Transformation of Selected Fusarium Toxins and Their Masked Forms during Malting of Various Cultivars of Wheat
Abstract
:1. Introduction
2. Results and Discussion
2.1. “In Vitro” Evaluation of the Toxicity of Fusarium culmorum KF-846 Strain
2.2. Changes in the Ergosterol Content during the Malting of Wheat Grain
2.3. Changes in the Trichothecenes Content during the Malting of Wheat Grains
2.4. Changes in the Content of ZEN and Its Modified Forms during Malting of Wheat Grain
3. Conclusions
4. Materials and Methods
4.1. Wheat Samples
4.2. Toxigenic Potential of Fusarium Strain
4.3. Standards and Reagents
4.4. Malting
4.5. Sample Preparation—Mycotoxin Analysis
4.6. LC-MS Analysis of Mycotoxins
4.7. Ergosterol Quantification
4.8. Statistical Analysis and Software
4.9. Validation of Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Narziß, L. Zur Geschichte des Bayerischen Weizenbieres im Allgemeinen und des Weihenstephaner im Besonderen. Weihenstephaner. Weihenstephaner 1995, 4, 234–236. [Google Scholar]
- Boros, D.; Gołębiewski, D.; Myszka, K. Wstępne badania ziarna wybranych rodów hodowlanych pszenicy jako surowca do słodowania. Food Sci. Technol. Qual. 2014, 21, 151–164. [Google Scholar]
- Faltermaier, A.; Waters, D.; Becker, T.; Arendt, E.; Gastl, M. Common wheat (Triticum aestivum L.) and its use as a brewing cereal—A review. J. Inst. Brew. 2014, 120, 1–15. [Google Scholar] [CrossRef]
- Laitila, A.; Kotaviita, E.; Peltola, P.; Home, S.; Wilhelmson, A. Indigenous microbial community of barley greatly influences grain germination and malt quality. J. Inst. Brew. 2007, 113, 9–20. [Google Scholar] [CrossRef]
- Medina, A.; Mohale, S.; Samsudin, N.I.P.; Rodriguez-Sixtos, A.; Rodriguez, A.; Magan, N. Biocontrol of mycotoxins: Dynamics and mechanisms of action. Curr. Opin. Food Sci. 2017, 17, 41–48. [Google Scholar] [CrossRef]
- Stanciu, O.; Banc, R.; Cozma, A.; Filip, L.; Miere, D.; Mañes, J.; Loghin, F. Occurrence of Fusarium mycotoxins in wheat from Europe—A review. Acta Univ. Cibiniensis Ser. E Food Technol. 2015, 19, 35–60. [Google Scholar] [CrossRef] [Green Version]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef]
- Poppenberger, B.; Berthiller, F.; Lucyshyn, D.; Sieberer, T.; Schuhmacher, R.; Krska, R.; Kuchler, K.; Glössl, J.; Luschnig, C.; Adam, G. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J. Biol. Chem. 2003, 278, 47905–47914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthiller, F.; Crews, C.; Dall’Asta, C.; De Saeger, S.; Haesaert, G.; Karlovsky, P.; Oswald, I.P.; Seefelder, W.; Speijers, G.; Stroka, J. Masked mycotoxins: A review. Mol. Nutr. Food Res. 2013, 57, 165–186. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, M.; Humpf, H.U.; Marko, D.; Dänicke, S.; Mally, A.; Berthiller, F.; Klaffke, H.; Lorenz, N. Proposal of a comprehensive definition of modified and other forms of mycotoxins including “masked” mycotoxins. Mycotoxin Res. 2014, 30, 197–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, P.; Li, Y. Malting and brewing uses of barley. In Barley Production, Improvement, and Uses; Ullrich, S.E., Ed.; Wiley-Blackwell: Hoboken, NY, USA, 2010; pp. 478–521. [Google Scholar]
- Bryła, M.; Ksieniewicz-Woźniak, E.; Michałowska, D.; Waśkiewicz, A.; Yoshinari, T.; Gwiazdowski, R. Transformation of selected trichothecenes during the wheat malting production. Toxins 2021, 13, 135. [Google Scholar] [CrossRef]
- Llorens, A.; Hinojo, M.J.M.; Mateo, R.; González-Jaen, M.T.; Valle-Algarra, F.M.; Logrieco, A.; Jiménez, M. Characterization of Fusarium spp. isolates by PCR-RFLP analysis of the intergenic spacer region of the rRNA gene (rDNA). Int. J. Food Microbiol. 2006, 106, 287–306. [Google Scholar] [CrossRef]
- Walker, S.; Leath, S.; Hagier, W.M.; Murphy, J.P. Variation among isolates of Fusarium graminearum associated with Fusarium Head Blight in North Carolina. Plant Dis. 2001, 85, 404–410. [Google Scholar] [CrossRef] [Green Version]
- Plasencia, J.; Mirocha, C.J. Isolation and characterization of zearalenone sulfate produced by Fusarium spp. Appl. Environ. Microbiol. 1991, 57, 146–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamper, C.; Téren, J.; Bartók, T.; Komoróczy, R.; Mesterházy, Á.; Sági, F. Predicting DON contamination in Fusarium-infected wheat grains via determination of the ergosterol content. Cereal Res. Commun. 2000, 28, 337–344. [Google Scholar] [CrossRef]
- Kadakal, Ç.; Tepe, T.K. Is Ergosterol a New Microbiological Quality Parameter in Foods or Not? Food Rev. Int. 2019, 35, 155–165. [Google Scholar] [CrossRef]
- Bindler, G.N.; Piadé, J.J.; Schulthess, D. Evaluation of setected steroids as chemical markers of past and presently occuring fungal infections of tobacco. Contrib. Tob. Res. 1988, 14, 127–134. [Google Scholar]
- Miller, J.D.; Young, J.C.; Sampson, D.R. Deoxynivalenol and Fusarium Head Blight resistance in spring cereals. J. Phytopathol. 1985, 113, 359–367. [Google Scholar] [CrossRef]
- Dohnal, V.; Jezkova, A.; Pavlikova, L.; Musilek, K.; Jun, D.; Kuca, K. Fluctuation in the ergosterol and deoxynivalenol content in barley and malt during malting process. Anal. Bioanal. Chem. 2010, 397, 109–114. [Google Scholar] [CrossRef]
- Schwarz, P.B.; Casper, H.H.; Beattie, S. Fate and development of naturally occurring Fusarium mycotoxins during malting and brewing. J. Am. Soc. Brew. Chem. 1995, 53, 121–127. [Google Scholar]
- Jin, Z.; Zhou, B.; Gillespie, J.; Gross, T.; Barr, J.; Simsek, S.; Brueggeman, R.; Schwarz, P. Production of deoxynivalenol (DON) and DON-3-glucoside during the malting of Fusarium infected hard red spring wheat. Food Control 2018, 85, 6–10. [Google Scholar] [CrossRef]
- Jin, Z.; Cao, Y.; Su, A.; Yu, Y.; Xu, M. Increase of deoxynivalenol during the malting of naturally Fusarium infected Chinese winter wheat. Food Control 2018, 87, 88–93. [Google Scholar] [CrossRef]
- Lancova, K.; Hajslova, J.; Poustka, J.; Krplova, A.; Zachariasova, M.; Dostalek, P.; Sachambula, L. Transfer of Fusarium mycotoxins and ‘masked’ deoxynivalenol (deoxynivalenol-3-glucoside) from field barley through malt to beer. Food Addit. Contam. 2008, 25, 732–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zachariasova, M.; Vaclavikova, M.; Lacina, O.; Valclavik, L.; Hajslova, J. Deoxynivalenol oligoglycosides: New “masked” Fusarium toxins occurring in malt, beer, and breadstuff. J. Agric. Food Chem. 2012, 60, 9280–9291. [Google Scholar] [CrossRef]
- Malachova, A.; Cerkal, R.; Ehrenbergerova, J.; Dzuman, Z.; Vaculova, K.; Hajslova, J. Fusarium mycotoxins in various barley cultivars and their transfer into malt. J. Sci. Food Agric. 2010, 90, 2495–2505. [Google Scholar] [CrossRef] [PubMed]
- Habler, K.; Hofer, K.; Geissinger, C.; Schüler, J.; Hückelhoven, R.; Hess, M.; Gastl, M.; Rychlik, M. Fate of Fusarium toxins during the malting process. J. Agric. Food Chem. 2016, 64, 1377–1384. [Google Scholar] [CrossRef]
- Ksieniewicz-Woźniak, E.; Bryła, M.; Waśkiewicz, A.; Yoshinari, T.; Szymczyk, K. Selected trichothecenes in barley malt and beer from Poland and an assessment of dietary risks associated with their consumption. Toxins 2019, 11, 715. [Google Scholar] [CrossRef] [Green Version]
- Habschied, K.; Krska, R.; Sulyok, M.; Lukinac, J.; Jukić, M.; Šarkanj, B.; Krstanović, V.; Mastanjević, K. The influence of steeping water change during malting on multi-toxin content in malt. Foods 2019, 8, 478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Běláková, S.; Wawroszová, S.; Benešová, K. The occurrence of mycotoxins in beers from retail shops. Kvas. Prum. 2017, 63, 293–297. [Google Scholar] [CrossRef]
- Bryła, M.; Ksieniewicz-Woźniak, E.; Yoshinari, T.; Waśkiewicz, A.; Szymczyk, K. Contamination of wheat cultivated in various regions of Poland during 2017 and 2018 agricultural seasons with selected trichothecenes and their modified forms. Toxins 2019, 11, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Qiu, L.; Zhang, H.; Sun, J.; Hu, X.; Wang, B. Optimization for the production of deoxynivalenol and zearalenone by Fusarium graminearum using Response Surface Methodology. Toxins 2017, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, D.; Barros, G.; Chulze, S.; Ramos, A.J.; Sanchis, V.; Marín, S. Impact of cycling temperatures on Fusarium verticillioides and Fusarium graminearum growth and mycotoxins production in soybean. J. Sci. Food Agric. 2012, 92, 2952–2959. [Google Scholar] [CrossRef] [PubMed]
- Llorens, A.; Mateo, R.; Hinojo, M.J.; Valle-Algarra, F.M.; Jiménez, M. Influence of environmental factors on the biosynthesis of type B trichothecenes by isolates of Fusarium spp. from Spanish crops. Int. J. Food Microbiol. 2004, 94, 43–54. [Google Scholar] [CrossRef]
- Kocić-Tanackov, S.D.; Škrinjar, M.M.; Grujić, O.S.; Pejin, J.D. Zearalenone production during micro-malting of barley. Zb. Matice Srp. Za Prir. Nauk. 2007, 113, 27–34. [Google Scholar] [CrossRef]
- Pascari, X.; Gil-Samarra, S.; Marín, S.; Ramos, A.J.; Sanchis, V. Fate of zearalenone, deoxynivalenol and deoxynivalenol-3-glucoside during malting process. LWT 2019, 99, 540–546. [Google Scholar] [CrossRef] [Green Version]
- Góral, T.; Walentyn-Góral, D. Variation for resistance to Fusarium head blight in winter and spring wheat varieties studied in 2009–2016. Short communication. Biul. Inst. Hod. I Aklim. Roślin 2018, 284, 3–11. [Google Scholar]
- Góral, T.; Wiśniewska, H.; Czembor, P.; Ochodzki, P.; Radecka-Janusik, M.; Majka, M.; Przetakiewicz, J. Identification and application of phenotypic, metabolic and molecular markers in studies of types of resistance to Fusarium head blight in winter wheat accessions differing in resistance. Biul. Inst. Hod. I Aklim. Roślin 2019, 286, 13–19. [Google Scholar]
- Gálvez, L.; Urbaniak, M.; Waśkiewicz, A.; Stępień, Ł.; Palmero, D. Fusarium proliferatum—Causal agent of garlic bulb rot in Spain: Genetic variability and mycotoxin production. Food Microbiol. 2017, 67, 41–48. [Google Scholar] [CrossRef]
- Yoshinari, T.; Sakuda, S.; Furihata, K.; Furusawa, H.; Ohnishi, T.; Sugita-Konishi, Y.; Ishizaki, N.; Terajima, J. Structural determination of a nivalenol glucoside and development of an analytical method for the simultaneous determination of nivalenol and deoxynivalenol, and their glucosides, in wheat. J. Agric. Food Chem. 2014, 62, 1174–1180. [Google Scholar] [CrossRef]
- Nathanail, A.V.; Syvähuoko, J.; Malachová, A.; Jestoi, M.; Varga, E.; Michlmayr, H.; Adam, G.; Sieviläinen, E.; Berthiller, F.; Peltonen, K. Simultaneous determination of major type A and B trichothecenes, zearalenone and certain modified metabolites in Finnish cereal grains with a novel liquid chromatography-tandem mass spectrometric method. Anal. Bioanal. Chem. 2015, 407, 4745–4755. [Google Scholar] [CrossRef] [Green Version]
- Perkowski, J.; Buśko, M.; Stuper, K.; Kostecki, M.; Matysiak, A.; Szwajkowska-Michałek, L. Concentration of ergosterol in small-grained naturally contaminated and inoculated cereals. Biologia 2018, 63, 542–547. [Google Scholar] [CrossRef]
Cultivar | KWS Ozon | Legenda | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Day of Malting | 0 | 1 | 3 | 5 | 7 | 0 | 1 | 3 | 5 | 7 |
DON | 7.98 ± 0.84 a | 4.11 ± 0.38 b | 6.45 ± 0.53 bc | 7.67 ± 1.42ac | 11.84 ± 1.33 d | 4.72± 0.80 a | 1.46± 0.17 b | 2.99 ± 0.41 c | 5.12 ± 0.82 a | 10.94 ± 0.76 d |
DON-3G | 1.10 ± 0.11 a | 0.85 ± 0.25 a | 1.29 ± 0.46 a | 3.05 ± 0.67 b | 5.92 ± 0.12 c | 0.43± 0.06 a | 0.39± 0.05 a | 1.39 ± 0.25 b | 2.66 ± 0.49 c | 4.30 ± 0.45 d |
NIV | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | 0.89± 0.03 a | 0.52± 0.076 b | 0.63 ± 0.08 b | 1.06 ± 0.05 c | 1.20 ± 0.10 c |
NIV-3G | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | 0.31± 0.01 a | 0.42± 0.04 b | 0.56 ± 0.07 c | 0.69 ± 0.04 d | 0.87 ± 0.07 e |
ZEN | 0.69 ± 0.03 a | 0.21 ± 0.01 b | 0.83 ± 0.03 c | 1.52 ± 0.12 d | 4.60 ± 0.06 e | 0.13± 0.01 a | 0.02± 0.00 b | 0.07 ± 0.00 c | 0.49 ± 0.03 d | 0.82 ± 0.03 e |
ZEN-14S | 3.39 ± 0.42 a | 1.85 ± 0.05 b | 5.05 ± 0.49 c | 7.87 ± 1.59 d | 11.84 ± 0.15 e | 0.83± 0.13 a | 0.07± 0.01 b | 0.61 ± 0.03 c | 1.08 ± 0.02 d | 1.66 ± 0.12 e |
ZEN-14G | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ |
α-ZEL | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ |
β-ZEL | 54.1 ± 5.1 a | 21.2 ± 2.2 b | 50.7 ± 16.9 a | 58.3 ± 4.0 a | 113.7 ± 7.9 c | 10.3± 2.1 a | ≤LOQ | ≤LOQ | ≤LOQ | 19.9 ± 2.1 b |
ERG | 30.4 ± 2.6 ab | 16.6 ± 0.9 c | 26.0 ± 2.1 a | 35.9 ± 1.4 b | 57.5 ± 2.2 d | 20.0± 1.3 a | 8.9± 0.4 b | 10.4 ± 0.6 b | 15.9 ± 4.3 a | 22.1 ± 0.9 a |
cultivar | Muszelka | Pokusa | ||||||||
day of malting | 0 | 1 | 3 | 5 | 7 | 0 | 1 | 3 | 5 | 7 |
DON | 9.59 ± 0.50 ab | 3.42 ± 0.17 c | 6.63 ± 1.18 d | 8.02 ± 0.78 ad | 11.77 ± 0.34 b | 2.49± 0.23 a | 1.83± 0.30 a | 3.53 ± 0.35 b | 4.47 ± 0.63 c | 6.53 ± 0.92 d |
DON-3G | 1.24 ± 0.13 a | 0.48 ± 0.01 b | 1.20 ± 0.20 a | 2.15 ± 0.39 c | 4.07 ± 0.03 d | 0.50± 0.01 a | 0.88± 0.10 b | 1.36 ± 0.20 c | 1.84 ± 0.34 d | 3.50 ± 0.22 e |
NIV | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ |
NIV-3G | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ |
ZEN | 0.79 ± 0.01 a | 0.17 ± 0.01 b | 2.58 ± 0.04 c | 5.76 ± 0.18 d | 9.11 ± 1.09 e | 0.28± 0.02 a | 0.14± 0.02 b | 0.23 ± 0.01 c | 1.74 ± 0.10 d | 2.39 ± 0.19 e |
ZEN-14S | 3.64 ± 0.17 a | 1.47 ± 0.11 b | 4.75 ± 1.09 a | 9.80 ± 0.54 c | 14.35 ± 0.88 d | 1.78± 0.17 a | 0.43± 0.03 b | 0.60 ± 0.02 c | 1.81 ± 0.05 a | 3.73 ± 0.57 d |
ZEN-14G | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ |
α-ZEL | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ |
β-ZEL | 62.2 ± 7.1 a | 21.1 ± 2.1 b | 89.0 ± 4.7 a | 142.1 ± 13.4 c | 181.9 ± 28.6 c | 23.4± 1.4 a | 9.1± 2.0 b | 14.5 ± 0.7 c | 46.2 ± 2.4 d | 52.8 ± 4.0 d |
ERG | 44.8 ± 1.3 a | 35.5 ± 1.0 b | 40.0 ± 1.1 b | 46.9 ± 4.9 a | 69.9 ± 3.7 c | 14.6± 0.5 a | 8.2± 0.4 b | 11.3 ± 0.1a | 17.9 ± 0.6 c | 22.5 ± 4.4 d |
cultivar | Sailor | Tonacja | ||||||||
day of malting | 0 | 1 | 3 | 5 | 7 | 0 | 1 | 3 | 5 | 7 |
DON | 5.08 ± 0.18 a | 2.53 ± 0.39 b | 3.79 ± 0.27 c | 4.53 ± 0.25 d | 8.37 ± 0.16 e | 4.64 ± 0.38 a | 1.29 ± 0.18 b | 2.99 ± 0.45 c | 5.72 ± 1.17 a | 8.09 ± 0.65 d |
DON-3G | 0.86 ± 0.17 a | 0.56 ± 0.06 a | 1.18 ± 0.13 b | 1.54 ± 0.14 c | 3.04 ± 0.31 d | 0.57 ± 0.05 a | 0.35 ± 0.06 b | 1.04 ± 0.21 c | 1.28 ± 0.20 c | 3.25 ± 0.60 d |
NIV | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ |
NIV-3G | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ |
ZEN | 0.20 ± 0.04 a | 0.07 ± 0.01 b | 0.25 ± 0.01 a | 0.51 ± 0.05 c | 1.78 ± 0.14 d | 0.19 ± 0.02 a | 0.03 ± 0.02 b | 0.15 ± 0.01 a | 0.54 ± 0.02 c | 1.82 ± 0.45 d |
ZEN-14S | 0.60 ± 0.05 a | 0.31 ± 0.01 b | 0.66 ± 0.03 a | 0.90 ± 0.12 c | 2.61 ± 0.29 d | 1.11 ± 0.16 a | 0.21 ± 0.03 b | 0.57 ± 0.02 c | 1.65 ± 0.12 d | 2.91 ± 0.32 e |
ZEN-14G | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ |
α-ZEL | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ | ≤LOQ |
β-ZEL | 18.6 ± 2.3 a | ≤LOQ | 21.3 ± 3.8 a | 29.7 ± 2.4 b | 40.9 ± 5.4 c | 20.2 ± 5.0 a | ≤LOQ | ≤LOQ | 14.4 ± 0.8 a | 32.7 ± 1.7 b |
ERG | 16.6 ± 0.6 a | 8.5 ± 1.1 b | 12.9 ± 0.6 b | 19.8 ± 1.1 c | 20.9 ± 1.4 c | 26.2 ± 2.2 ac | 16.9 ± 1.3 b | 20.2 ± 1.6 bc | 23.6 ± 0.2 ac | 24.5 ± 0.4 ac |
Cultivar | KWS Ozon | Legenda | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Day of Malting | 1 vs. 0 | 3 vs. 1 | 5 vs. 1 | 7 vs. 1 | 7 vs. 0 | 1 vs. 0 | 3 vs. 1 | 5 vs. 1 | 7 vs. 1 | 7 vs. 0 |
DON | −49 * | +57 | +87 * | +188 * | +48 * | −69 * | +104 * | +251 * | +649 * | +132 * |
DON−3G | −23 | +52 | +259 * | +596 * | +437 * | −8 | +255 * | +581 * | +999 * | +912 * |
NIV | − | − | − | − | − | −42 * | +22 | +104 * | +130 * | +34 * |
NIV−3G | − | − | − | − | − | +36 * | +33 * | +64 * | +107 * | +183 * |
ZEN | −70 * | +301 * | +631 * | +2110 * | +564 * | −81 * | +175 * | +1921 * | +3329 * | +538 * |
ZEN−14S | −45 * | +171 * | +325 * | +539 * | +249 * | −92 * | +790 * | +1488 * | +2343 * | +100 * |
β−ZEL | −61 * | +139 * | +175 * | +436 * | +110 * | − | − | − | − | +93 * |
ERG | −45 * | +57 * | +116 * | +246 * | +89 * | −56 * | +17 | +79 * | +148 * | +11 |
cultivar | Muszelka | Pokusa | ||||||||
day of malting | 1 vs. 0 | 3 vs. 1 | 5 vs. 1 | 7 vs. 1 | 7 vs. 0 | 1 vs. 0 | 3 vs. 1 | 5 vs. 1 | 7 vs. 1 | 7 vs. 0 |
DON | −64 * | +94 * | +135 * | +244 * | +23 | −27 | +93 * | +145 * | +258 * | +163 * |
DON−3G | −61% * | +150 * | +349 * | +747 * | +229 * | +77 * | +55 * | +108 * | +296 * | +601 * |
ZEN | −78 * | +1411 * | +3267 * | +5226 * | +1059 * | −51 * | +67 * | +1172 * | +1641 * | +749 * |
ZEN−14S | −60 * | +223 * | +566 * | +875 * | +294 * | −86 * | +40 * | +326 * | +777 * | +110 * |
β−ZEL | −66 * | +322 * | +573 * | +762 * | +192 * | −61 * | +59 * | +408 * | +480 * | +126 * |
ERG | −21 * | +13 | +32 * | +97 * | +56 * | −44 * | +38 * | +118 * | +174 * | +54 * |
cultivar | Sailor | Tonacja | ||||||||
day of malting | 1 vs. 0 | 3 vs. 1 | 5 vs. 1 | 7 vs. 1 | 7 vs. 0 | 1 vs. 0 | 3 vs. 1 | 5 vs. 1 | 7 vs. 1 | 7 vs. 0 |
DON | −50 * | +49 * | +79 * | +230 * | +65 * | −72 * | +131 * | +342 * | +526 * | +75 * |
DON−3G | −35 | +109 * | +173 * | +441 * | +252 * | −40 * | +200 * | +270 * | +842 * | +466 * |
ZEN | −65 * | +262 * | +632 * | +2504 * | +808 * | −84 * | +407 * | +1683 * | +5960 * | +877 * |
ZEN−14S | −48 * | +113 * | +192 * | +751 * | +339 * | −81 * | +171 * | +686 * | +1285 * | +163 * |
β−ZEL | − | − | − | − | +120 * | − | − | − | − | +62 * |
ERG | −49 * | +52 * | +133 * | +146 * | +26 * | −35 * | +20 | +40 * | +45 * | −6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ksieniewicz-Woźniak, E.; Bryła, M.; Michałowska, D.; Waśkiewicz, A.; Yoshinari, T. Transformation of Selected Fusarium Toxins and Their Masked Forms during Malting of Various Cultivars of Wheat. Toxins 2021, 13, 866. https://doi.org/10.3390/toxins13120866
Ksieniewicz-Woźniak E, Bryła M, Michałowska D, Waśkiewicz A, Yoshinari T. Transformation of Selected Fusarium Toxins and Their Masked Forms during Malting of Various Cultivars of Wheat. Toxins. 2021; 13(12):866. https://doi.org/10.3390/toxins13120866
Chicago/Turabian StyleKsieniewicz-Woźniak, Edyta, Marcin Bryła, Dorota Michałowska, Agnieszka Waśkiewicz, and Tomoya Yoshinari. 2021. "Transformation of Selected Fusarium Toxins and Their Masked Forms during Malting of Various Cultivars of Wheat" Toxins 13, no. 12: 866. https://doi.org/10.3390/toxins13120866
APA StyleKsieniewicz-Woźniak, E., Bryła, M., Michałowska, D., Waśkiewicz, A., & Yoshinari, T. (2021). Transformation of Selected Fusarium Toxins and Their Masked Forms during Malting of Various Cultivars of Wheat. Toxins, 13(12), 866. https://doi.org/10.3390/toxins13120866