Anti-Inflammatory and Immune Regulatory Actions of Naja naja atra Venom
Abstract
:1. Introduction
2. Composition and Characteristics of Cobra Venom
2.1. Neurotoxin
2.2. Cardiotoxin
2.3. Phospholipase A2 (PLA2)
2.4. Cobra Venom Factor (CVF)
2.5. Nerve Growth Factor (NGF)
3. Effect of NNAV and Its Components on Inflammation and Immune Activity
3.1. Anti-Inflammatory Actions
3.2. Immune Regulatory Actions
4. Research of NNAV and Its Components on Inflammatory and Immune Diseases
4.1. Effects on Rheumatoid Arthritis
4.2. Effects on Acute and Chronic Nephropathy
4.3. Effects on Acute Lung Injury and Pulmonary Fibrosis
4.4. Effects on Systemic Lupus Erythematosus
5. Safety Considerations of NNAV and Cobrotoxin
6. Conclusions and Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
NNAV | Naja naja atra venom |
RA | rheumatoid arthritis |
SLE | systemic lupus erythematosus |
PLA2 | phospholipase A2 |
CVF | cobra venom factor |
NGF | nerve growth factor |
nAChRs | nicotinic acetylcholine receptors |
NF-κB | nuclear factor-κB |
TNF-α | tumor necrosis factor |
IL-1β | interleukin-1β |
IKKs | I𝜅B kinases |
iNOS | inducible nitric oxide synthase |
ICAM-1 | intercellular adhesion molecule-1 |
MPO | myeloperoxidase |
MDA | malondialdehyde |
LPS | lipopolysaccharide |
IL-4 | interleukin-4 |
COX-2 | cydooxygenase-2 |
SRBC | sheep red blood cell |
IFN-γ | interferon-γ |
IL-17 | interleukin-17 |
FCA | Freund’s complete adjuvant |
IL-10 | Interleukin-10 |
IL-6 | Interleukin-6 |
SCr | serum creatinine |
BUN | blood urea nitrogen |
Cys-C | serum cystatin C |
SOD | superoxide dismutase |
GSH | glutathione |
TGF-β | transforming growth factor-β |
BALF | bronchoalveolar lavage fluid |
IL-8 | interleukin-8 |
LD50 | lethal dose 50 |
References
- Angelotti, F.; Parma, A.; Cafaro, G.; Capecchi, R.; Alunno, A.; Puxeddu, I. One year in review 2017: Pathogenesis of rheumatoid arthritis. Clin. Exp. Rheumatol. 2017, 35, 368–378. [Google Scholar] [PubMed]
- Hedrich, C.M. Epigenetics in SLE. Curr. Rheumatol. Rep. 2017, 19, 58. [Google Scholar] [CrossRef] [PubMed]
- Prescott, S.L.; Larcombe, D.L.; Logan, A.C.; West, C.; Burks, W.; Caraballo, L.; Levin, M.; Etten, E.V.; Horwitz, P.; Kozyrkyj, A.; et al. The skin microbiome: Impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ. J. 2017, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Wittekindt, O.H. Tight junctions in pulmonary epithelia during lung inflammation. Pflug. Arch. Eur. J. Physiol. 2017, 469, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Yung, S.; Yap, D.Y.; Chan, T.M. Recent advances in the understanding of renal inflammation and fibrosis in lupus nephritis. F1000Research 2017, 6, 874. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.X.; Zhang, Z.Y.; Zhang, R. Antinociceptive Effect of Najanalgesin from Naja Naja Atra in a Neuropathic Pain Model via Inhibition of c-Jun NH2-terminal Kinase. Chin. Med. J. 2015, 128, 2340–2345. [Google Scholar] [PubMed]
- Pu, X.C.; Wong, P.T.; Gopalakrishnakone, P. A novel analgesic toxin (hannalgesin) from the venom of king cobra (Ophiophagus hannah). Toxicon 1995, 33, 1425–1431. [Google Scholar] [CrossRef]
- Xu, J.M.; Song, S.T.; Feng, F.Y.; Huang, F.L.; Yang, Y.; Xie, G.R.; Xu, L.G.; Zhang, C.Z.; Bruno, M.; Paradiso, A. Cobrotoxin-containing analgesic compound to treat chronic moderate to severe cancer pain: Results from a randomized, double-blind, cross-over study and from an open-label study. Oncol. Rep. 2006, 16, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.X.; Zhang, H.L.; Gu, Z.L.; Chen, B.W.; Han, R.; Reid, P.F.; Raymond, L.N.; Qin, Z.H. A long-form alpha-neurotoxin from cobra venom produces potent opioid-independent analgesia. Acta Pharmacol. Sin. 2006, 27, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Kou, J.Q.; Han, R.; Xu, Y.L.; Ding, X.L.; Wang, S.Z.; Chen, C.X.; Ji, H.Z.; Ding, Z.H.; Qin, Z.H. Differential Effects of Naja naja atra Venom on Immune Activity. Evid.-Based Complement. Altern. Med. 2014, 2014, 287631. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.Z.; Liu, Y.L.; Gu, J.H.; Qin, Z.H. Antinociceptive and anti-inflammatory effects of orally administrated denatured Naja naja atra venom on murine rheumatoid arthritis models. Evid.-Based Complement. Altern. Med. 2013, 2013, 616241. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Z.; He, H.; Han, R.; Zhu, J.L.; Kou, J.Q.; Ding, X.L.; Qin, Z.H. The Protective Effects of Cobra Venom from Naja naja atra on Acute and Chronic Nephropathy. Evid.-Based Complement. Altern. Med. 2013, 2013, 478049. [Google Scholar]
- Zhu, J.; Cui, K.; Kou, J.; Wang, S.; Xu, Y.; Ding, Z.; Han, R.; Qin, Z. Naja naja atra Venom Protects against Manifestations of Systemic Lupus Erythematosus in MRL/lpr Mice. Evid.-Based Complement. Altern. Med. 2014, 2014, 969482. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, J.; Zhang, X.; Ren, Y.; Wang, N.; Zhao, K.; Chen, X.; Zhao, C.; Li, X.; Shao, J.; et al. Proteomic characterization of two snake venoms: Naja naja atra and Agkistrodon halys. Biochem. J. 2004, 384 Pt 1, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Malih, I.; Ahmad Rusmili, M.R.; Tee, T.Y.; Saile, R.; Ghalim, N.; Othman, I. Proteomic analysis of Moroccan cobra Naja haje legionis venom using tandem mass spectrometry. J. Proteom. 2014, 96, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Hassan-Puttaswamy, V.; Adams, D.J.; Kini, R.M. A Distinct Functional Site in Omega-Neurotoxins: Novel Antagonists of Nicotinic Acetylcholine Receptors from Snake Venom. ACS Chem. Biol. 2015, 10, 2805–2815. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, E.X.; Pereira, E.F.; Alkondon, M.; Rogers, S.W. Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol. Rev. 2009, 89, 73–120. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Liang, Q.; Zhu, Q.; Ding, D.; Yin, Q.; Tao, J.; Jiang, X. Nicotinic acetylcholine receptor alpha7 subunit is involved in the cobratoxin-induced antinociception in an animal model of neuropathic pain. Toxicon 2015, 93, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.N.; Liu, Y.L.; Lin, H.M.; Yang, S.L.; Feng, Y.L.; Reid, P.F.; Qin, Z.H. Involvement of cholinergic system in suppression of formalin-induced inflammatory pain by cobratoxin. Acta Pharmacol. Sin. 2011, 32, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Mordvintsev, D.Y.; Polyak, Y.L.; Kuzmine, D.A.; Levtsova, O.V.; Tourleigh, Y.V.; Kasheverov, I.E. A model for short alpha-neurotoxin bound to nicotinic acetylcholine receptor from Torpedo californica. J. Mol. Neurosci. 2006, 30, 71–72. [Google Scholar] [CrossRef]
- Mordvintsev, D.Y.; Polyak, Y.L.; Levtsova, O.V.; Tourleigh, Y.V.; Kasheverov, I.E.; Shaitan, K.V.; Utkin, Y.N.; Tsetlin, V.I. A model for short alpha-neurotoxin bound to nicotinic acetylcholine receptor from Torpedo californica: Comparison with long-chain alpha-neurotoxins and alpha-conotoxins. Comput. Biol. Chem. 2005, 29, 398–411. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.; Huang, Q.; Lou, X.; Teng, M.; Niu, L. Purification, N-terminal sequencing, crystallization and preliminary X-ray diffraction analysis of atratoxin, a new short-chain alpha-neurotoxin from the venom of Naja naja atra. Acta Crystallogr. Sect. D Biol. Crystallogr. 2002, 58 Pt 5, 839–842. [Google Scholar] [CrossRef]
- Meng, Q.X.; Wang, W.Y.; Lu, Q.M.; Jin, Y.; Wei, J.F.; Zhu, S.W.; Xiong, Y.L. A novel short neurotoxin, cobrotoxin c, from monocellate cobra (Naja kaouthia) venom: Isolation and purification, primary and secondary structure determination, and tertiary structure modeling. Comp. Biochem. Physiol. Toxicol. Pharmacol. 2002, 132, 113–121. [Google Scholar] [CrossRef]
- Chiou, S.H.; Hung, C.C.; Huang, H.C.; Chen, S.T.; Wang, K.T.; Yang, C.C. Sequence comparison and computer modelling of cardiotoxins and cobrotoxin isolated from Taiwan cobra. Biochem. Biophys. Res. Commun. 1995, 206, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Kumar, T.K.; Jayaraman, G.; Lee, C.S.; Arunkumar, A.I.; Sivaraman, T.; Samuel, D.; Yu, C. Snake venom cardiotoxins-structure, dynamics, function and folding. J. Biomol. Struct. Dyn. 1997, 15, 431–463. [Google Scholar] [CrossRef] [PubMed]
- Dubovskii, P.V.; Utkin, Y.N. Antiproliferative activity of cobra venom cytotoxins. Curr. Top. Med. Chem. 2015, 15, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Konshina, A.G.; Dubovskii, P.V.; Efremov, R.G. Structure and dynamics of cardiotoxins. Curr. Protein Pept. Sci. 2012, 13, 570–584. [Google Scholar] [CrossRef] [PubMed]
- Stevens-Truss, R.; Hinman, C.L. Activities of cobra venom cytotoxins toward heart and leukemic T-cells depend on localized amino acid differences. Toxicon 1997, 35, 659–669. [Google Scholar] [CrossRef]
- Chen, X.H.; Harvey, A.L. Effects of different antagonists on depolarization of cultured chick myotubes by cobra venom cardiotoxins and Pyrularia thionin from the plant Pyrularia pubera. Toxicon 1993, 31, 1229–1236. [Google Scholar] [CrossRef]
- Jiang, M.S.; Fletcher, J.E.; Smith, L.A. Effects of divalent cations on snake venom cardiotoxin-induced hemolysis and 3H-deoxyglucose-6-phosphate release from human red blood cells. Toxicon 1989, 27, 1297–1305. [Google Scholar] [CrossRef]
- Ma, D.; Armugam, A.; Jeyaseelan, K. Cytotoxic potency of cardiotoxin from Naja sputatrix: Development of a new cytolytic assay. Biochem. J. 2002, 366 Pt 1, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Su, S.H.; Su, S.J.; Lin, S.R.; Chang, K.L. Cardiotoxin-III selectively enhances activation-induced apoptosis of human CD8+ T lymphocytes. Toxicol. Appl. Pharmacol. 2003, 193, 97–105. [Google Scholar] [CrossRef]
- Jiang, W.J.; Liang, Y.X.; Han, L.P.; Qiu, P.X.; Yuan, J.; Zhao, S.J. Purification and characterization of a novel antinociceptive toxin from Cobra venom (Naja naja atra). Toxicon 2008, 52, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.C.; Fu, Y.S.; Chang, L.S.; Lin, S.R. Taiwan cobra cardiotoxin III suppresses EGF/EGFR-mediated epithelial-to-mesenchymal transition and invasion of human breast cancer MDA-MB-231 cells. Toxicon 2016, 111, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Resende, L.M.; Almeida, J.R.; Schezaro-Ramos, R.; Collaco, R.C.; Simioni, L.R.; Ramirez, D.; Gonzales, W.; Soares, A.M.; Calderon, L.A.; Marangoni, S.; et al. Exploring and understanding the functional role, and biochemical and structural characteristics of an acidic phospholipase A2, AplTx-I, purified from Agkistrodon piscivorus leucostoma snake venom. Toxicon 2017, 127, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Gu, L.; Wang, Q.; Shu, Y.; Lin, Z. Preliminary crystallographic study of an acidic phospholipase A2 from Ophiophagus hannah (king cobra). Acta Crystallogr. Sect. D Biol. Crystallogr. 2002, 58 Pt 10 Pt 2, 1836–1837. [Google Scholar] [CrossRef]
- Tan, N.H.; Saifuddin, M.N. Purification and characterization of two acidic phospholipase A2 enzymes from king cobra (Ophiophagus hannah) snake venom. Int. J. Biochem. 1990, 22, 481–487. [Google Scholar] [PubMed]
- Dutta, S.; Gogoi, D.; Mukherjee, A.K. Anticoagulant mechanism and platelet deaggregation property of a non-cytotoxic, acidic phospholipase A2 purified from Indian cobra (Naja naja) venom: Inhibition of anticoagulant activity by low molecular weight heparin. Biochimie 2015, 110, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Kini, R.M.; Evans, H.J. Correlation between the enzymatic activity, anticoagulant and antiplatelet effects of phospholipase A2 isoenzymes from Naja nigricollis venom. Thromb. Haemost. 1988, 60, 170–173. [Google Scholar] [PubMed]
- Armugam, A.; Cher, C.D.; Lim, K.; Koh, D.C.; Howells, D.W.; Jeyaseelan, K. A secretory phospholipase A2-mediated neuroprotection and anti-apoptosis. BMC Neurosci. 2009, 10, 120. [Google Scholar] [CrossRef] [PubMed]
- Sudarshan, S.; Dhananjaya, B.L. Antibacterial activity of an acidic phospholipase A2 (NN-XIb-PLA2) from the venom of Naja naja (Indian cobra). SpringerPlus 2016, 5, 112. [Google Scholar] [CrossRef] [PubMed]
- Vogel, C.W.; Fritzinger, D.C. Cobra venom factor: Structure, function, and humanization for therapeutic complement depletion. Toxicon 2010, 56, 1198–1222. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.Y.; Lu, Q.M.; Wang, W.Y.; Xiong, Y.L. A Highly Active Anticomplement Factor from the Venom of Naja kaouthia. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochim. Biophys. Sin. 2001, 33, 483–488. [Google Scholar] [PubMed]
- Kock, M.A.; Hew, B.E.; Bammert, H.; Fritzinger, D.C.; Vogel, C.W. Structure and function of recombinant cobra venom factor. J. Biol. Chem. 2004, 279, 30836–30843. [Google Scholar] [CrossRef] [PubMed]
- Sunagar, K.; Fry, B.G.; Jackson, T.N.; Casewell, N.R.; Undheim, E.A.; Vidal, N.; Ali, S.A.; King, G.F.; Vasudevan, K.; Vasconcelos, V.; et al. Molecular evolution of vertebrate neurotrophins: Co-option of the highly conserved nerve growth factor gene into the advanced snake venom arsenalf. PLoS ONE 2013, 8, e81827. [Google Scholar] [CrossRef]
- Boldrini-Franca, J.; Cologna, C.T.; Pucca, M.B.; Bordon, K.C.; Amorim, F.G.; Anjolette, F.A.; Cordeiro, F.A.; Wiezel, G.A.; Cerni, F.A.; Pinheiro-Junior, E.L.; et al. Minor snake venom proteins: Structure, function and potential applications. Biochim. Biophys. Acta 2017, 1861, 824–838. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.R.; Wang, W.Y.; Huang, Y.H.; Meng, Q.X.; Li, D.S.; Lu, Q.M.; Xiong, Y.L. A nerve growth factor from the venom of Chinese cobra (Naja naja atra) and its effects on male reproductive system in rats. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1999, 124, 149–156. [Google Scholar] [CrossRef]
- Chen, L.H.; Li, X.B.; Xiong, Y.L. Effects of a nerve growth factor isolated and purified from the venom of Naja naja atra on injured sciatic nerve in the adult cat. Sichuan Da Xue Xue Bao Yi Xue Ban J. Sichuan Univ. Med. Sci. Ed. 2004, 35, 194–197. [Google Scholar]
- Kostiza, T.; Dahinden, C.A.; Rihs, S.; Otten, U.; Meier, J. Nerve growth factor from the venom of the Chinese cobra Naja naja atra: Purification and description of non-neuronal activities. Toxicon 1995, 33, 1249–1261. [Google Scholar] [CrossRef]
- Angeletti, R.H. Nerve growth factor from cobra venom. Proc. Natl. Acad. Sci. USA 1970, 65, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Ansari, P.; Badhan, S.S.; Azam, S.; Sultana, N.; Anwar, S.; Mohamed Abdurahman, M.S.; Hannan, J.M. Evaluation of antinociceptive and anti-inflammatory properties of methanolic crude extract of Lophopetalum javanicum (bark). J. Basic Clin. Physiol. Pharmacol. 2016, 27, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Kobayashi, F.; Miyake, T. A new anti-inflammatory activity test for corticosteroids. The formalinfilterpaper pellet method. Endocrinol. Jpn. 1960, 7, 357–364. [Google Scholar] [CrossRef]
- Yu, C.H.; Tang, W.Z.; Peng, C.; Sun, T.; Liu, B.; Li, M.; Xie, X.F.; Zhang, H. Diuretic, anti-inflammatory, and analgesic activities of the ethanol extract from Cynoglossum lanceolatum. J. Ethnopharmacol. 2012, 139, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Huang, J.; Wang, S.Z.; Qin, Z.H.; Lin, F. Cobrotoxin extracted from Naja atra venom relieves arthritis symptoms through anti-inflammation and immunosuppression effects in rat arthritis model. J. Ethnopharmacol. 2016, 194, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.X.; Chen, J.Y.; Kou, J.Q.; Xu, Y.L.; Wang, S.Z.; Zhu, Q.; Yang, L.; Qin, Z.H. Suppression of Inflammation and Arthritis by Orally Administrated Cardiotoxin from Naja naja atra. Evid.-Based Complement. Altern. Med. 2015, 2015, 387094. [Google Scholar]
- Han, Y.M.; Koh, J.; Kim, J.W.; Lee, C.; Koh, S.J.; Kim, B.; Lee, K.L.; Im, J.P.; Kim, J.S. NF-kappa B activation correlates with disease phenotype in Crohn’s disease. PLoS ONE 2017, 12, e0182071. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.H.; Pajarinen, J.; Lu, L.; Nabeshima, A.; Cordova, L.A.; Yao, Z.; Goodman, S.B. NF-kappaB as a Therapeutic Target in Inflammatory-Associated Bone Diseases. Adv. Protein Chem. Struct. Biol. 2017, 107, 117–154. [Google Scholar] [PubMed]
- Zheng, J.; Kong, C.; Yang, X.; Cui, X.; Lin, X.; Zhang, Z. Protein kinase C-alpha (PKCalpha) modulates cell apoptosis by stimulating nuclear translocation of NF-kappa-B p65 in urothelial cell carcinoma of the bladder. BMC Cancer 2017, 17, 432. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.S.; Ghosh, S. Shared principles in NF-kappaB signaling. Cell 2008, 132, 344–362. [Google Scholar] [CrossRef] [PubMed]
- Lipniacki, T.; Paszek, P.; Brasier, A.R.; Luxon, B.; Kimmel, M. Mathematical model of NF-kappaB regulatory module. J. Theor. Biol. 2004, 228, 195–215. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.R.; Mu, T.C.; Gao, Z.X.; Wang, J.; Sy, M.S.; Li, C.Y. Prion protein is required for tumor necrosis factor alpha (TNFalpha)-triggered nuclear factor kappa B (NF-kappaB) signaling and cytokine production. J. Biol. Chem. 2017, 292, 18747–18759. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Z.; Xu, Y.L.; Zhu, Q.; Kou, J.Q.; Qin, Z.H. Cobrotoxin from Naja naja atra Venom Ameliorates Adriamycin Nephropathy in Rats. Evid.-Based Complement. Altern. Med. 2015, 2015, 450581. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Yao, L.; Zhang, B.; Zhang, S.; Guo, J. Anti-inflammatory effects of Neurotoxin-Nna, a peptide separated from the venom of Naja naja atra. BMC Complement. Altern. Med. 2013, 13, 86. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Song, H.S.; Kim, K.H.; Son, D.J.; Lee, S.H.; Yoon, D.Y.; Kim, Y.; Park, I.Y.; Song, S.; Hwang, B.Y.; et al. Cobrotoxin inhibits NF-kappa B activation and target gene expression through reaction with NF-kappa B signal molecules. Biochemistry 2005, 44, 8326–8336. [Google Scholar] [CrossRef] [PubMed]
- Barber, H.R. Present status of tumor immunology in clinical gynecology. Am. J. Reprod. Immunol. 1989, 20, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Leibman, R.S.; Riley, J.L. Engineering T Cells to Functionally Cure HIV-1 Infection. Mol. Ther. J. Am. Soc. Gene Ther. 2015, 23, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Pentony, P.; Duquenne, L.; Dutton, K.; Mankia, K.; Gul, H.; Vital, E.; Emery, P. The initiation of autoimmunity at epithelial surfaces: A focus on rheumatoid arthritis and systemic lupus erythematosus. Discov. Med. 2017, 24, 191–200. [Google Scholar] [PubMed]
- Xu, Y.L.; Kou, J.Q.; Wang, S.Z.; Chen, C.X.; Qin, Z.H. Neurotoxin from Naja naja atra venom inhibits skin allograft rejection in rats. Int. Immunopharmacol. 2015, 28, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Klar, A.S.; Bottcher-Haberzeth, S.; Biedermann, T.; Michalak, K.; Kisiel, M.; Reichmann, E.; Meuli, M. Differential expression of granulocyte, macrophage, and hypoxia markers during early and late wound healing stages following transplantation of tissue-engineered skin substitutes of human origin. Pediatr. Surg. Int. 2014, 30, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Marino, J.; Paster, J.; Benichou, G. Allorecognition by T Lymphocytes and Allograft Rejection. Front. Immunol. 2016, 7, 582. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, E.M.; Game, D.S.; Lechler, R.I. Transplantation tolerance. Pediatr. Nephrol. 2014, 29, 2263–2272. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, P.; Nawadkar, R.; Ojha, H.; Kumar, J.; Sahu, A. Complement Evasion Strategies of Viruses: An Overview. Front. Microbiol. 2017, 8, 1117. [Google Scholar] [CrossRef] [PubMed]
- Shokal, U.; Eleftherianos, I. Evolution and Function of Thioester-Containing Proteins and the Complement System in the Innate Immune Response. Front. Immunol. 2017, 8, 759. [Google Scholar] [CrossRef] [PubMed]
- Sheen, J.H.; Heeger, P.S. Effects of complement activation on allograft injury. Curr. Opin. Organ Transplant. 2015, 20, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Janssen, B.J.; Gomes, L.; Koning, R.I.; Svergun, D.I.; Koster, A.J.; Fritzinger, D.C.; Vogel, C.W.; Gros, P. Insights into complement convertase formation based on the structure of the factor B-cobra venom factor complex. EMBO J. 2009, 28, 2469–2478. [Google Scholar] [CrossRef] [PubMed]
- Oberholzer, J.; Yu, D.; Triponez, F.; Cretin, N.; Andereggen, E.; Mentha, G.; White, D.; Buehler, L.; Morel, P.; Lou, J. Decomplementation with cobra venom factor prolongs survival of xenografted islets in a rat to mouse model. Immunology 1999, 97, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Meyer zu Vilsendorf, A.; Nagel, E.; Link, C.; Jorns, A.; Kohl, J. Prolonged survival of guinea-pig-to-rat heart xenografts following complement depletion and B-cell-directed immunosuppression by malononitrilamide. Transplant. Proc. 2000, 32, 864–865. [Google Scholar] [CrossRef]
- Oh, J.Y.; Kim, M.K.; Lee, H.J.; Ko, J.H.; Kim, Y.; Park, C.S.; Kang, H.J.; Park, C.G.; Kim, S.J.; Lee, J.H.; et al. Complement depletion with cobra venom factor delays acute cell-mediated rejection in pig-to-mouse corneal xenotransplantation. Xenotransplantation 2010, 17, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Chen, G.; Guo, H.; Wang, D.W.; Xie, L.; Wang, S.S.; Wang, W.Y.; Xiong, Y.L.; Chen, S. Effect of Yunnan-cobra venom factor in overcoming acute humoral rejection after allograft cardiac transplantation in presensitized recipients: Experiment with rats. Zhonghua Yi Xue Za Zhi 2006, 86, 1460–1463. [Google Scholar] [PubMed]
- Iwamoto, T.; Okamoto, H.; Toyama, Y.; Momohara, S. Molecular aspects of rheumatoid arthritis: Chemokines in the joints of patients. FEBS J. 2008, 275, 4448–4455. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.L.; Wolfe, F.; Huizinga, T.W. Rheumatoid arthritis. Lancet 2010, 376, 1094–1108. [Google Scholar] [CrossRef]
- Perkovic, D.; Kaliterna, D.M.; Krstulovic, D.M.; Bozic, I.; Boric, K.; Radic, M. Clinical approach to a patient with rheumatoid arthritis. Reumatizam 2014, 61, 24–30. [Google Scholar] [PubMed]
- Gomes, A.; Bhattacharya, S.; Chakraborty, M.; Bhattacharjee, P.; Mishra, R.; Gomes, A. Anti-arthritic activity of Indian monocellate cobra (Naja kaouthia) venom on adjuvant induced arthritis. Toxicon 2010, 55, 670–673. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Lin, H.M.; Zou, R.; Wu, J.C.; Han, R.; Raymond, L.N.; Reid, P.F.; Qin, Z.H. Suppression of complete Freund’s adjuvant-induced adjuvant arthritis by cobratoxin. Acta Pharmacol. Sin. 2009, 30, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.Y.; McCulloch, C.E.; Fan, D.; Ordonez, J.D.; Chertow, G.M.; Go, A.S. Community-based incidence of acute renal failure. Kidney Int. 2007, 72, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Jha, V.; Garcia-Garcia, G.; Iseki, K.; Li, Z.; Naicker, S.; Plattner, B.; Saran, R.; Wang, A.Y.; Yang, C.W. Chronic kidney disease: Global dimension and perspectives. Lancet 2013, 382, 260–272. [Google Scholar] [CrossRef]
- Liano, F.; Pascual, J. Epidemiology of acute renal failure: A prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group. Kidney Int. 1996, 50, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Xiao, H.; Xu, C.; Tian, X.; Wu, H.; Shen, W. Cyprinus carpio Decoction Improves Nutrition and Immunity and Reduces Proteinuria through Nephrin and CD2AP Expressions in Rats with Adriamycin-Induced Nephropathy. Evid.-Based Complement. Altern. Med. 2012, 2012, 237482. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Li, L.; Zhang, H. Advances in the Diagnosis and Treatment of Acute Kidney Injury in Cirrhosis Patients. BioMed Res. Int. 2017, 2017, 8523649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ning, B.; Zhu, H.; Cong, X.; Zhou, L.; Wang, Q.; Zhang, L.; Sun, X. Characterizing ceftriaxone-induced urolithiasis and its associated acute kidney injury: An animal study and Chinese clinical systematic review. Int. Urol. Nephrol. 2016, 48, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.H.; Xu, L.M.; Wang, S.Z.; Kou, J.Q.; Xu, Y.L.; Chen, C.X.; Yu, H.P.; Qin, Z.H.; Xie, Y. Ameliorating Adriamycin-Induced Chronic Kidney Disease in Rats by Orally Administrated Cardiotoxin from Naja naja atra Venom. Evid.-Based Complement. Altern. Med. 2014, 2014, 621756. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, K.; Maeshima, Y.; Sato, Y.; Wada, J. Antiangiogenic Therapy for Diabetic Nephropathy. BioMed Res. Int. 2017, 2017, 5724069. [Google Scholar] [CrossRef] [PubMed]
- Dai, G.L.; He, J.K.; Xie, Y.; Han, R.; Qin, Z.H.; Zhu, L.J. Therapeutic potential of Naja naja atra venom in a rat model of diabetic nephropathy. Biomed. Environ. Sci. 2012, 25, 630–638. [Google Scholar] [PubMed]
- El Mekki, F.; Taktak, S.; Mechaal, S.; Hamzaoui, A.; Ghedira, H. Asthma and atmospheric pollution. Rev. Pneumol. Clin. 2004, 60, 13–21. [Google Scholar] [CrossRef]
- Leuenberger, P.; Ackermann-Liebrich, U.; Kunzli, N.; Schindler, C.; Perruchoud, A.P. SAPALDIA: Past, present and future. Schweiz. Med. Wochenschr. 2000, 130, 291–297. [Google Scholar] [PubMed]
- Okutani, D. Src protein tyrosine kinase family and acute lung injury. Nihon Rinsho Men’eki Gakkai kaishi Jpn. J. Clin. Immunol. 2006, 29, 334–341. [Google Scholar] [CrossRef]
- Butt, Y.; Kurdowska, A.; Allen, T.C. Acute Lung Injury: A Clinical and Molecular Review. Arch. Pathol. Lab. Med. 2016, 140, 345–350. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, F.O.; Felipe, F.A.; de Melo Costa, A.C.; Teixeira, L.G.; Silva, E.R.; Nunes, P.S.; Shanmugam, S.; de Lucca Junior, W.; Quintans, J.S.; de Souza Araujo, A.A. Inflammatory Mediators and Oxidative Stress in Animals Subjected to Smoke Inhalation: A Systematic Review. Lung 2016, 194, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Kou, J.Q.; Gu, J.H.; Han, R.; Wang, G.; Zhen, X.; Qin, Z.H. Naja naja atra venom ameliorates pulmonary fibrosis by inhibiting inflammatory response and oxidative stress. BMC Complement. Altern. Med. 2014, 14, 461. [Google Scholar] [CrossRef] [PubMed]
- Phan, S.H.; Thrall, R.S. Inhibition of bleomycin-induced pulmonary fibrosis by cobra venom factor. Am. J. Pathol. 1982, 107, 25–28. [Google Scholar] [PubMed]
- Ren, X.D.; Huang, S.J.; Sun, J.J.; Zhu, Z.G. Protective effect of cobra venom factor on pulmonary injury induced by oleic acid. Int. J. Immunopharmacol. 1994, 16, 969–975. [Google Scholar] [CrossRef]
- Mao, Y.F.; Yu, Q.H.; Zheng, X.F.; Liu, K.; Liang, W.Q.; Wang, Y.W.; Deng, X.M.; Jiang, L. Pre-treatment with Cobra venom factor alleviates acute lung injury induced by intestinal ischemia-reperfusion in rats. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 2207–2217. [Google Scholar] [PubMed]
- Manson, J.J.; Isenberg, D.A. The pathogenesis of systemic lupus erythematosus. Neth. J. Med. 2003, 61, 343–346. [Google Scholar] [PubMed]
- Bai, Y.; Tong, Y.; Liu, Y.; Hu, H. Self-dsDNA in the pathogenesis of systemic lupus erythematosus. Clin. Exp. Immunol. 2017, 191, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.Y.; Suh, C.H. Infection in systemic lupus erythematosus, similarities, and differences with lupus flare. Korean J. Intern. Med. 2017, 32, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.T.; Chang, C.; Gershwin, M.E.; Lian, Z.X. Development of autoantibodies precedes clinical manifestations of autoimmune diseases: A comprehensive review. J. Autoimmun. 2017, 83, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Pikman, R.; Kivity, S.; Levy, Y.; Arango, M.T.; Chapman, J.; Yonath, H.; Shoenfeld, Y.; Gofrit, S.G. Neuropsychiatric SLE: From animal model to human. Lupus 2017, 26, 470–477. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.-Z.; Qin, Z.-H. Anti-Inflammatory and Immune Regulatory Actions of Naja naja atra Venom. Toxins 2018, 10, 100. https://doi.org/10.3390/toxins10030100
Wang S-Z, Qin Z-H. Anti-Inflammatory and Immune Regulatory Actions of Naja naja atra Venom. Toxins. 2018; 10(3):100. https://doi.org/10.3390/toxins10030100
Chicago/Turabian StyleWang, Shu-Zhi, and Zheng-Hong Qin. 2018. "Anti-Inflammatory and Immune Regulatory Actions of Naja naja atra Venom" Toxins 10, no. 3: 100. https://doi.org/10.3390/toxins10030100