Maternal Vitamin D Status in the Late Second Trimester and the Risk of Severe Preeclampsia in Southeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definition of Severe Preeclampsia
2.3. Data Collection
2.4. Sample Collection and 25(OH)D Assay
2.5. Statistical Analysis
3. Results
3.1. Distribution of Serum 25(OH)D Concentrations During Pregnancy
3.2. Maternal Vitamin D Status at 23–28 Weeks of Gestation
3.3. Vitamin D Status and the Risk of Severe Preeclampsia
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yakoob, M.Y.; Salam, R.A.; Khan, F.R.; Bhutta, Z.A. Vitamin D supplementation for preventing infections in children under five years of age. Cochrane Database Syst. Rev. 2016, 11, CD008824. [Google Scholar] [PubMed]
- Holick, M.F. Sunlight, uv-radiation, vitamin D and skin cancer: How much sunlight do we need? Adv. Exp. Med. Biol. 2008, 624, 1–15. [Google Scholar] [PubMed]
- Ponsonby, A.L.; Lucas, R.M.; Lewis, S.; Halliday, J. Vitamin D status during pregnancy and aspects of offspring health. Nutrients 2010, 2, 389–407. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.P.; Zang, J.; Pei, J.J.; Xu, F.; Zhu, Y.; Liao, X.P. Low maternal vitamin D status during the second trimester of pregnancy: A cross-sectional study in Wuxi, China. PLoS ONE 2015, 10, e0117748. [Google Scholar] [CrossRef] [PubMed]
- Pludowski, P.; Holick, M.F.; Pilz, S.; Wagner, C.L.; Hollis, B.W.; Grant, W.B.; Shoenfeld, Y.; Lerchbaum, E.; Llewellyn, D.J.; Kienreich, K.; et al. Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality—A review of recent evidence. Autoimmun. Rev. 2013, 12, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.S.; Choi, M.Y.; Longtine, M.S.; Nelson, D.M. Vitamin D effects on pregnancy and the placenta. Placenta 2010, 31, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Tamblyn, J.A.; Hewison, M.; Wagner, C.L.; Bulmer, J.N.; Kilby, M.D. Immunological role of vitamin D at the maternal-fetal interface. J. Endocrinol. 2015, 224, R107–R121. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.A. Diagnosis and management of pre-eclampsia: An update. Int. J. Womens Health 2010, 2, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Duhig, K.E.; Shennan, A.H. Recent advances in the diagnosis and management of pre-eclampsia. F1000Prime Rep. 2015, 7, 24. [Google Scholar] [PubMed]
- Heida, K.Y.; Zeeman, G.G.; Van Veen, T.R.; Hulzebos, C.V. Neonatal side effects of maternal labetalol treatment in severe preeclampsia. Early Hum. Dev. 2012, 88, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Von Dadelszen, P.; Magee, L.A. Pre-eclampsia: An update. Curr. Hypertens. Rep. 2014, 16, 454. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, L.M.; Simhan, H.N.; Catov, J.M.; Roberts, J.M.; Platt, R.W.; Diesel, J.C.; Klebanoff, M.A. Maternal vitamin D status and the risk of mild and severe preeclampsia. Epidemiology 2014, 25, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Staff, A.C.; Johnsen, G.M.; Dechend, R.; Redman, C.W. Preeclampsia and uteroplacental acute atherosis: Immune and inflammatory factors. J. Reprod. Immunol. 2014, 101–102, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.; Nanan, R.K. Innate and adaptive immune interactions at the fetal-maternal interface in healthy human pregnancy and pre-eclampsia. Front. Immunol. 2014, 5, 125. [Google Scholar] [CrossRef] [PubMed]
- Szarka, A.; Rigo, J., Jr.; Lazar, L.; Beko, G.; Molvarec, A. Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array. BMC Immunol. 2010, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- McCracken, S.A.; Gallery, E.; Morris, J.M. Pregnancy-specific down-regulation of NF-kB expression in T cells in humans is essential for the maintenance of the cytokine profile required for pregnancy success. J. Immunol. 2004, 172, 4583–4591. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, R.E.; Zughaier, S.M.; Liu, S.; Lyles, R.H.; Tangpricha, V. Impact of vitamin D supplementation on markers of inflammation in adults with cystic fibrosis hospitalized for a pulmonary exacerbation. Eur. J. Clin. Nutr. 2012, 66, 1072–1074. [Google Scholar] [CrossRef] [PubMed]
- Noyola-Martinez, N.; Diaz, L.; Avila, E.; Halhali, A.; Larrea, F.; Barrera, D. Calcitriol downregulates TNF-α and IL-6 expression in cultured placental cells from preeclamptic women. Cytokine 2013, 61, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.S.; Hewison, M. Unexpected actions of vitamin D: New perspectives on the regulation of innate and adaptive immunity. Nat. Clin. Pract. Endocrinol. Metab. 2008, 4, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Hypponen, E. Vitamin D for the prevention of preeclampsia? A hypothesis. Nutr. Rev. 2005, 63, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.Q.; Audibert, F.; Hidiroglou, N.; Sarafin, K.; Julien, P.; Wu, Y.; Luo, Z.C.; Fraser, W.D. Longitudinal vitamin D status in pregnancy and the risk of pre-eclampsia. BJOG 2012, 119, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, L.M.; Catov, J.M.; Simhan, H.N.; Holick, M.F.; Powers, R.W.; Roberts, J.M. Maternal vitamin D deficiency increases the risk of preeclampsia. J. Clin. Endocrinol. Metab. 2007, 92, 3517–3522. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.M.; Haeri, S.; Camargo, C.A., Jr.; Espinola, J.A.; Stuebe, A.M. A nested case-control study of midgestation vitamin D deficiency and risk of severe preeclampsia. J. Clin. Endocrinol. Metab. 2010, 95, 5105–5109. [Google Scholar] [CrossRef] [PubMed]
- Shand, A.W.; Nassar, N.; Von Dadelszen, P.; Innis, S.M.; Green, T.J. Maternal vitamin D status in pregnancy and adverse pregnancy outcomes in a group at high risk for pre-eclampsia. BJOG 2010, 117, 1593–1598. [Google Scholar] [CrossRef] [PubMed]
- Gidlof, S.; Silva, A.T.; Gustafsson, S.; Lindqvist, P.G. Vitamin D and the risk of preeclampsia--a nested case-control study. Acta Obstet. Gynecol. Scand. 2015, 94, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Wetta, L.A.; Biggio, J.R.; Cliver, S.; Abramovici, A.; Barnes, S.; Tita, A.T. Is midtrimester vitamin D status associated with spontaneous preterm birth and preeclampsia? Am. J. Perinatol. 2014, 31, 541–546. [Google Scholar] [PubMed]
- National High Blood Pressure Education Program Working Group. Report of the national high blood pressure education program working group on high blood pressure in pregnancy. Am. J. Obstet. Gynecol. 2000, 183, S1–S22. [Google Scholar]
- Zhao, X.; Xiao, J.; Liao, X.; Cai, L.; Xu, F.; Chen, D.; Xiang, J.; Fang, R. Vitamin D status among young children aged 1–3 years: A cross-sectional study in Wuxi, China. PLoS ONE 2015, 10, e0141595. [Google Scholar] [CrossRef] [PubMed]
- Lips, P. Relative value of 25(OH)D and 1,25(OH)2D measurements. J. Bone Miner. Res. 2007, 22, 1668–1671. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the institute of medicine: What clinicians need to know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Xu, J.; Pan, S.; Xie, E.; Hu, Z.; Shen, H. High prevalence of hypovitaminosis d among pregnant women in Southeast China. Acta Paediatr. 2012, 101, e192–e194. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Liu, T.J.; Ge, X.; Kong, J.; Zhang, L.J.; Zhao, Q. High prevalence of maternal vitamin D deficiency in preterm births in Northeast China, shenyang. Int. J. Clin. Exp. Pathol. 2015, 8, 1459–1465. [Google Scholar] [PubMed]
- Song, S.J.; Si, S.; Liu, J.; Chen, X.; Zhou, L.; Jia, G.; Liu, G.; Niu, Y.; Wu, J.; Zhang, W.; et al. Vitamin D status in chinese pregnant women and their newborns in beijing and their relationships to birth size. Public Health Nutr. 2013, 16, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Xiang, F.; Jiang, J.; Li, H.; Yuan, J.; Yang, R.; Wang, Q.; Zhang, Y. High prevalence of vitamin D insufficiency in pregnant women working indoors and residing in Guiyang, China. J. Endocrinol. Investig. 2013, 36, 503–507. [Google Scholar]
- Zhou, J.; Su, L.; Liu, M.; Liu, Y.; Cao, X.; Wang, Z.; Xiao, H. Associations between 25-hydroxyvitamin D levels and pregnancy outcomes: A prospective observational study in southern China. Eur. J. Clin. Nutr. 2014, 68, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Choi, R.; Kim, S.; Yoo, H.; Cho, Y.Y.; Kim, S.W.; Chung, J.H.; Oh, S.Y.; Lee, S.Y. High prevalence of vitamin D deficiency in pregnant korean women: The first trimester and the winter season as risk factors for vitamin D deficiency. Nutrients 2015, 7, 3427–3448. [Google Scholar] [CrossRef] [PubMed]
- Shibata, M.; Suzuki, A.; Sekiya, T.; Sekiguchi, S.; Asano, S.; Udagawa, Y.; Itoh, M. High prevalence of hypovitaminosis d in pregnant japanese women with threatened premature delivery. J. Bone Miner. Metab. 2011, 29, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Hollis, B.W.; Johnson, D.; Hulsey, T.C.; Ebeling, M.; Wagner, C.L. Vitamin D supplementation during pregnancy: Double-blind, randomized clinical trial of safety and effectiveness. J. Bone Miner. Res. 2011, 26, 2341–2357. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C. The 2011 report on dietary reference intakes for calcium and vitamin D. Public Health Nutr. 2011, 14, 938–939. [Google Scholar] [CrossRef] [PubMed]
- Shantavasinkul, P.C.; Phanachet, P.; Puchaiwattananon, O.; Chailurkit, L.O.; Lepananon, T.; Chanprasertyotin, S.; Ongphiphadhanakul, B.; Warodomwichit, D. Vitamin D status is a determinant of skeletal muscle mass in obesity according to body fat percentage. Nutrition 2015, 31, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Molero, I.; Rojo-Martinez, G.; Morcillo, S.; Gutierrez, C.; Rubio, E.; Perez-Valero, V.; Esteva, I.; Ruiz de Adana, M.S.; Almaraz, M.C.; Colomo, N.; et al. Hypovitaminosis d and incidence of obesity: A prospective study. Eur. J. Clin. Nutr. 2013, 67, 680–682. [Google Scholar] [CrossRef] [PubMed]
- Vimaleswaran, K.S.; Berry, D.J.; Lu, C.; Tikkanen, E.; Pilz, S.; Hiraki, L.T.; Cooper, J.D.; Dastani, Z.; Li, R.; Houston, D.K.; et al. Causal relationship between obesity and vitamin D status: Bi-directional mendelian randomization analysis of multiple cohorts. PLoS Med. 2013, 10, e1001383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabesh, M.; Salehi-Abargouei, A.; Esmaillzadeh, A. Maternal vitamin D status and risk of pre-eclampsia: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2013, 98, 3165–3173. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.J.; Alanis, M.C.; Wagner, C.L.; Hollis, B.W.; Johnson, D.D. Plasma 25-hydroxyvitamin D levels in early-onset severe preeclampsia. Am. J. Obstet. Gynecol. 2010, 203, 366.e1–366.e6. [Google Scholar] [CrossRef] [PubMed]
- Haugen, M.; Brantsaeter, A.L.; Trogstad, L.; Alexander, J.; Roth, C.; Magnus, P.; Meltzer, H.M. Vitamin D supplementation and reduced risk of preeclampsia in nulliparous women. Epidemiology 2009, 20, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Magnus, P.; Eskild, A. Seasonal variation in the occurrence of pre-eclampsia. BJOG 2001, 108, 1116–1119. [Google Scholar] [CrossRef] [PubMed]
- Laresgoiti-Servitje, E. A leading role for the immune system in the pathophysiology of preeclampsia. J. Leukoc. Biol. 2013, 94, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.M.; Gammill, H.S. Preeclampsia: Recent insights. Hypertension 2005, 46, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Diaz, L.; Noyola-Martinez, N.; Barrera, D.; Hernandez, G.; Avila, E.; Halhali, A.; Larrea, F. Calcitriol inhibits tnf-alpha-induced inflammatory cytokines in human trophoblasts. J. Reprod. Immunol. 2009, 81, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Diaz, L.; Arranz, C.; Avila, E.; Halhali, A.; Vilchis, F.; Larrea, F. Expression and activity of 25-hydroxyvitamin D-1α-hydroxylase are restricted in cultures of human syncytiotrophoblast cells from preeclamptic pregnancies. J. Clin. Endocrinol. Metab. 2002, 87, 3876–3882. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Gu, B.; Gu, Y.; Groome, L.J.; Sun, J.; Wang, Y. Activation of vitamin D receptor promotes vegf and cuzn-sod expression in endothelial cells. J. Steroid Biochem. Mol. Biol. 2014, 140, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Brodowski, L.; Burlakov, J.; Myerski, A.C.; von Kaisenberg, C.S.; Grundmann, M.; Hubel, C.A.; von Versen-Hoynck, F. Vitamin D prevents endothelial progenitor cell dysfunction induced by sera from women with preeclampsia or conditioned media from hypoxic placenta. PLoS ONE 2014, 9, e98527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughan, J.E.; Walsh, S.W. Activation of nf-kappab in placentas of women with preeclampsia. Hypertens. Pregnancy 2012, 31, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, J.; Ge, X.; Du, J.; Deb, D.K.; Li, Y.C. Vitamin D receptor inhibits nuclear factor kappab activation by interacting with ikappab kinase beta protein. J. Biol. Chem. 2013, 288, 19450–19458. [Google Scholar] [CrossRef] [PubMed]
- Nemerovski, C.W.; Dorsch, M.P.; Simpson, R.U.; Bone, H.G.; Aaronson, K.D.; Bleske, B.E. Vitamin D and cardiovascular disease. Pharmacotherapy 2009, 29, 691–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | n (%) | Serum 25(OH)D (nmol/L) | p Value | |
---|---|---|---|---|
Mean (Range) SD | ||||
Total | 11,151 (100) | 37.7 (10.0–76.7) | 14.1 | |
Age | <0.001 | |||
17–24 (year) | 2960 (26.5) | 37.8 (10.1–76.6) | 14.1 | |
25–29 (year) | 5298 (47.5) | 38.6 (10.0–76.7) | 14.5 | |
30–34 (year) | 2226 (20.0) | 36.5 (10.0–76.5) | 13.4 | |
≥35 (year) | 667 (6.0) | 33.7 (11.4–70.3) | 11.8 | |
Pre-pregnancy BMI | <0.001 | |||
<18 kg/m2 | 768 (6.9) | 38.4 (11.0–74.0) | 14.8 | |
18–24.9 kg/m2 | 9353 (83.9) | 38.0 (10.0–76.6) | 14.1 | |
≥25 kg/m2 | 1030 (9.2) | 34.5 (10.0–70.0) | 12.7 | |
BW | 0.344 | |||
<2500 g | 255 (2.3) | 38.7 (10.1–73.9) | 16.2 | |
2500–4000 g | 10,436 (93.6) | 37.6 (10.0–76.6) | 14.0 | |
>4000 g | 460 (4.1) | 38.2 (13.1–72.9) | 14.4 | |
GA at delivery | 0.489 | |||
<37 week | 474 (4.3) | 38.2 (10.1–74.0) | 15.3 | |
≥37 week | 10,677 (95.7) | 37.7 (10.0–76.6) | 14.0 | |
Parity | <0.001 | |||
nulliparous | 9918 (88.9) | 37.5 (10.0–76.6) | 14.1 | |
multiparous | 1233 (11.1) | 39.0 (13.6–76.3) | 13.7 | |
Season of blood sampling | <0.001 | |||
Spring | 2059 (18.5) | 33.8 (14.5–65.7) | 12.3 | |
Summer | 3390 (30.4) | 44.8 (10.0–76.6) | 15.2 | |
Autumn | 2535 (22.7) | 40.2 (10.0–72.3) | 12.8 | |
Winter | 3167 (28.4) | 30.6 (10.1–56.0) | 9.9 |
Category | n | Serum 25(OH)D (nmol/L) | p Value | ||
---|---|---|---|---|---|
<50 n (%) | 50–74.9 n (%) | ≥75 n (%) | |||
All | 11,151 | 8799 (78.9) | 2318 (20.8) | 34 (0.3) | |
Age | <0.001 | ||||
17–24 (year) | 2960 | 2317 (78.3) | 637 (21.5) | 6 (0.2) | |
25–29 (year) | 5298 | 4019 (75.8) | 1255 (23.7) | 24 (0.5) | |
30–34 (year) | 2226 | 1878 (84.3) | 344 (15.5) | 4 (0.2) | |
≥35 (year) | 667 | 610 (91.4) | 57 (8.6) | 0 | |
Pre-Pregnancy BMI | <0.001 | ||||
<18 kg/m2 | 768 | 585 (76.2) | 183 (23.8) | 0 | |
18–24.9 kg/m2 | 9353 | 7305 (78.1) | 2011 (21.5) | 37 (0.4) | |
≥25 kg/m2 | 1030 | 609 (88.3) | 121 (11.7) | 0 | |
GA at delivery | 0.05 | ||||
<37 weeks | 474 | 357 (75.3) | 117 (24.7) | 0 | |
≥37 weeks | 10,677 | 8443 (79.1) | 2200 (20.6) | 34 (0.3) | |
Parity | 0.601 | ||||
nulliparous | 9918 | 7830 (78.9) | 2058 (20.8) | 30 (0.3) | |
multiparous | 1233 | 966 (78.4) | 258 (20.9) | 9 (0.7) |
Characteristics | SPE Case n = 139 | Non-SPE Case n = 11,012 | p Value |
---|---|---|---|
Age (year) | 27.3 ± 4.3 | 27.3 ± 3.9 | 0.605 |
Pre-Pregnancy BMI (kg/m2) | 21.7 ± 3.5 | 21.4 ± 2.6 | 0.945 |
Gravidity | 1.9 ± 1.1 | 2.0 ± 1.1 | 0.951 |
Parity | 1.1 ± 0.3 | 1.1 ± 0.3 | 0.644 |
Season of conception | <0.001 | ||
Spring | 17 (12.2) | 2748 (24.9) | |
Summer | 61 (43.9) | 3269 (29.7) | |
Autumn | 12 (8.6) | 2048 (18.6) | |
Winter | 49 9 (35.3) | 2947 (26.8) | |
Season of blood sampling | <0.001 | ||
Spring | 29 (20.9) | 2030 (18.4) | |
Summer | 48 (34.5) | 3342 (30.4) | |
Autumn | 13 (9.4) | 2522 (22.9) | |
Winter | 49 (35.2) | 3118 (28.3) | |
Calcium (mmol/L) | 1.6 ± 0.1 | 1.7 ± 0.3 | 0.01 |
25(OH)D (nmol/L) | 32.8 ± 11.7 | 37.7 ± 14.1 | <0.001 |
SBP (mmHG) | 154.0 ± 8.4 | 121.5 ± 8.2 | <0.001 |
DBP (mmHG) | 107.0 ± 10.3 | 77.0 ± 6.5 | <0.001 |
Urine protein (g/24 h) | 2.7 ± 0.7 | 0.0 ± 0.1 | <0.001 |
BW (g) | 2689 ± 835 | 3358 ± 935 | <0.001 |
BMI at delivery (kg/m2) | 28.4 ± 4.5 | 27.3 ± 3.0 | <0.001 |
GA at delivery (week) | 36.1 ± 3.2 | 39.0 ± 1.4 | <0.001 |
1-min Apgar score | 8.6 ± 2.8 | 9.9 ± 0.4 | <0.001 |
5-min Apgar score | 9.14 ± 2.1 | 10.0 ± 0.2 | <0.001 |
Maternal Serum 25(OH)D | Case | p Value | |
---|---|---|---|
SPE (n = 139) | Non-SPE (n = 11,012) | ||
<50 nmol/L (n = 8682) | 123 (1.4) | 8559 (98.6) | 0.002 |
≥50 nmol/L (n = 2469) | 16 (0.6) | 2453 (99.4) |
Maternal 25(OH)D | SPE (n) | Non-SPE (n) | Unadjusted OR (95% CI) | p Value | Adjusted OR * (95% CI) | p Value |
---|---|---|---|---|---|---|
<50 nmol/L | 123 | 8559 | 2.20 (1.31–3.72) | 0.003 | 3.16 (1.77–5.65) | 0.000 |
≥50 nmol/L | 16 | 2453 | 1.00 (Reference) | 1.00 (Reference) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Fang, R.; Yu, R.; Chen, D.; Zhao, J.; Xiao, J. Maternal Vitamin D Status in the Late Second Trimester and the Risk of Severe Preeclampsia in Southeastern China. Nutrients 2017, 9, 138. https://doi.org/10.3390/nu9020138
Zhao X, Fang R, Yu R, Chen D, Zhao J, Xiao J. Maternal Vitamin D Status in the Late Second Trimester and the Risk of Severe Preeclampsia in Southeastern China. Nutrients. 2017; 9(2):138. https://doi.org/10.3390/nu9020138
Chicago/Turabian StyleZhao, Xin, Rui Fang, Renqiang Yu, Daozhen Chen, Jun Zhao, and Jianping Xiao. 2017. "Maternal Vitamin D Status in the Late Second Trimester and the Risk of Severe Preeclampsia in Southeastern China" Nutrients 9, no. 2: 138. https://doi.org/10.3390/nu9020138
APA StyleZhao, X., Fang, R., Yu, R., Chen, D., Zhao, J., & Xiao, J. (2017). Maternal Vitamin D Status in the Late Second Trimester and the Risk of Severe Preeclampsia in Southeastern China. Nutrients, 9(2), 138. https://doi.org/10.3390/nu9020138