxin and Secondary Metabolites in Commercial and Traditional Slovak Cheese Samples. Toxins 2022, 14, 134. https://doi.org/10.3390/toxins14020134
Izzo L, Mikušová P, Lombardi S, Sulyok M, Ritieni A. Analysis of Mycotoxin and Secondary Metabolites in Commercial and Traditional Slovak Cheese Samples. Toxins. 2022; 14(2):134. https://doi.org/10.3390/toxins14020134
Chicago/Turabian StyleIzzo, Luana, Petra Mikušová, Sonia Lombardi, Michael Sulyok, and Alberto Ritieni. 2022. "Analysis of Mycotoxin and Secondary Metabolites in Commercial and Traditional Slovak Cheese Samples" Toxins 14, no. 2: 134. https://doi.org/10.3390/toxins14020134
APA StyleIzzo, L., Mikušová, P., Lombardi, S., Sulyok, M., & Ritieni, A. (2022). Analysis of Mycotoxin and Secondary Metabolites in Commercial and Traditional Slovak Cheese Samples. Toxins, 14(2), 134. https://doi.org/10.3390/toxins14020134