Influence of Gender and SNPs in GPX1 Gene on Biomarkers of Selenium Status in Healthy Brazilians
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Blood Collection and Processing
2.3. Blood Se Concentrations and Erythrocyte GPx Activity
2.4. SNP Selection, DNA Extraction and Genotyping
2.5. Statistical Analysis
3. Results
3.1. Demographic Data
Total (n = 116) | Males (n = 44) | Females (n = 72) | p Value * | |
---|---|---|---|---|
Age (years) | 28.1 (27.0–29.2) | 29.7 (27.5–31.8) | 27.6 (26.2–29.0) | 0.139 |
BMI | ||||
<18.5 | 8 (6.9) | 0 | 8 (11.1) | <0.001 |
18.5–25 | 72 (62.1) | 21 (47.7) | 51 (70.8) | |
>25 | 36 (31) | 23 (52.3) | 13 (18.1) | |
Smoking | 7 (7.1) | 2 (5.6) | 5 (8.1) | 1.000 |
Alcohol consumption | 64 (65.3) | 27 (75.0) | 37 (59.7) | 0.124 |
Physical activity | 63 (64.3) | 23 (63.9) | 40 (64.5) | 0.950 |
NCCD historical | 78 (79.6) | 26 (72.2) | 52 (83.9) | 0.168 |
Plasma Se (µg/L) | 53.2 (49.3–57.2) | 53.9 (47.0–60.7) | 52.8 (47.8–57.8) | 0.785 |
Erythrocyte Se (µg/L) | 53.3 (46.4–60.2) | 57.2 (43.5–71.0) | 50.9 (43.3–58.4) | 0.573 |
eGPx activity (U/g Hb) | 39.8 (36.5–43.1) | 34.5 (28.9–40.1) | 43.0 (39.0–47.0) | <0.001 |
3.2. Genotype Frequencies
SNPs | Genotypes/Alleles | n | % |
---|---|---|---|
GPX1_rs1050450 | CC | 56 | 47.9 |
CT | 56 | 47.9 | |
TT | 4 | 3.4 | |
C | 0.72 | ||
T | 0.27 | ||
GPX1_rs8179169 | GG | 34 | 29.1 |
GC | 82 | 70.1 | |
CC | 0 | 0 | |
G | 0.64 | ||
C | 0.35 | ||
GPX1_rs3811699 | GG | 56 | 47.9 |
GA | 60 | 51.3 | |
AA | 0 | 0 | |
G | 0.74 | ||
A | 0.26 | ||
GPX1_rs1800668 | CC | 57 | 48.7 |
CT | 54 | 46.2 | |
TT | 5 | 4.3 | |
C | 0.72 | ||
T | 0.27 | ||
GPX4_rs713041 | CC | 45 | 38.5 |
CT | 53 | 44.4 | |
TT | 19 | 16.2 | |
C | 0.61 | ||
T | 0.39 |
3.3. Effect of Genotypes and Gender on Biomarkers of Se Status
SNP | Genotypes | N | Total | N | Males | N | Females | p Value * |
---|---|---|---|---|---|---|---|---|
Plasma Se, µg/L | ||||||||
GPX1_rs1050450 | CC | 56 | 49.3 (45.1–53.9) | 23 | 52.2 (45.6–59.8) | 33 | 47.4 (41.9–53.6) | 0.212 |
CT + TT | 60 | 49.8 (44.7–55.4) | 21 | 47.6 (38.4–58.9) | 38 | 51.0 (45.1–57.7) | 0.561 | |
p value | 0.588 | 0.655 | 0.275 | |||||
GPX1_rs3811699 | GG | 56 | 50.5 (46.3–55.1) | 22 | 53.1 (46.3–60.9) | 34 | 48.9 (43.5–54.9) | 0.279 |
GA | 60 | 48.7 (43.7–54.3) | 22 | 47.0 (38.3–57.6) | 38 | 49.7 (43.7–56.7) | 0.668 | |
p value | 0.799 | 0.418 | 0.718 | |||||
GPX1_rs1800668 | CC | 57 | 50.2 (46.0–54.7) | 23 | 52.2 (45.6–59.8) | 34 | 48.9 (43.5–54.9) | 0.384 |
CT + TT | 59 | 48.9 (43.9–54.6) | 21 | 47.6 (38.4–58.9) | 38 | 49.7 (43.7–56.7) | 0.788 | |
p value | 0.967 | 0.655 | 0.718 | |||||
GPX1_rs8179169 | GG | 34 | 48.3 (42.5–55.0) | 15 | 54.0 (44.9–64.8) | 19 | 44.3 (36.8–53.3) | 0.145 |
GC | 82 | 50.1 (46.1–54.4) | 29 | 48.0 (40.8–56.3) | 53 | 51.3 (46.5–56.5) | 0.548 | |
p value | 0.651 | 0.360 | 0.154 | |||||
GPX4_rs713041 | CC | 45 | 52.7 (47.0–59.1) | 17 | 52.8 (41.8–66.6) | 28 | 52.7 (46.1–60.1) | 0.953 |
CT | 52 | 48.9 (40.3–56.6) | 20 | 47.1 (39.4–56.4) | 32 | 50.0 (44.1–56.6) | 0.851 | |
TT | 19 | 44.4 (36.8–53.6) | 7 | 51.5 (40.1–66.1) | 12 | 40.8 (31.0–53.7) | 0.254 | |
p value | 0.243 | 0.655 | 0.169 | |||||
Erythrocyte Se, µg/L | ||||||||
GPX1_rs1050450 | CC | 56 | 44.3 (38.2–51.4) | 23 | 45.7 (35.9–58.2) | 33 | 43.4 (35.5–52.9) | 0.816 |
CT + TT | 60 | 44.4 (37.6–52.3) | 21 | 49.1 (37.2–64.9) | 38 | 41.2 (35.0–48.5) | 0.598 | |
p value | 0.808 | 0.796 | 0.892 | |||||
GPX1_rs3811699 | GG | 56 | 45.1 (38.8–52.5) | 22 | 45.8 (35.5–59.0) | 34 | 44.7 (36.7–54.5) | 0.993 |
GA | 60 | 43.6 (37.1–51.3) | 22 | 48.9 (37.5–63.7) | 38 | 40.8 (33.0–50.5) | 0.439 | |
p value | 0.847 | 0.805 | 0.680 | |||||
GPX1_rs1800668 | CC | 57 | 45.1 (38.9–52.4) | 23 | 45.7 (35.9–58.2) | 34 | 44.7 (36.7–54.5) | 0.994 |
CT + TT | 59 | 43.6 (36.9–51.5) | 21 | 49.1 (37.2–64.9) | 38 | 40.8 (33.0–50.5) | 0.433 | |
p value | 0.849 | 0.796 | 0.680 | |||||
GPX1_rs8179169 | GG | 34 | 63.8 (54.1–75.3) | 15 | 61.3 (44.6–84.3) | 19 | 65.9 (54.7–79.4) | 0.425 |
GC | 82 | 38.1 (33.6–43.3) | 29 | 41.3 (33.6–50.8) | 53 | 36.5 ( 30.9–43.0) | 0.500 | |
p value | <0.001 | 0.016 | <0.001 | |||||
GPX4_rs713041 | CC | 45 | 17 | 43.9 (32.1–60.1) | 28 | 38.2 (30.7–47.5) | 0.717 | |
CT | 52 | 40.2 (33.8–47.9) | 20 | 51.4 (39.1–67.6) | 32 | 45.6 (36.3–57.3) | 0.792 | |
TT | 19 | 47.8 (40.3–56.6) | 7 | 44.7 (27.2–73.4) | 12 | 46.1 (30.5–69.8) | 0.833 | |
p value | 0.235 | 0.588 | 0.420 | |||||
eGPx activity, U/g Hb | ||||||||
GPX1_rs1050450 | CC | 56 | 33.9 (29.4–39.0) | 23 | 25.6 (20.7–31.8) | 33 | 41.2 (35.0–48.5) | 0.001 |
CT + TT | 60 | 37.1 (32.7–42.0) | 21 | 35.0 (26.5–46.3) | 38 | 38.2 (33.6–43.5) | 0.908 | |
p value | 0.395 | 0.046 | 0.314 | |||||
GPX1_rs3811699 | GG | 56 | 35.4 (30.9–40.7) | 22 | 26.8 (21.8–32.9) | 34 | 42.5 (36.0–50.0) | 0.001 |
GA | 60 | 35.6 (31.3–40.5) | 22 | 33.0 (24.6–44.3) | 38 | 37.1 (32.8–42.1) | 0.878 | |
p value | 0.965 | 0.130 | 0.096 | |||||
GPX1_rs1800668 | CC | 57 | 34.6 (30.0–39.9) | 23 | 25.6 (20.7–31.8) | 34 | 42.5 (36.0–50.0) | <0.001 |
CT + TT | 59 | 36.4 (32.2–41.1) | 21 | 35.0 (26.5–46.3) | 38 | 37.1 (32.8–42.1) | 0.899 | |
p value | 0.722 | 0.046 | 0.096 | |||||
GPX1_rs8179169 | GG | 34 | 38.1 (30.9–46.8) | 15 | 30.2 (20.2–45.2) | 19 | 45.7 ( 37.7–55.3) | 0.111 |
GC | 82 | 34.5 (31.5–38.2) | 29 | 29.5 (24.5–35.6) | 53 | 37.6 (33.4–42.3) | 0.041 | |
p value | 0.138 | 0.729 | 0.080 | |||||
GPX4_rs713041 | CC | 45 | 33.6 (28.6–39.4) | 17 | 25.4 (18.6–34.5) | 28 | 39.8 (33.9–46.7) | 0.017 |
CT | 52 | 37.7 (32.7–43.4) | 20 | 32.6 (24.6–43.2) | 32 | 41.3 (35.3–48.2) | 0.176 | |
TT | 19 | 34.4 (28.2–41.9) | 7 | 33.7 (24.1–47.1) | 12 | 34.8 (26.1–46.3) | 0.899 | |
p value | 0.494 | 0.421 | 0.502 |
3.4. Effect of Genotypes and Plasma Se on Biomarkers of Se Status
SNP | Genotypes | Plasma Se (Tertiles) | p Value | ||
---|---|---|---|---|---|
<42.5 | 42.5–55.4 | >55.4 | |||
Erythrocyte Se, µg/L | total | 36.5 * (30.6–43.0) | 39.1 (33.5–45.6) | 60.9 (49.1–75.5) | <0.001 |
GPX1_rs1050450 | CC | 36.4 * (28.6–46.3) | 39.1 * (33.1–46.3) | 62.4 (45.5–85.6) | 0.016 |
CT + TT | 36.3 * (27.8–47.2) | 39.2 (30.1–50.9) | 59.6 (43.4–81–9) | 0.034 | |
p value | 0.736 | 0.612 | 0.888 | ||
GPX1_rs8179169 | GG | 51.5 * (42.1–63.0) | 57.1 (46.5–69.9) | 94.3 (62.7–141.8) | 0.004 |
GC | 30.9 * (25.1–38.0) | 33.1 * (27.8–39.4) | 52.4 (41.2–66.6) | 0.003 | |
p value | <0.001 | <0.001 | 0.017 | ||
GPX4_rs713041 | CC | 28.9 (21.1–39.6) | 34.1 (27.2–42.7) | 57.5 (43.1–76.8) | 0.008 |
CT + TT | 40.4 (33.0–49.4) | 42.7 (34.5–52.7) | 63.9 (45.7–89.3) | 0.031 | |
p value | 0.068 | 0.066 | 0.735 | ||
eGPx activity, U/g Hb | total | 30.0 (24.9–36.1) | 38.5 (33.1–44.8) | 38.5 (33.4–44.5) | 0.075 |
GPX1_rs1050450 | CC | 30.1 (23.3–39.0) | 39.2 (30.0–51.2) | 33.1 (26.2–42.3) | 0.266 |
CT + TT | 29.8 (22.1–40.1) | 37.9 (31.4–45.7) | 43.7 (36.8–51–8) | 0.153 | |
p value | 0.872 | 0.621 | 0.121 | ||
GPX1_rs8179169 | GG | 36.2 (22.6–58.1) | 35.7 (25.4–50.3) | 43.4 (30.6–61.6) | 0.065 |
GC | 27.5 *(22.9–33.0) | 39.7 (33.4–47.3) | 37.0 (31.4–43.5) | 0.007 | |
p value | 0.061 | 0.659 | 0.430 | ||
GPX4_rs713041 | CC | 22.9 * (16.1–32.5) | 40.5 (30.8–53.3) | 37.0 (29.7–46.1) | 0.013 |
CT + TT | 33.9 (27.3–42.2) | 37.2 (30.7–45.2) | 39.9 (32.4–49.1) | 0.653 | |
p value | 0.053 | 0.593 | 0.602 |
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflict of Interest
References
- Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes. Science 2003, 300, 1439–1443. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Papp, L.V.; Lu, J.; Holmgren, A.; Khanna, K.K. From selenium to selenoproteins: Synthesis, Identity, and Their Role in Human Health. Antioxid. Redox Signal. 2007, 9, 775–806. [Google Scholar] [CrossRef] [PubMed]
- Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 2014, 94, 739–777. [Google Scholar] [CrossRef] [PubMed]
- Takebe, G.; Yarimizu, J.; Saito, Y.; Hayashi, T.; Nakamura, H.; Yodoi, J.; Nagasawa, S.; Takahashi, K. A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P. J. Biol. Chem. 2002, 277, 41254–41258. [Google Scholar] [CrossRef] [PubMed]
- Traulsen, H.; Steinbrenner, H.; Buchczyk, D.P.; Klotz, L.O.; Sies, H. Selenoprotein P protects low-density lipoprotein against oxidation. Free Radic. Res. 2004, 38, 123–128. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, R.C.; Rafferty, T.S.; Beckett, G.J. Selenium: An Essential Element for Immune Function. Immunol. Today 1998, 19, 342–345. [Google Scholar] [CrossRef]
- Duntas, L.H. Selenium and inflammation: Underlying Anti-Inflammatory Mechanisms. Horm. Metab. Res. 2009, 41, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenoproteins and human health: Insights from Epidemiological Data. Biochim. Biophys. Acta Gen. Subj. 2009, 1790, 1533–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stranges, S.; Navas-Acien, A.; Rayman, M.P.; Guallar, E. Selenium status and cardiometabolic health: State of the Evidence. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 754–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldfield, J.E. Selenium World Atlas, 2nd ed.; Selenium-Tellurium Development Association: Grimbergen, Belgium, 2002; p. 59. [Google Scholar]
- Combs, G.F. Selenium in global food systems. Br. J. Nutr. 2001, 85, 517. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Ashton, K.; Harvey, L.J.; Decsi, T.; Fairweather-Tait, S.J. Assessing potential biomarkers of micronutrient status by using a systematic review methodology: Methods. Am. J. Clin. Nutr. 2009, 89, 1953S–1959S. [Google Scholar] [CrossRef] [PubMed]
- Combs, G.F. Biomarkers of Selenium Status. Nutrients 2015, 7, 2209–2236. [Google Scholar] [CrossRef] [PubMed]
- Thomson, C.D. Assessment of requirements for selenium and adequacy of selenium status: A Review. Eur. J. Clin. Nutr. 2004, 58, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Combs, G.F.; Watts, J.C.; Jackson, M.I.; Johnson, L.K.; Zeng, H.; Scheett, A.J.; Uthus, E.O.; Schomburg, L.; Hoeg, A.; Hoefig, C.S.; et al. Determinants of selenium status in healthy adults. Nutr. J. 2011, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Méplan, C.; Crosley, L.K.; Nicol, F.; Beckett, G.J.; Howie, A.F.; Hill, K.E.; Horgan, G.; Mathers, J.C.; Arthur, J.R.; Hesketh, J.E. Genetic polymorphisms in the human selenoprotein P gene determine the response of selenoprotein markers to selenium supplementation in a gender-specific manner (the SELGEN study). FASEB J. 2007, 21, 3063–3074. [Google Scholar] [CrossRef] [PubMed]
- Méplan, C.; Crosley, L.K.; Nicol, F.; Horgan, G.W.; Mathers, J.C.; Arthur, J.R.; Hesketh, J.E. Functional effects of a common single-nucleotide polymorphism (GPX4c718t) in the glutathione peroxidase 4 gene: Interaction with Sex. Am. J. Clin. Nutr. 2008, 87, 1019–1027. [Google Scholar] [PubMed]
- Hamanishi, T.; Furuta, H.; Kato, H.; Doi, A.; Tamai, M.; Shimomura, H.; Sakagashira, S.; Nishi, M.; Sasaki, H.; Sanke, T.; et al. Functional variants in the glutathione peroxidase-1 (GPx-1) gene are associated with increased intima-media thickness of carotid arteries and risk of macrovascular diseases in Japanese type 2 diabetic patients. Diabetes 2004, 53, 2455–2460. [Google Scholar] [CrossRef] [PubMed]
- Jablonska, E.; Gromadzinska, J.; Reszka, E.; Wasowicz, W.; Sobala, W.; Szeszenia-Dabrowska, N.; Boffetta, P. Association between GPx1 Pro198Leu polymorphism, GPx1 activity and plasma selenium concentration in humans. Eur. J. Nutr. 2009, 48, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Villette, S.; Kyle, J.M.; Brown, K.M.; Pickard, K.; Milne, J.S.; Nicol, F.; Arthur, J.R.; Hesketh, J.E. A novel single nucleotide polymorphism in the 3’ untranslated region of human glutathione peroxidase 4 influences lipoxygenase metabolism. Blood Cells. Mol. Dis. 2002, 29, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Bermano, G.; Pagmantidis, V.; Holloway, N.; Kadri, S.; Mowat, N.A.; Shiel, N.S.; Arthur, J.R.; Mathers, J.C.; Daly, A.K.; Broom, J.; et al. Evidence that a polymorphism within the 3’UTR of glutathione peroxidase 4 is functional and is associated with susceptibility to colorectal cancer. Genes Nutr. 2007, 2, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Hao, D.Q.; Xie, G.H.; Zhang, Y.M.; Tian, G.J. Determination of serum selenium by hydride generation flame atomic absorption spectrometry. Talanta 1996, 43, 595–600. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Available online: http://www.ncbi.nih.gov/snp/ (accessed on 20 March 2010).
- Ramensky, V.; Bork, P.; Sunyaev, S. Human non-synonymous SNPs: Server and survey. Nucleic Acids Res. 2002, 30, 3894–3900. [Google Scholar] [CrossRef] [PubMed]
- Combs, G.F.; Jackson, M.I.; Watts, J.C.; Johnson, L.K.; Zeng, H.; Idso, J.; Schomburg, L.; Hoeg, A.; Hoefig, C.S.; Chiang, E.C.; et al. Differential responses to selenomethionine supplementation by sex and genotype in healthy adults. Br. J. Nutr. 2012, 107, 1514–1525. [Google Scholar] [CrossRef] [PubMed]
- Takata, Y.; King, I.B.; Lampe, J.W.; Burk, R.F.; Hill, K.E.; Santella, R.M.; Kristal, A.R.; Duggan, D.J.; Vaughan, T.L.; Peters, U. Genetic Variation in GPX1 Is Associated with GPX1 Activity in a Comprehensive Analysis of Genetic Variations in Selenoenzyme Genes and Their Activity and Oxidative Stress in Humans. J. Nutr. 2012, 142, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Karunasinghe, N.; Han, D.Y.; Zhu, S.; Yu, J.; Lange, K.; Duan, H.; Medhora, R.; Singh, N.; Kan, J.; Alzaher, W.; et al. Serum selenium and single-nucleotide polymorphisms in genes for selenoproteins: Relationship to Markers of Oxidative Stress in Men from Auckland, New Zealand. Genes Nutr. 2012, 7, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Ashton, K.; Hooper, L.; Harvey, L.J.; Hurst, R.; Casgrain, A.; Fairweather-Tait, S.J. Methods of assessment of selenium status in humans: A Systematic Review. Am. J. Clin. Nutr. 2009, 89, 2025S–2039S. [Google Scholar] [CrossRef] [PubMed]
- Bastaki, M.; Huen, K.; Manzanillo, P.; Chande, N.; Chen, C.; Balmes, J.R.; Tager, I.B.; Holland, N. Genotype-activity relationship for Mn-superoxide dismutase, glutathione peroxidase 1 and catalase in humans. Pharmacogenet. Genomics 2006, 16, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Suzen, H.S.; Gucyener, E.; Sakalli, O.; Uckun, Z.; Kose, G.; Ustel, D.; Duydu, Y. CAT C-262T and GPX1 Pro198Leu polymorphisms in a Turkish population. Mol. Biol. Rep. 2010, 37, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, L.; de Faire, U.; Marklund, S.L.; Andersson, P.M.; Stegmayr, B.; Morgenstern, R. Phenotype determination of a common Pro-Leu polymorphism in human glutathione peroxidase 1. Blood Cells. Mol. Dis. 2000, 26, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Méplan, C.; Dragsted, L.O.; Ravn-Haren, G.; Tjønneland, A.; Vogel, U.; Hesketh, J. Association between Polymorphisms in Glutathione Peroxidase and Selenoprotein P Genes, Glutathione Peroxidase Activity, HRT Use and Breast Cancer Risk. PLoS ONE 2013, 8, e73316. [Google Scholar]
- Cardoso, B.R.; Ong, T.P.; Jacob-Filho, W.; Jaluul, O.; Freitas, M.I.A.; Cominetti, C.; Cozzolino, S.M.F. Glutathione peroxidase 1 pro198leu polymorphism in Brazilian Alzheimer’s disease patients: Relations to the Enzyme Activity and to Selenium Status. J. Nutrigenet. Nutrigenomics 2012, 5, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Cominetti, C.; de Bortoli, M.C.; Purgatto, E.; Ong, T.P.; Moreno, F.S.; Garrido, A.B.; Cozzolino, S.M.F. Associations between glutathione peroxidase-1 Pro198Leu polymorphism, selenium status, and DNA damage levels in obese women after consumption of Brazil nuts. Nutrition 2011, 27, 891–896. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Vilela, A.L.; Alves, P.C.; Akimoto, A.K.; Lordelo, G.S.; Gonçalves, C.A.; Grisolia, C.K.; Klautau-Guimarães, M.N. Gene polymorphisms against DNA damage induced by hydrogen peroxide in leukocytes of healthy humans through comet assay: A Quasi-Experimental Study. Environ. Health 2010, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- De Hiragi, C.O.; Miranda-Vilela, A.L.; Rocha, D.M.S.; de Oliveira, S.F.; Hatagima, A.; de Klautau-Guimarães, M.N. Superoxide dismutase, catalase, glutathione peroxidase and gluthatione s-transferases M1 and T1 gene polymorphisms in three brazilian population groups. Genet. Mol. Biol. 2011, 34, 11–18. [Google Scholar]
- Iida, R.; Tsubota, E.; Yuasa, I.; Takeshita, H.; Yasuda, T. Simultaneous genotyping of 11 non-synonymous SNPs in the 4 glutathione peroxidase genes using the multiplex single base extension method. Clin. Chim. Acta 2009, 402, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Massafra, C.; Gioia, D.; De Felice, C.; Muscettola, M.; Longini, M.; Buonocore, G. Gender related differences in erythrocyte glutathione peroxidase activity in healthy subjects. Clin. Endocrinol. 2002, 57, 663–667. [Google Scholar] [CrossRef]
- Ravn-Haren, G.; Olsen, A.; Tjønneland, A.; Dragsted, L.O.; Nexø, B.A.; Wallin, H.; Overvad, K.; Raaschou-Nielsen, O.; Vogel, U. Associations between GPX1 Pro198Leu polymorphism, erythrocyte GPX activity, alcohol consumption and breast cancer risk in a prospective cohort study. Carcinogenesis 2006, 27, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Arsova-Sarafinovska, Z.; Matevska, N.; Eken, A.; Petrovski, D.; Banev, S.; Dzikova, S.; Georgiev, V.; Sikole, A.; Erdem, O.; Sayal, A.; et al. Glutathione peroxidase 1 (GPX1) genetic polymorphism, erythrocyte GPX activity, and prostate cancer risk. Int. Urol. Nephrol. 2009, 41, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Pin, Z.; Goldberg, M.; Herman, L.; Lee, B.S.; Hengbing, W.; Brown, R.L.; Foster, C.B.; Peters, U.; Diamond, A.M. Molecular consequences of genetic variations in the glutathione peroxidase 1 selenoenzyme. Cancer Res. 2009, 69, 8183–8190. [Google Scholar]
- Cengiz, M.; Bayoglu, B.; Alansal, N.O.; Cengiz, S.; Dirican, A.; Kocabasoglu, N. Pro198Leu polymorphism in the oxidative stress gene, glutathione peroxidase-1, is associated with a gender-specific risk for panic disorder. Int. J. Psychiatry Clin. Pract. 2015, 19, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Burk, R.F.; Hill, K.E. Selenoprotein P-Expression, functions, and roles in mammals. Biochim. Biophys. Acta Gen. Subj. 2009, 1790, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Ratnasinghe, D.; Tangrea, J.A.; Andersen, M.R.; Barrett, M.J.; Virtamo, J.; Taylor, P.R.; Albanes, D. Glutathione peroxidase codon 198 polymorphism variant increases lung cancer risk. Cancer Res. 2000, 60, 6381–6383. [Google Scholar] [PubMed]
- Ichimura, Y.; Habuchi, T.; Tsuchiya, N.; Wang, L.; Oyama, C.; Sato, K.; Nishiyama, H.; Ogawa, O.; Kato, T. Increased risk of bladder cancer associated with a glutathione peroxidase 1 codon 198 variant. J. Urol. 2004, 172, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liang, D.; Grossman, H.B.; Wu, X. Glutathione peroxidase 1 gene polymorphism and risk of recurrence in patients with superficial bladder cancer. Urology 2005, 66, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Karunasinghe, N.; Han, D.Y.; Goudie, M.; Zhu, S.; Bishop, K.; Wang, A.; Duan, H.; Lange, K.; Ko, S.; Medhora, R.; et al. Prostate disease risk factors among a New Zealand cohort. J. Nutrigenet. Nutrigenomics 2012, 5, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Udler, M.; Maia, A.T.; Cebrian, A.; Brown, C.; Greenberg, D.; Shah, M.; Caldas, C.; Dunning, A.; Easton, D.; Ponder, B.; et al. Common germline genetic variation in antioxidant defense genes and survival after diagnosis of breast cancer. J. Clin. Oncol. 2007, 25, 3015–3023. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donadio, J.L.S.; Guerra-Shinohara, E.M.; Rogero, M.M.; Cozzolino, S.M.F. Influence of Gender and SNPs in GPX1 Gene on Biomarkers of Selenium Status in Healthy Brazilians. Nutrients 2016, 8, 81. https://doi.org/10.3390/nu8050081
Donadio JLS, Guerra-Shinohara EM, Rogero MM, Cozzolino SMF. Influence of Gender and SNPs in GPX1 Gene on Biomarkers of Selenium Status in Healthy Brazilians. Nutrients. 2016; 8(5):81. https://doi.org/10.3390/nu8050081
Chicago/Turabian StyleDonadio, Janaina L. S., Elvira M. Guerra-Shinohara, Marcelo M. Rogero, and Silvia M. F. Cozzolino. 2016. "Influence of Gender and SNPs in GPX1 Gene on Biomarkers of Selenium Status in Healthy Brazilians" Nutrients 8, no. 5: 81. https://doi.org/10.3390/nu8050081
APA StyleDonadio, J. L. S., Guerra-Shinohara, E. M., Rogero, M. M., & Cozzolino, S. M. F. (2016). Influence of Gender and SNPs in GPX1 Gene on Biomarkers of Selenium Status in Healthy Brazilians. Nutrients, 8(5), 81. https://doi.org/10.3390/nu8050081