Amoebae as Targets for Toxins or Effectors Secreted by Mammalian Pathogens
Abstract
1. Introduction
2. Free-Living Amoebae Represent a Relevant Model to Study Bacterial Effectors
3. Bacteria and Fungi Can Secrete Surface Molecules That Prevent Amoeba Engulfment
4. Pathogenic Bacteria Use Toxins or Secreted Factors to Disturb Amoeba Functions to Survive
5. The Host Cell Death Is a Common Read-Out Induced by Toxins
6. Toxins and Microbial Secreted Factors Induce Various Responses That Depends on the Host
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez, J.; Holmgren, J. Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell. Mol. Life Sci. 2008, 65, 1347–1360. [Google Scholar] [CrossRef]
- Toivonen, J.M.; Oliván, S.; Osta, R. Tetanus Toxin C-Fragment: The Courier and the Cure? Toxins 2010, 2, 2622–2644. [Google Scholar] [CrossRef]
- Pruimboom-Brees, I.M.; Morgan, T.W.; Ackermann, M.R.; Nystrom, E.D.; Samuel, J.E.; Cornick, N.A.; Moon, H.W. Cattle Lack Vascular Receptors for Escherichia Coli O157:H7 Shiga Toxins. Proc. Natl. Acad. Sci. USA 2000, 97, 10325–10329. [Google Scholar] [CrossRef]
- Brown, M. Unexplored reservoirs of pathogenic bacteria: Protozoa and biofilms. Trends Microbiol. 1999, 7, 46–50. [Google Scholar] [CrossRef]
- Greub, G.; Raoult, D. Microorganisms Resistant to Free-Living Amoebae. CMR 2004, 17, 413–433. [Google Scholar] [CrossRef]
- Samba-Louaka, A.; Delafont, V.; Rodier, M.-H.; Cateau, E.; Héchard, Y. Free-Living Amoebae and Squatters in the Wild: Ecological and Molecular Features. FEMS Microbiol. Rev. 2019, 43, 415–434. [Google Scholar] [CrossRef]
- Siddiqui, R.; Khan, N.A. Acanthamoeba is an evolutionary ancestor of macrophages: A myth or reality? Exp. Parasitol. 2012, 130, 95–97. [Google Scholar] [CrossRef] [PubMed]
- Escoll, P.; Rolando, M.; Gomez-Valero, L.; Buchrieser, C. From amoeba to macrophages: Exploring the molecular mechanisms of Legionella pneumophila infection in both hosts. In Molecular Mechanisms in Legionella Pathogenesis; Hilbi, H., Ed.; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2013; Volume 376, pp. 1–34. ISBN 978-3-642-40590-7. [Google Scholar]
- Whan, L.; Grant, I.R.; Rowe, M.T. Interaction between mycobacterium avium subsp. Paratuberculosis and environmental protozoa. BMC Microbiol. 2006, 6, 63. [Google Scholar] [CrossRef] [PubMed]
- Barker, J.; Scaife, H.; Brown, M.R. Intraphagocytic growth induces an antibiotic-resistant phenotype of Legionella pneumophila. Antimicrob. Agents Chemother. 1995, 12, 2684–2688. [Google Scholar] [CrossRef] [PubMed]
- Gimenez, G.; Bertelli, C.; Moliner, C.; Robert, C.; Raoult, D.; Fournier, P.-E.; Greub, G. Insight into Cross-Talk between Intra-Amoebal Pathogens. BMC Genom. 2011, 12, 542. [Google Scholar] [CrossRef]
- Guimaraes, A.J.; Gomes, K.X.; Cortines, J.R.; Peralta, J.M.; Peralta, R.H.S. Acanthamoeba Spp. as a Universal Host for Pathogenic Microorganisms: One Bridge from Environment to Host Virulence. Microbiol. Res. 2016, 193, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Thomas, V.; McDonnell, G.; Denyer, S.P.; Maillard, J.-Y. Free-Living Amoebae and Their Intracellular Pathogenic Microorganisms: Risks for Water Quality. FEMS Microbiol. Rev. 2010, 34, 231–259. [Google Scholar] [CrossRef] [PubMed]
- Fouque, E.; Trouilhé, M.-C.; Thomas, V.; Hartemann, P.; Rodier, M.-H.; Héchard, Y. Cellular, Biochemical, and Molecular Changes during Encystment of Free-Living Amoebae. Eukaryot. Cell 2012, 11, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Linder, M.; Winiecka-Krusnell, J.; Linder, E. Use of Recombinant Cellulose-Binding Domains of Trichoderma Reesei Cellulase as a Selective Immunocytochemical Marker for Cellulose in Protozoa. AEM 2002, 68, 2503–2508. [Google Scholar] [CrossRef]
- Kilvington, S.; Price, J. Survival of Legionella Pneumophila within Cysts of Acanthamoeba Polyphaga Following Chlorine Exposure. J. Appl. Bacteriol. 1990, 68, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, E.; Baré, J.; Chavatte, N.; Bert, W.; Sabbe, K.; Houf, K. Protozoan Cysts Act as a Survival Niche and Protective Shelter for Foodborne Pathogenic Bacteria. Appl. Environ. Microbiol. 2015, 81, 5604–5612. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A. Evolution of Intracellular Pathogens. Annu. Rev. Microbiol. 2008, 62, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Novohradská, S.; Ferling, I.; Hillmann, F. Exploring Virulence Determinants of Filamentous Fungal Pathogens through Interactions with Soil Amoebae. Front. Cell. Infect. Microbiol. 2017, 7, 497. [Google Scholar] [CrossRef]
- Tosetti, N.; Croxatto, A.; Greub, G. Amoebae as a Tool to Isolate New Bacterial Species, to Discover New Virulence Factors and to Study the Host–Pathogen Interactions. Microb. Pathog. 2014, 77, 125–130. [Google Scholar] [CrossRef]
- Swart, A.L.; Harrison, C.F.; Eichinger, L.; Steinert, M.; Hilbi, H. Acanthamoeba and Dictyostelium as Cellular Models for Legionella Infection. Front. Cell. Infect. Microbiol. 2018, 8, 61. [Google Scholar] [CrossRef]
- Visvesvara, G.S.; Moura, H.; Schuster, F.L. Pathogenic and Opportunistic Free-Living Amoebae: Acanthamoeba Spp., Balamuthia Mandrillaris, Naegleria Fowleri, and Sappinia Diploidea. FEMS Immunol. Med Microbiol. 2007, 50, 1–26. [Google Scholar] [CrossRef]
- Siddiqui, R.; Khan, N.A. Biology and Pathogenesis of Acanthamoeba. Parasites Vectors 2012, 5, 6. [Google Scholar] [CrossRef]
- Clarke, M.; Lohan, A.J.; Liu, B.; Lagkouvardos, I.; Roy, S.; Zafar, N.; Bertelli, C.; Schilde, C.; Kianianmomeni, A.; Bürglin, T.R.; et al. Genome of Acanthamoeba Castellanii Highlights Extensive Lateral Gene Transfer and Early Evolution of Tyrosine Kinase Signaling. Genome. Biol. 2013, 14, R11. [Google Scholar] [CrossRef]
- Maciver, S.K. Asexual Amoebae Escape Muller’s Ratchet through Polyploidy. Trends Parasitol. 2016, 32, 855–862. [Google Scholar] [CrossRef]
- Peng, Z.; Omaruddin, R.; Bateman, E. Stable Transfection of Acanthamoeba Castellanii. Biochim. Biophys. Acta Mol. Cell Res. 2005, 1743, 93–100. [Google Scholar] [CrossRef]
- Annesley, S.J.; Fisher, P.R. Dictyostelium Discoideum—A Model for Many Reasons. Mol. Cell Biochem. 2009, 329, 73–91. [Google Scholar] [CrossRef] [PubMed]
- Lamrabet, O.; Melotti, A.; Burdet, F.; Hanna, N.; Perrin, J.; Nitschke, J.; Pagni, M.; Hilbi, H.; Soldati, T.; Cosson, P. Transcriptional Responses of Dictyostelium Discoideum Exposed to Different Classes of Bacteria. Front. Microbiol. 2020, 11, 410. [Google Scholar] [CrossRef]
- Chen, G.; Zhuchenko, O.; Kuspa, A. Immune-like Phagocyte Activity in the Social Amoeba. Science 2007, 317, 678–681. [Google Scholar] [CrossRef] [PubMed]
- Brock, D.A.; Douglas, T.E.; Queller, D.C.; Strassmann, J.E. Primitive Agriculture in a Social Amoeba. Nature 2011, 469, 393–396. [Google Scholar] [CrossRef] [PubMed]
- DiSalvo, S.; Haselkorn, T.S.; Bashir, U.; Jimenez, D.; Brock, D.A.; Queller, D.C.; Strassmann, J.E. Burkholderia Bacteria Infectiously Induce the Proto-Farming Symbiosis of Dictyostelium Amoebae and Food Bacteria. Proc. Natl. Acad. Sci. USA 2015, 112, E5029–E5037. [Google Scholar] [CrossRef]
- Brock, D.A.; Callison, W.É.; Strassmann, J.E.; Queller, D.C. Sentinel Cells, Symbiotic Bacteria and Toxin Resistance in the Social Amoeba Dictyostelium Discoideum. Proc. R. Soc. B Boil. Sci. 2016, 283, 20152727. [Google Scholar] [CrossRef] [PubMed]
- Stallforth, P.; Brock, D.A.; Cantley, A.M.; Tian, X.; Queller, D.C.; Strassmann, J.E.; Clardy, J. A Bacterial Symbiont Is Converted from an Inedible Producer of Beneficial Molecules into Food by a Single Mutation in the GacA Gene. Proc. Natl. Acad. Sci. USA 2013, 110, 14528–14533. [Google Scholar] [CrossRef]
- Shu, L.; Brock, D.A.; Geist, K.S.; Miller, J.W.; Queller, D.C.; Strassmann, J.E.; DiSalvo, S. Symbiont Location, Host Fitness, and Possible Coadaptation in a Symbiosis between Social Amoebae and Bacteria. eLife 2018, 7, e42660. [Google Scholar] [CrossRef] [PubMed]
- Delafont, V.; Rodier, M.-H.; Maisonneuve, E.; Cateau, E. Vermamoeba Vermiformis: A Free-Living Amoeba of Interest. Microb. Ecol. 2018, 76, 991–1001. [Google Scholar] [CrossRef] [PubMed]
- De Jonckheere, J.F. What do We Know by Now about the Genus Naegleria? Exp. Parasitol. 2014, 145, S2–S9. [Google Scholar] [CrossRef] [PubMed]
- Boamah, D.K.; Zhou, G.; Ensminger, A.W.; O’Connor, T.J. From Many Hosts, One Accidental Pathogen: The Diverse Protozoan Hosts of Legionella. Front. Cell. Infect. Microbiol. 2017, 7, 477. [Google Scholar] [CrossRef]
- Ferling, I.; Dunn, J.D.; Ferling, A.; Soldati, T.; Hillmann, F. Conidial Melanin of the Human-Pathogenic Fungus Aspergillus fumigatus Disrupts Cell Autonomous Defenses in Amoebae. mBio 2020, 11, 16. [Google Scholar]
- Noorian, P.; Hu, J.; Chen, Z.; Kjelleberg, S.; Wilkins, M.R.; Sun, S.; McDougald, D. Pyomelanin Produced by Vibrio Cholerae Confers Resistance to Predation by Acanthamoeba Castellanii. FEMS Microbiol. Ecol. 2017, 93, fix147. [Google Scholar] [CrossRef]
- March, C.; Cano, V.; Moranta, D.; Llobet, E.; Pérez-Gutiérrez, C.; Tomás, J.M.; Suárez, T.; Garmendia, J.; Bengoechea, J.A. Role of Bacterial Surface Structures on the Interaction of Klebsiella Pneumoniae with Phagocytes. PLoS ONE 2013, 8, e56847. [Google Scholar] [CrossRef]
- Robey, M.; O’Connell, W.; Cianciotto, N.P. Identification of Legionella Pneumophila Rcp, a PagP-Like Gene That Confers Resistance to Cationic Antimicrobial Peptides and Promotes Intracellular Infection. Infect. Immun. 2001, 69, 4276–4286. [Google Scholar] [CrossRef]
- Arnold, J.W.; Spacht, D.; Koudelka, G.B. Determinants That Govern the Recognition and Uptake of E. Coli O157:H7 by Acanthamoeba Castellanii. Cell. Microbiol. 2016, 18, 1459–1470. [Google Scholar] [CrossRef]
- Kebbi-Beghdadi, C.; Pilloux, L.; Croxatto, A.; Tosetti, N.; Pillonel, T.; Greub, G. A Predation Assay Using Amoebae to Screen for Virulence Factors Unearthed the First W. Chondrophila Inclusion Membrane Protein. Sci. Rep. 2019, 9, 19485. [Google Scholar] [CrossRef]
- Mital, J.; Miller, N.J.; Dorward, D.W.; Dooley, C.A.; Hackstadt, T. Role for Chlamydial Inclusion Membrane Proteins in Inclusion Membrane Structure and Biogenesis. PLoS ONE 2013, 8, e63426. [Google Scholar] [CrossRef]
- Heinz, E.; Rockey, D.D.; Montanaro, J.; Aistleitner, K.; Wagner, M.; Horn, M. Inclusion Membrane Proteins of Protochlamydia Amoebophila UWE25 Reveal a Conserved Mechanism for Host Cell Interaction among the Chlamydiae. J. Bacteriol. 2010, 192, 5093–5102. [Google Scholar] [CrossRef] [PubMed]
- Jousset, A. Ecological and Evolutive Implications of Bacterial Defences against Predators: Antipredator Defences and Bacterial Ecology. Environ. Microbiol. 2012, 14, 1830–1843. [Google Scholar] [CrossRef]
- Abdel-Nour, M.; Duncan, C.; Prashar, A.; Rao, C.; Ginevra, C.; Jarraud, S.; Low, D.E.; Ensminger, A.W.; Terebiznik, M.R.; Guyard, C. The Legionella Pneumophila Collagen-Like Protein Mediates Sedimentation, Autoaggregation, and Pathogen-Phagocyte Interactions. Appl. Environ. Microbiol. 2014, 80, 1441–1454. [Google Scholar] [CrossRef] [PubMed]
- Newton, H.J.; Sansom, F.M.; Dao, J.; Cazalet, C.; Bruggemann, H.; Albert-Weissenberger, C.; Buchrieser, C.; Cianciotto, N.P.; Hartland, E.L. Significant Role for LadC in Initiation of Legionella Pneumophila Infection. IAI 2008, 76, 3075–3085. [Google Scholar] [CrossRef]
- White, R.C.; Gunderson, F.F.; Tyson, J.Y.; Richardson, K.H.; Portlock, T.J.; Garnett, J.A.; Cianciotto, N.P. Type II Secretion-Dependent Aminopeptidase LapA and Acyltransferase PlaC Are Redundant for Nutrient Acquisition during Legionella Pneumophila Intracellular Infection of Amoebas. mBio 2018, 9, e00528-18. [Google Scholar] [CrossRef]
- Price, C.T.; Al-Khodor, S.; Al-Quadan, T.; Santic, M.; Habyarimana, F.; Kalia, A.; Kwaik, Y.A. Molecular Mimicry by an F-Box Effector of Legionella Pneumophila Hijacks a Conserved Polyubiquitination Machinery within Macrophages and Protozoa. PLoS Pathog. 2009, 5, e1000704. [Google Scholar] [CrossRef]
- Price, C.T.D.; Al-Quadan, T.; Santic, M.; Rosenshine, I.; Abu Kwaik, Y. Host Proteasomal Degradation Generates Amino Acids Essential for Intracellular Bacterial Growth. Science 2011, 334, 1553–1557. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Sheedlo, M.J.; Yu, K.; Tan, Y.; Nakayasu, E.S.; Das, C.; Liu, X.; Luo, Z.-Q. Ubiquitination Independent of E1 and E2 Enzymes by Bacterial Effectors. Nature 2016, 533, 120–124. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, Z.-Q. The Legionella Pneumophila Effector SidJ Is Required for Efficient Recruitment of Endoplasmic Reticulum Proteins to the Bacterial Phagosome. IAI 2007, 75, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.C.; Sexton, J.A.; Vogel, J.P. Spatiotemporal Regulation of a Legionella Pneumophila T4SS Substrate by the Metaeffector SidJ. PLoS Pathog. 2015, 11, e1004695. [Google Scholar] [CrossRef] [PubMed]
- Bhogaraju, S.; Bonn, F.; Mukherjee, R.; Adams, M.; Pfleiderer, M.M.; Galej, W.P.; Matkovic, V.; Lopez-Mosqueda, J.; Kalayil, S.; Shin, D.; et al. Inhibition of Bacterial Ubiquitin Ligases by SidJ–Calmodulin Catalysed Glutamylation. Nature 2019, 572, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Newton, H.J.; Sansom, F.M.; Dao, J.; McAlister, A.D.; Sloan, J.; Cianciotto, N.P.; Hartland, E.L. Sel1 Repeat Protein LpnE Is a Legionella Pneumophila Virulence Determinant That Influences Vacuolar Trafficking. IAI 2007, 75, 5575–5585. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.S.; Ragaz, C.; Hilbi, H. The Inositol Polyphosphate 5-Phosphatase OCRL1 Restricts Intracellular Growth of Legionell, Localizes to the Replicative Vacuole and Binds to the Bacterial Effector LpnE. Cell. Microbiol. 2009, 11, 442–460. [Google Scholar] [CrossRef]
- White, R.C.; Cianciotto, N.P. Assessing the Impact, Genomics and Evolution of Type II Secretion across a Large, Medically Important Genus: The Legionella Type II Secretion Paradigm. Microb. Genom. 2019, 5. [Google Scholar] [CrossRef]
- Truchan, H.K.; Christman, H.D.; White, R.C.; Rutledge, N.S.; Cianciotto, N.P. Type II Secretion Substrates of Legionella Pneumophila Translocate Out of the Pathogen-Occupied Vacuole via a Semipermeable Membrane. mBio 2017, 8, e00870-17. [Google Scholar] [CrossRef]
- Rossier, O.; Dao, J.; Cianciotto, N.P. A Type II Secreted RNase of Legionella Pneumophila Facilitates Optimal Intracellular Infection of Hartmannella Vermiformis. Microbiology 2009, 155, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. Legionella Effectors That Promote Nonlytic Release from Protozoa. Science 2004, 303, 1358–1361. [Google Scholar] [CrossRef]
- Bleasdale, B.; Lott, P.J.; Jagannathan, A.; Stevens, M.P.; Birtles, R.J.; Wigley, P. The Salmonella Pathogenicity Island 2-Encoded Type III Secretion System Is Essential for the Survival of Salmonella Enterica Serovar Typhimurium in Free-Living Amoebae. AEM 2009, 75, 1793–1795. [Google Scholar] [CrossRef] [PubMed]
- Tezcan-Merdol, D.; Ljungström, M.; Winiecka-Krusnell, J.; Linder, E.; Engstrand, L.; Rhen, M. Uptake and Replication of Salmonella Enterica in Acanthamoeba Rhysodes. Appl. Environ. Microbiol. 2004, 70, 3706–3714. [Google Scholar] [CrossRef] [PubMed]
- Tezcan-Merdol, D.; Engstrand, L.; Rhen, M. SpvB-Mediated ADP-Ribosylation as an Activator for Host Cell Actin Degradation. Int. J. Med. Microbiol. 2005, 295, 201–212. [Google Scholar] [CrossRef]
- Matz, C.; Bergfeld, T.; Rice, S.A.; Kjelleberg, S. Microcolonies, Quorum Sensing and Cytotoxicity Determine the Survival of Pseudomonas Aeruginosa Biofilms Exposed to Protozoan Grazing. Environ. Microbiol. 2004, 9, 218–226. [Google Scholar] [CrossRef]
- Sato, H.; Frank, D.W. ExoU is a potent intracellular phospholipase: ExoU phospholipase activity. Mol. Microbiol. 2004, 53, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Rao, L.; De La Rosa, I.; Xu, Y.; Sha, Y.; Bhattacharya, A.; Holtzman, M.J.; Gilbert, B.E.; Eissa, N.T. Pseudomonas Aeruginosa Survives in Epithelia by ExoS-mediated Inhibition of Autophagy and MTOR. EMBO Rep. 2020. [Google Scholar] [CrossRef]
- Andor, A.; Trulzsch, K.; Essler, M.; Roggenkamp, A.; Wiedemann, A.; Heesemann, J.; Aepfelbacher, M. YopE of Yersinia, a GAP for Rho GTPases, Selectivelymodulates Rac-Dependent Actin Structures in Endothelial Cells. Cell. Microbiol. 2001, 3, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.-W.; Isberg, R.R. Yersinia Pseudotuberculosis Spatially Controls Activation and Misregulation of Host Cell Rac1. PLoS Pathog. 2005, 1, e16. [Google Scholar] [CrossRef] [PubMed]
- Vlahou, G.; Schmidt, O.; Wagner, B.; Uenlue, H.; Dersch, P.; Rivero, F.; Weissenmayer, B.A. Yersinia Outer Protein YopE Affects the Actin Cytoskeleton in Dictyostelium Discoideum through Targeting of Multiple Rho Family GTPases. BMC Microbiol. 2009, 9, 138. [Google Scholar] [CrossRef] [PubMed]
- Koliwer-Brandl, H.; Knobloch, P.; Barisch, C.; Welin, A.; Hanna, N.; Soldati, T.; Hilbi, H. Distinct Mycobacterium Marinum Phosphatases Determine Pathogen Vacuole Phosphoinositide Pattern, Phagosome Maturation, and Escape to the Cytosol. Cell. Microbiol. 2019, 21, e13008. [Google Scholar] [CrossRef]
- Barker, J.; Humphrey, T.J.; Brown, M.W.R. Survival of Escherichia Coli 0157 in a Soil Protozoan: Implications for Disease. FEMS Microbiol. Lett. 1999, 173, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Koudelka, G.B.; Arnold, J.W.; Chakraborty, D. Evolution of STEC Virulence: Insights from the Antipredator Activities of Shiga Toxin Producing E. Coli. Int. J. Med. Microbiol. 2018, 308, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Chekabab, S.M.; Daigle, F.; Charette, S.J.; Dozois, C.M.; Harel, J. Shiga Toxins Decrease Enterohaemorrhagic Escherichia coli Survival within Acanthamoeba castellanii. FEMS Microbiol. Lett. 2013, 344, 86–93. [Google Scholar] [CrossRef]
- Meltz Steinberg, K.; Levin, B.R. Grazing Protozoa and the Evolution of the Escherichia Coli O157:H7 Shiga Toxin-Encoding Prophage. Proc. R. Soc. B Boil. Sci. 2007, 274, 1921–1929. [Google Scholar] [CrossRef]
- Schmidt, C.E.; Shringi, S.; Besser, T.E. Protozoan predation of escherichia coli O157:H7 is unaffected by the carriage of shiga toxin-encoding bacteriophages. PLoS ONE 2016, 11, e0147270. [Google Scholar] [CrossRef][Green Version]
- Matz, C.; Moreno, A.M.; Alhede, M.; Manefield, M.; Hauser, A.R.; Givskov, M.; Kjelleberg, S. Pseudomonas aeruginosa uses Type III secretion system to kill biofilm-associated amoebae. ISME J. 2008, 2, 843–852. [Google Scholar] [CrossRef]
- Abd, H.; Wretlind, B.; Saeed, A.; Idsund, E.; Hultenby, K.; SandstrãM, G. Pseudomonas aeruginosa Utilises Its Type III Secretion System to Kill the Free-Living Amoeba Acanthamoeba castellanii. J. Eukaryot. Microbiol. 2008, 55, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Pukatzki, S.; Kessin, R.H.; Mekalanos, J.J. The Human Pathogen Pseudomonas Aeruginosa Utilizes Conserved Virulence Pathways to Infect the Social Amoeba Dictyostelium Discoideum. Proc. Natl. Acad. Sci. USA 2002, 99, 3159–3164. [Google Scholar] [CrossRef] [PubMed]
- Cosson, P.; Zulianello, L.; Join-Lambert, O.; Faurisson, F.; Gebbie, L.; Benghezal, M.; van Delden, C.; Curty, L.K.; Köhler, T. Pseudomonas Aeruginosa Virulence Analyzed in a Dictyostelium Discoideum Host System. J. Bacteriol. 2002, 184, 3027–3033. [Google Scholar] [CrossRef]
- Ly, T.M.C.; Müller, H.E. Ingested Listeria Monocytogenes Survive and Multiply in Protozoa. J. Med. Microbiol. 1990, 33, 51–54. [Google Scholar] [CrossRef]
- Pushkareva, V.I.; Ermolaeva, S.A. Listeria Monocytogenes Virulence Factor Listeriolysin O Favors Bacterial Growth in Co-Culture with the Ciliate Tetrahymena Pyriformis, Causes Protozoan Encystment and Promotes Bacterial Survival inside Cysts. BMC Microbiol. 2010, 10, 26. [Google Scholar] [CrossRef]
- Nguyen, B.N.; Peterson, B.N.; Portnoy, D.A. Listeriolysin O: A Phagosome-Specific Cytolysin Revisited. Cell. Microbiol. 2019, 21, e12988. [Google Scholar] [CrossRef] [PubMed]
- Fieseler, L.; Doyscher, D.; Loessner, M.J.; Schuppler, M. Acanthamoeba Release Compounds Which Promote Growth of Listeria Monocytogenes and Other Bacteria. Appl. Microbiol. Biotechnol. 2014, 98, 3091–3097. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Elmose, J.; Call, D.R. Interactions between the Environmental Pathogen Listeria Monocytogenes and a Free-Living Protozoan (Acanthamoeba Castellanii). Environ. Microbiol. 2007, 9, 913–922. [Google Scholar] [CrossRef]
- Akya, A.; Pointon, A.; Thomas, C. Viability of Listeria Monocytogenes in Co-Culture with Acanthamoeba spp.: Acanthmoeba eliminate L. monocytogenes cells. FEMS Microbiol. Ecol. 2009, 70, 20–29. [Google Scholar] [CrossRef]
- Akya, A.; Pointon, A.; Thomas, C. Listeria Monocytogenes Does Not Survive Ingestion by Acanthamoeba Polyphaga. Microbiology 2010, 156, 809–818. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Doyscher, D.; Fieseler, L.; Dons, L.; Loessner, M.J.; Schuppler, M. Acanthamoeba Feature a Unique Backpacking Strategy to Trap and Feed on Listeria monocytogenes and Other Motile Bacteria: Interaction of Listeria monocytogenes with Acanthamoeba. Environ. Microbiol. 2013, 15, 433–446. [Google Scholar] [CrossRef]
- Kennedy, G.M.; Morisaki, J.H.; DiGiuseppe Champion, P.A. Conserved Mechanisms of Mycobacterium Marinum Pathogenesis within the Environmental Amoeba Acanthamoeba Castellanii. Appl. Environ. Microbiol. 2012, 78, 2049–2052. [Google Scholar] [CrossRef]
- Kennedy, G.M.; Hooley, G.C.; Champion, M.M.; Mba Medie, F.; Champion, P.A.D. A Novel ESX-1 Locus Reveals That Surface-Associated ESX-1 Substrates Mediate Virulence in Mycobacterium Marinum. J. Bacteriol. 2014, 196, 1877–1888. [Google Scholar] [CrossRef]
- De Leon, J.; Jiang, G.; Ma, Y.; Rubin, E.; Fortune, S.; Sun, J. Mycobacterium Tuberculosis ESAT-6 Exhibits a Unique Membrane-Interacting Activity That Is Not Found in Its Ortholog from Non-Pathogenic Mycobacterium Smegmatis. J. Biol. Chem. 2012, 287, 44184–44191. [Google Scholar] [CrossRef]
- Van der Henst, C.; Vanhove, A.S.; Drebes Dörr, N.C.; Stutzmann, S.; Stoudmann, C.; Clerc, S.; Scrignari, T.; Maclachlan, C.; Knott, G.; Blokesch, M. Molecular Insights into Vibrio Cholerae’s Intra-Amoebal Host-Pathogen Interactions. Nat. Commun. 2018, 9, 3460. [Google Scholar] [CrossRef]
- Hillmann, F.; Novohradská, S.; Mattern, D.J.; Forberger, T.; Heinekamp, T.; Westermann, M.; Winckler, T.; Brakhage, A.A. Virulence Determinants of the Human Pathogenic Fungus A Spergillus Fumigatus Protect against Soil Amoeba Predation: Dictyostelium Interactions with Aspergillus fumigatus. Environ. Microbiol. 2015, 17, 2858–2869. [Google Scholar] [CrossRef]
- Tsunawaki, S.; Yoshida, L.S.; Nishida, S.; Kobayashi, T.; Shimoyama, T. Fungal Metabolite Gliotoxin Inhibits Assembly of the Human Respiratory Burst NADPH Oxidase. IAI 2004, 72, 3373–3382. [Google Scholar] [CrossRef] [PubMed]
- McCowen, M.C.; Callender, M.E.; Lawlis, J.F. Fumagillin (H-3), a New Antibiotic with Amebicidal Properties. Science 1951, 113, 202–203. [Google Scholar] [CrossRef]
- Rice, C.A.; Colon, B.L.; Chen, E.; Hull, M.V.; Kyle, D.E. Discovery of Repurposing Drug Candidates for the Treatment of Diseases Caused by Pathogenic Free-Living Amoebae. PLoS Negl. Trop. Dis. 2020, 14, e0008353. [Google Scholar] [CrossRef]
- Murphy, J.R. Mechanism of Diphtheria Toxin Catalytic Domain Delivery to the Eukaryotic Cell Cytosol and the Cellular Factors That Directly Participate in the Process. Toxins 2011, 3, 294–308. [Google Scholar] [CrossRef] [PubMed]
- Howell, M.D.; Villemez, C.L. Toxicity of Ricin, Diphtheria Toxin and α-Amanitin for Acanthamoeba Castellanii (1983). J. Parasitol. 1984, 70, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Amer, A.O. Modulation of Caspases and Their Non-Apoptotic Functions by Legionella pneumophila. Cell. Microbiol. 2010, 12, 140–147. [Google Scholar] [CrossRef]
- Samba-Louaka, A. Legionella Pneumophila -Induced Cell Death: Two Hosts, Two Responses. Virulence 2018, 9, 17–19. [Google Scholar] [CrossRef]
- Losick, V.P.; Haenssler, E.; Moy, M.-Y.; Isberg, R.R. LnaB: A Legionella Pneumophila Activator of NF-KB. Cell. Microbiol. 2010, 12, 1083–1097. [Google Scholar] [CrossRef]
- Ge, J.; Xu, H.; Li, T.; Zhou, Y.; Zhang, Z.; Li, S.; Liu, L.; Shao, F. A Legionella Type IV Effector Activates the NF- B Pathway by Phosphorylating the I B Family of Inhibitors. Proc. Natl. Acad. Sci. USA 2009, 106, 13725–13730. [Google Scholar] [CrossRef]
- Kaczanowski, S.; Sajid, M.; Reece, S.E. Evolution of Apoptosis-like Programmed Cell Death in Unicellular Protozoan Parasites. Parasites Vectors 2011, 4, 44. [Google Scholar] [CrossRef]
- Kotewicz, K.M.; Ramabhadran, V.; Sjoblom, N.; Vogel, J.P.; Haenssler, E.; Zhang, M.; Behringer, J.; Scheck, R.A.; Isberg, R.R. A Single Legionella Effector Catalyzes a Multistep Ubiquitination Pathway to Rearrange Tubular Endoplasmic Reticulum for Replication. Cell Host Microbe 2017, 21, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Best, A.; Abu Kwaik, Y. Evolution of the Arsenal of Legionella Pneumophila Effectors to Modulate Protist Hosts. mBio 2018, 9, e01313-18. [Google Scholar] [CrossRef] [PubMed]
- Banerji, S.; Bewersdorff, M.; Hermes, B.; Cianciotto, N.P.; Flieger, A. Characterization of the Major Secreted Zinc Metalloprotease- Dependent Glycerophospholipid:Cholesterol Acyltransferase, PlaC, of Legionella Pneumophila. IAI 2005, 73, 2899–2909. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.; Rastew, E.; Hermes, B.; Siegbrecht, E.; Ahrends, R.; Banerji, S.; Flieger, A. Zinc Metalloproteinase ProA Directly Activates Legionella Pneumophila PlaC Glycerophospholipid:Cholesterol Acyltransferase. J. Biol. Chem. 2012, 287, 23464–23478. [Google Scholar] [CrossRef]
- Tyson, J.Y.; Pearce, M.M.; Vargas, P.; Bagchi, S.; Mulhern, B.J.; Cianciotto, N.P. Multiple Legionella Pneumophila Type II Secretion Substrates, Including a Novel Protein, Contribute to Differential Infection of the Amoebae Acanthamoeba Castellanii, Hartmannella Vermiformis, and Naegleria Lovaniensis. Infect. Immun. 2013, 81, 1399–1410. [Google Scholar] [CrossRef] [PubMed]
- Tyson, J.Y.; Vargas, P.; Cianciotto, N.P. The Novel Legionella Pneumophila Type II Secretion Substrate NttC Contributes to Infection of Amoebae Hartmannella Vermiformis and Willaertia Magna. Microbiology 2014, 160, 2732–2744. [Google Scholar] [CrossRef] [PubMed]
- Price, C.; Jones, S.; Mihelcic, M.; Santic, M.; Kwaik, Y.A. Paradoxical Pro-Inflammatory Responses by Human Macrophages to an Amoebae Host-Adapted Legionella Effector. Cell Host Microbe. 2020, 27, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Mou, Q.; Leung, P.H.M. Differential Expression of Virulence Genes in Legionella Pneumophila Growing in Acanthamoeba and Human Monocytes. Virulence 2018, 9, 185–196. [Google Scholar] [CrossRef]
- Lee, X.; Reimmann, C.; Greub, G.; Sufrin, J.; Croxatto, A. The Pseudomonas Aeruginosa Toxin L-2-Amino-4-Methoxy-Trans-3-Butenoic Acid Inhibits Growth and Induces Encystment in Acanthamoeba Castellanii. Microbes Infect. 2012, 14, 268–272. [Google Scholar] [CrossRef]
- Pukatzki, S.; Ma, A.T.; Sturtevant, D.; Krastins, B.; Sarracino, D.; Nelson, W.C.; Heidelberg, J.F.; Mekalanos, J.J. Identification of a Conserved Bacterial Protein Secretion System in Vibrio Cholerae Using the Dictyostelium Host Model System. Proc. Natl. Acad. Sci. USA 2006, 103, 1528–1533. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.G.; Ho, B.T.; Yoder-Himes, D.R.; Mekalanos, J.J. Identification of T6SS-Dependent Effector and Immunity Proteins by Tn-Seq in Vibrio Cholerae. Proc. Natl. Acad. Sci. USA 2013, 110, 2623–2628. [Google Scholar] [CrossRef]
- Zheng, J.; Ho, B.; Mekalanos, J.J. Genetic Analysis of Anti-Amoebae and Anti-Bacterial Activities of the Type VI Secretion System in Vibrio Cholerae. PLoS ONE 2011, 6, e23876. [Google Scholar] [CrossRef] [PubMed]
- Miyata, S.T.; Kitaoka, M.; Brooks, T.M.; McAuley, S.B.; Pukatzki, S. Vibrio Cholerae Requires the Type VI Secretion System Virulence Factor VasX to Kill Dictyostelium Discoideum. Infect. Immun. 2011, 79, 2941–2949. [Google Scholar] [CrossRef]
- Knobloch, P.; Koliwer-Brandl, H.; Arnold, F.M.; Hanna, N.; Gonda, I.; Adenau, S.; Personnic, N.; Barisch, C.; Seeger, M.A.; Soldati, T.; et al. Mycobacterium marinum Produces Distinct Mycobactin and Carboxymycobactin Siderophores to Promote Growth in Broth and Phagocytes. Cell. Microbiol. 2020, 22. [Google Scholar] [CrossRef]
- N’Goma, J.C.B.; Moigne, V.L.; Soismier, N.; Laencina, L.; Chevalier, F.L.; Roux, A.-L.; Poncin, I.; Serveau-Avesque, C.; Rottman, M.; Gaillard, J.-L.; et al. Mycobacterium Abscessus Phospholipase C Expression Is Induced during Coculture within Amoebae and Enhances M. Abscessus Virulence in Mice. Infect. Immun. 2015, 83, 12. [Google Scholar]
- Hobson, R.P. The Effects of Diffusates from the Spores of Aspergillus Fumigatus and A. Terreus on Human Neutrophils, Naegleria Gruberi and Acanthamoeba Castellanii. Med. Mycol. 2000, 38, 133–141. [Google Scholar] [CrossRef]
- Cummings, C.A.; Bootsma, H.J.; Relman, D.A.; Miller, J.F. Species- and Strain-Specific Control of a Complex, Flexible Regulon by Bordetella BvgAS. J. Bacteriol. 2006, 188, 1775–1785. [Google Scholar] [CrossRef] [PubMed]
- Martinez de Tejada, G.; Cotter, P.A.; Heininger, U.; Camilli, A.; Akerley, B.J.; Mekalanos, J.J.; Miller, J.F. Neither the Bvg− Phase nor Thevrg6 Locus of Bordetella Pertussis Is Required for Respiratory Infection in Mice. Infect. Immun. 1998, 66, 2762–2768. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Mulneix, D.L.; Bendor, L.; Linz, B.; Rivera, I.; Ryman, V.E.; Dewan, K.K.; Wagner, S.M.; Wilson, E.F.; Hilburger, L.J.; Cuff, L.E.; et al. Bordetella Bronchiseptica Exploits the Complex Life Cycle of Dictyostelium Discoideum as an Amplifying Transmission Vector. PLoS Biol. 2017, 15, e2000420. [Google Scholar] [CrossRef] [PubMed]
- Benavides-Montaño, J.A.; Vadyvaloo, V. Yersinia Pestis Resists Predation by Acanthamoeba Castellanii and Exhibits Prolonged Intracellular Survival. Appl. Environ. Microbiol. 2017, 83, e00593-17. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Chen, Z.; Yang, R. Yersinia Pestis: Mechanisms of Entry into and Resistance to the Host Cell. Front. Cell. Infect. Microbiol. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Dey, R.; Hoffman, P.S.; Glomski, I.J. Germination and Amplification of Anthrax Spores by Soil-Dwelling Amoebas. Appl. Environ. Microbiol. 2012, 78, 8075–8081. [Google Scholar] [CrossRef]
- Hu, H.; Emerson, J.; A2ronson, A.I. Factors Involved in the Germination and Inactivation of Bacillus Anthracis Spores in Murine Primary Macrophages. FEMS Microbiol. Lett. 2007, 272, 245–250. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samba-Louaka, A. Amoebae as Targets for Toxins or Effectors Secreted by Mammalian Pathogens. Toxins 2021, 13, 526. https://doi.org/10.3390/toxins13080526
Samba-Louaka A. Amoebae as Targets for Toxins or Effectors Secreted by Mammalian Pathogens. Toxins. 2021; 13(8):526. https://doi.org/10.3390/toxins13080526
Chicago/Turabian StyleSamba-Louaka, Ascel. 2021. "Amoebae as Targets for Toxins or Effectors Secreted by Mammalian Pathogens" Toxins 13, no. 8: 526. https://doi.org/10.3390/toxins13080526
APA StyleSamba-Louaka, A. (2021). Amoebae as Targets for Toxins or Effectors Secreted by Mammalian Pathogens. Toxins, 13(8), 526. https://doi.org/10.3390/toxins13080526