Next Article in Journal
Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy
Next Article in Special Issue
Omega-3 Index and Anti-Arrhythmic Potential of Omega-3 PUFAs
Previous Article in Journal
Changes in Dietary Patterns from Childhood to Adolescence and Associated Body Adiposity Status
Previous Article in Special Issue
Red Blood Cell Eicosapentaenoic Acid Inversely Relates to MRI-Assessed Carotid Plaque Lipid Core Burden in Elders at High Cardiovascular Risk
Open AccessReview

The Role of Omega-3 Fatty Acids in Reverse Cholesterol Transport: A Review

Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, 6020 Innsbruck, Austria
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Nutrients 2017, 9(10), 1099;
Received: 2 August 2017 / Revised: 22 September 2017 / Accepted: 28 September 2017 / Published: 6 October 2017
(This article belongs to the Special Issue Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Health)
The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on cardiovascular disease have been studied extensively. However, it remains unclear to what extent n-3 PUFAs may impact Reverse Cholesterol Transport (RCT). RCT describes a mechanism by which excess cholesterol from peripheral tissues is transported to the liver for hepatobiliary excretion, thereby inhibiting foam cell formation and the development of atherosclerosis. The aim of this review is to summarize the literature and to provide an updated overview of the effects of n-3 PUFAs on key players in RCT, including apoliprotein AI (apoA-I), ATP-binding cassette transporter A1 (ABCA1), ABCG1, apoE, scavenger receptor class B type I (SR-BI), cholesteryl ester transfer protein (CETP), low-density lipoprotein receptor (LDLr), cholesterol 7 alpha-hydroxylase (CYP7A1) and ABCG5/G8. Based on current knowledge, we conclude that n-3 PUFAs may beneficially affect RCT, mainly by influencing high-density lipoprotein (HDL) remodeling and by promoting hepatobiliary sterol excretion. View Full-Text
Keywords: Omega 3; PUFA; n3-PUFA; RCT; Reverse Cholesterol Transport Omega 3; PUFA; n3-PUFA; RCT; Reverse Cholesterol Transport
Show Figures

Figure 1

MDPI and ACS Style

Pizzini, A.; Lunger, L.; Demetz, E.; Hilbe, R.; Weiss, G.; Ebenbichler, C.; Tancevski, I. The Role of Omega-3 Fatty Acids in Reverse Cholesterol Transport: A Review. Nutrients 2017, 9, 1099.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop