Phytochemical Pharmacokinetics and Bioactivity of Oat and Barley Flour: A Randomized Crossover Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject Eligibility
2.2. Study Design and Intervention
2.3. Sample Size
2.4. Sample Collection and Preparation
2.5. Biochemical Analyses
2.5.1. Tocopherols
2.5.2. Alkylresorcinols
2.5.3. Phenolic Acids
2.5.4. Antioxidant Capacity
2.5.5. Inflammation and Vascular Remodeling
2.5.6. Glucoregulation and Insulin Sensitivity
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ye, E.Q.; Chacko, S.A.; Chou, E.L.; Kugizaki, M.; Liu, S. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J. Nutr. 2012, 142, 1304–1313. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Norat, T.; Romundstad, P.; Vatten, L.J. Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose–response meta-analysis of cohort studies. Eur. J. Epidemiol. 2013, 28, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Hollænder, P.L.B.; Ross, A.B.; Kristensen, M. Whole-grain and blood lipid changes in apparently healthy adults: A systematic review and meta-analysis of randomized controlled studies. Am. J. Clin. Nutr. 2015, 102, 556–572. [Google Scholar] [CrossRef] [PubMed]
- Mellen, P.B.; Walsh, T.F.; Herrington, D.M. Whole grain intake and cardiovascular disease: A meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Xu, M.; Lee, A.; Cho, S.; Qi, L. Consumption of whole grains and cereal fiber and total and cause-specific mortality: Prospective analysis of 367,442 individuals. BMC Med. 2015, 13. [Google Scholar] [CrossRef]
- Wu, H.; Flint, A.J.; Qi, Q.; van Dam, R.M.; Sampson, L.A.; Rimm, E.B.; Holmes, M.D.; Willett, W.C.; Hu, F.B.; Sun, Q. Association between dietary whole grain intake and risk of mortality: Two large prospective studies in US men and women. JAMA Intern. Med. 2015, 175, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.R.; Gallaher, D.D. Whole grain intake and cardiovascular disease: A review. Curr. Atheroscler. Rep. 2004, 6, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.R.; Pereira, M.A.; Meyer, K.A.; Kushi, L.H. Fiber from whole grains, but not refined grains, is inversely associated with all-cause mortality in older women: The Iowa women’s health study. J. Am. Coll. Nutr. 2000, 19, 326S–330S. [Google Scholar] [CrossRef] [PubMed]
- Mateo Anson, N.; Aura, A.M.; Selinheimo, E.; Mattila, I.; Poutanen, K.; van den Berg, R.; Havenaar, R.; Bast, A.; Haenen, G.R. Bioprocessing of wheat bran in whole wheat bread increases the bioavailability of phenolic acids in men and exerts antiinflammatory effects ex vivo. J. Nutr. 2011, 141, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Bryngelsson, S.; Dimberg, L.H.; Kamal-Eldin, A. Effects of commercial processing on levels of antioxidants in oats (Avena sativa L.). J. Agric. Food Chem. 2002, 50, 1890–1896. [Google Scholar] [CrossRef] [PubMed]
- Okarter, N.; Liu, R.H. Health benefits of whole grain phytochemicals. Crit. Rev. Food Sci. Nutr. 2010, 50, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Tosh, S.M. Review of human studies investigating the post-prandial blood-glucose lowering ability of oat and barley food products. Eur. J. Clin. Nutr. 2013, 67, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Othman, R.A.; Moghadasian, M.H.; Jones, P.J. Cholesterol-lowering effects of oat β-glucan. Nutr. Rev. 2011, 69, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Vitaglione, P.; Mennella, I.; Ferracane, R.; Rivellese, A.A.; Giacco, R.; Ercolini, D.; Gibbons, S.M.; La Storia, A.; Gilbert, J.A.; Jonnalagadda, S.; et al. Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: Role of polyphenols bound to cereal dietary fiber. Am. J. Clin. Nutr. 2015, 101, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, A.M.; Titgemeier, B.; Kirkpatrick, K.; Golubic, M.; Roizen, M.F. Major cereal grain fibers and psyllium in relation to cardiovascular health. Nutrients 2013, 5, 1471–1487. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Milbury, P.E.; Collins, F.W.; Blumberg, J.B. Avenanthramides Are bioavailable and have antioxidant activity in humans after acute consumption of an enriched mixture from oats. J. Nutr. 2007, 137, 1375–1382. [Google Scholar] [PubMed]
- Liu, Z.; Lee, H.J.; Garofalo, F.; Jenkins, D.J.A.; El-Sohemy, A. Simultaneous measurement of three tocopherols, all-trans-retinol, and eight carotenoids in human plasma by isocratic liquid chromatography. J. Chromatogr. Sci. 2011, 49, 221–227. [Google Scholar] [CrossRef]
- McKeown, N.M.; Marklund, M.; Ma, J.; Ross, A.B.; Lichtenstein, A.H.; Livingston, K.A.; Jacques, P.F.; Rasmussen, H.M.; Blumberg, J.B.; Chen, C.Y. Comparison of plasma alkylresorcinols (AR) and urinary AR metabolites as biomarkers of compliance in a short-term, whole-grain intervention study. Eur. J. Nutr. 2016, 55, 1235–1244. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Milbury, P.E.; Lapsley, K.; Blumberg, J.B. Flavonoids from almond skins are bioavailable and act synergistically with vitamins C and E to enhance hamster and human LDL resistance to oxidation. J. Nutr. 2005, 135, 1366–1373. [Google Scholar] [PubMed]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.L. Measurement of protein thiol groups and glutathione in plasma. In Methods in Enzymology; Oxygen Radicals in Biological Systems Part C; Academic Press: New York, NY, USA, 1994; Volume 233, pp. 380–385. [Google Scholar]
- Nielsen, I.L.F.; Chee, W.S.S.; Poulsen, L.; Offord-Cavin, E.; Rasmussen, S.E.; Frederiksen, H.; Enslen, M.; Barron, D.; Horcajada, M.-N.; Williamson, G. Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: A randomized, double-blind, crossover trial. J. Nutr. 2006, 136, 404–408. [Google Scholar] [PubMed]
- Fardet, A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr. Res. Rev. 2010, 23, 65–134. [Google Scholar] [CrossRef] [PubMed]
- Belobrajdic, D.P.; Bird, A.R. The potential role of phytochemicals in wholegrain cereals for the prevention of type-2 diabetes. Nutr. J. 2013, 12. [Google Scholar] [CrossRef] [PubMed]
- Boz, H. Ferulic acid in cereals—A review. Czech J. Food Sci. 2015, 33, 1–7. [Google Scholar] [CrossRef]
- Maki, K.C.; Gibson, G.R.; Dickmann, R.S.; Kendall, C.W.C.; Chen, C.Y.; Costabile, A.; Comelli, E.M.; McKay, D.L.; Almeida, N.G.; Jenkins, D.; et al. Digestive and physiologic effects of a wheat bran extract, arabino-xylan-oligosaccharide, in breakfast cereal. Nutrition 2012, 28, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Price, R.K.; Welch, R.W.; Lee-Manion, A.M.; Bradbury, I.; Strain, J.J. Total phenolics and antioxidant potential in plasma and urine of humans after consumption of wheat bran. Cereal Chem. J. 2008, 85, 152–157. [Google Scholar] [CrossRef]
- Behall, K.M.; Scholfield, D.J.; Hallfrisch, J. Diets containing barley significantly reduce lipids in mildly hypercholesterolemic men and women. Am. J. Clin. Nutr. 2004, 80, 1185–1193. [Google Scholar] [PubMed]
- Behall, K.M.; Scholfield, D.J.; Hallfrisch, J. Whole-grain diets reduce blood pressure in mildly hypercholesterolemic men and women. J. Am. Diet. Assoc. 2006, 106, 1445–1449. [Google Scholar] [CrossRef] [PubMed]
- Giacco, R.; Clemente, G.; Cipriano, D.; Luongo, D.; Viscovo, D.; Patti, L.; Di Marino, L.; Giacco, A.; Naviglio, D.; Bianchi, M.A.; et al. Effects of the regular consumption of wholemeal wheat foods on cardiovascular risk factors in healthy people. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.; Tengblad, S.; Karlström, B.; Kamal-Eldin, A.; Landberg, R.; Basu, S.; Aman, P.; Vessby, B. Whole-grain foods do not affect insulin sensitivity or markers of lipid peroxidation and inflammation in healthy, moderately overweight subjects. J. Nutr. 2007, 137, 1401–1407. [Google Scholar] [PubMed]
- Brownlee, I.A.; Moore, C.; Chatfield, M.; Richardson, D.P.; Ashby, P.; Kuznesof, S.A.; Jebb, S.A.; Seal, C.J. Markers of cardiovascular risk are not changed by increased whole-grain intake: The WHOLEheart study, a randomised, controlled dietary intervention. Br. J. Nutr. 2010, 104, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Enright, L.; Slavin, J. No effect of 14 day consumption of whole grain diet compared to refined grain diet on antioxidant measures in healthy, young subjects: A pilot study. Nutr. J. 2010, 9. [Google Scholar] [CrossRef] [PubMed]
- Harder, H.; Tetens, I.; Let, M.B.; Meyer, A.S. Rye bran bread intake elevates urinary excretion of ferulic acid in humans, but does not affect the susceptibility of LDL to oxidation ex vivo. Eur. J. Nutr. 2004, 43, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Seidel, C.; Boehm, V.; Vogelsang, H.; Wagner, A.; Persin, C.; Glei, M.; Pool-Zobel, B.L.; Jahreis, G. Influence of prebiotics and antioxidants in bread on the immune system, antioxidative status and antioxidative capacity in male smokers and non-smokers. Br. J. Nutr. 2007, 97, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Hajihashemi, P.; Azadbakht, L.; Hashemipor, M.; Kelishadi, R.; Esmaillzadeh, A. Whole-grain intake favorably affects markers of systemic inflammation in obese children: A randomized controlled crossover clinical trial. Mol. Nutr. Food Res. 2014, 58, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Giacco, R.; Lappi, J.; Costabile, G.; Kolehmainen, M.; Schwab, U.; Landberg, R.; Uusitupa, M.; Poutanen, K.; Pacini, G.; Rivellese, A.A.; et al. Effects of rye and whole wheat versus refined cereal foods on metabolic risk factors: A randomised controlled two-centre intervention study. Clin. Nutr. 2013, 32, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Langkamp-Henken, B.; Nieves, C.; Culpepper, T.; Radford, A.; Girard, S.-A.; Hughes, C.; Christman, M.C.; Mai, V.; Dahl, W.J.; Boileau, T.; et al. Fecal lactic acid bacteria increased in adolescents randomized to whole-grain but not refined-grain foods, whereas inflammatory cytokine production decreased equally with both interventions. J. Nutr. 2012, 142, 2025–2032. [Google Scholar] [CrossRef] [PubMed]
- Braaten, J.T.; Wood, P.J.; Scott, F.W.; Riedel, K.D.; Poste, L.M.; Collins, M.W. Oat gum lowers glucose and insulin after an oral glucose load. Am. J. Clin. Nutr. 1991, 53, 1425–1430. [Google Scholar] [PubMed]
- Tappy, L.; Gügolz, E.; Würsch, P. Effects of breakfast cereals containing various amounts of beta-glucan fibers on plasma glucose and insulin responses in NIDDM subjects. Diabetes Care 1996, 19, 831–834. [Google Scholar] [CrossRef] [PubMed]
- Thondre, P.S.; Henry, C.J. High-molecular-weight barley beta-glucan in chapatis (unleavened Indian flatbread) lowers glycemic index. Nutr. Res. 2009, 29, 480–486. [Google Scholar] [CrossRef] [PubMed]
- McRorie, J.W. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1: What to look for and how to recommend an effective fiber therapy. Nutr. Today 2015, 50, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Stote, K.S.; Behall, K.M.; Spears, K.; Vinyard, B.; Conway, J.M. Glucose and insulin responses to whole grain breakfasts varying in soluble fiber, beta-glucan: A dose response study in obese women with increased risk for insulin resistance. Eur. J. Nutr. 2009, 48, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Kerckhoffs, D.A.; Hornstra, G.; Mensink, R.P. Cholesterol-lowering effect of beta-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when beta-glucan is incorporated into bread and cookies. Am. J. Clin. Nutr. 2003, 78, 221–227. [Google Scholar] [PubMed]
- Qiu, Y.; Liu, Q.; Beta, T. Antioxidant activity of commercial wild rice and identification of flavonoid compounds in active fractions. J. Agric. Food Chem. 2009, 57, 7543–7551. [Google Scholar] [CrossRef] [PubMed]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef] [PubMed]
- Bolca, S.; Van de Wiele, T.; Possemiers, S. Gut metabotypes govern health effects of dietary polyphenols. Curr. Opin. Biotechnol. 2013, 24, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Matthan, N.R.; Ausman, L.M.; Meng, H.; Tighiouart, H.; Lichtenstein, A.H. Estimating the reliability of glycemic index values and potential sources of methodological and biological variability. Am. J. Clin. Nutr. 2016, 104. [Google Scholar] [CrossRef] [PubMed]
Nutrient | Wheat | Barley | Oat |
---|---|---|---|
Energy (kcal) | 312 | 302 | 316 |
Total fat (g) | 7.2 | 7.5 | 9.9 |
Total protein (g) | 7.3 | 7.4 | 8.6 |
Total carbohydrate (g) | 55.9 | 52.4 | 48.9 |
Total fiber (g) | 3.2 | 4.9 | 4.9 |
Soluble (g) | 0.8 | 3.2 | 2.4 |
Insoluble (g) | 2.4 | 1.7 | 2.5 |
Gender | Age (Year) | Cholesterol (mg/dL) | TG (mg/dL) | SBP (mmHg) | DBP (mmHg) | Height (cm) | Weight (kg) | HR (bpm) |
---|---|---|---|---|---|---|---|---|
F | 49 | 209 | 82 | 125 | 77 | 162.8 | 89.9 | 57 |
M | 62 | 215 | 74 | 125 | 79 | 183.5 | 97.5 | 55 |
F | 65 | 249 | 52 | 146 | 80 | 154.5 | 69.5 | 62 |
F | 58 | 245 | 202 | 142 | 85 | 157.8 | 81.3 | 85 |
F | 53 | 211 | 77 | 108 | 74 | 157 | 73.6 | 86 |
F | 53 | 160 | 72 | 113 | 65 | 157.5 | 76.3 | 63 |
M | 44 | 172 | 79 | 156 | 74 | 176 | 93 | 105 |
M | 52 | 209 | 127 | 145 | 95 | 176.4 | 109.6 | 95 |
M | 52 | 218 | 63 | 143 | 89 | 174.2 | 90 | 80 |
M | 44 | 211 | 192 | 117 | 64 | 172.3 | 88.5 | 63 |
M | 60 | 244 | 84 | 126 | 79 | 177 | 95.4 | 74 |
M | 55 | 181 | 185 | 115 | 65 | 180.4 | 91.8 | 61 |
M | 43 | 183 | 153 | 129 | 87 | 178.8 | 92.4 | 84 |
Phytonutrients | Baseline Mean (SE) | Cmax Mean (SE) | Tmax (h) Mean (SE) | AUC (%) Mean (SE) |
---|---|---|---|---|
Tocopherols | ||||
α-Tocopherol (µg/mL) | ||||
White flour | 12.94 (1.01) | 13.69 (1.00) * | 13.87 (3.18) | 2350.91 (79.53) |
Barley | 12.99 (0.96) | 14.44 (0.99) * | 14.93 (3.12) | 2430.42 (77.56) |
Oats | 12.12 (0.67) | 14.03 (0.98) * | 16.00 (3.04) | 2600.90 (74.45) |
γ-Tocopherol (µg/mL) | ||||
White flour | 1.95 (0.18) | 2.12 (0.26) * | 5.03 (3.38) | 2152.92 (104.95) |
Barley | 1.84 (0.21) | 2.15 (0.26) * | 8.71 (3.33) | 2222.35 (102.82) |
Oats | 1.92 (0.22) | 2.24 (0.26) * | 12.11 (3.25) | 2332.25 (99.64) |
Alkylresorcinols | ||||
C19 (ng/mL) | ||||
White flour | 8.66 (6.21) | 16.02 (4.40) * | 10.09 (1.50) | 4256.37 (782.41) |
Barley | 4.68 (1.83) | 10.53 (4.20) * | 7.69 (1.42) | 3740.56 (737.42) |
Oats | 3.49 (1.19) | 8.66 (3.99) * | 8.14 (1.33) | 5294.69 (688.65) |
C21 (ng/mL) | ||||
White flour | 15.67 (8.18) | 36.35 (8.77) * | 6.76 (1.28) | 3925.56 (1129.08) |
Barley | 9.63 (2.15) | 26.72 (8.33) * | 7.85 (1.21) | 4037.47 (1063.76) |
Oats | 10.73 (2.64) | 24.64 (7.87) * | 8.68 (1.13) | 5100.95 (992.86) |
C23 (ng/mL) | ||||
White flour | 2.55 (0.90) | 10.38 (2.63) * | 5.83 (1.50) | 7157.18 (1903.26) |
Barley | 2.68 (0.70) | 11.87 (2.55) * | 8.06 (1.43) | 6630.86(1827.33) |
Oats | 4.02 (1.93) | 8.52 (2.48) * | 7.52 (1.34) | 7764.84 (1752.87) |
Phenolic acids | ||||
3-OH-Benzoic acid (ng/mL) | ||||
White flour | 13.57 (3.02) | 28.87 (5.69) * | 2.51 (1.58) | 4323.28 (1261.36) |
Barley | 21.38 (4.37) | 31.73 (5.69) * | 4.22 (1.58) | 4035.64 (1261.36) |
Oats | 22.10 (5.87) | 26.64 (5.84) * | 4.75 (1.73) | 2682.94 (1369.57) |
4-OH-Benzoic acid (ng/mL) | ||||
White flour | 372.06 (68.21) | 434.52 (75.78) * | 2.92 (2.37) | 1829.61 (169.20) |
Barley | 305.53 (53.85) | 377.15 (75.78) * | 8.57 (2.37) | 2226.02 (169.20) |
Oats | 416.54 (85.66) | 501.80 (78.21) | 4.83 (2.57) | 1695.74 (183.33) |
Caffeic acid (ng/mL) | ||||
White flour | 6.41 (0.16) | 7.20 (0.51) | 2.23 (1.53) | 2412.54 (36.01) |
Barley | 6.25 (0.00) | 6.64 (0.51) | 0.49 (1.53) | 2448.38 (36.01) |
Oats | 6.33 (0.09) | 6.55 (0.53) | 3.00 (1.68) | 2393.87 (39.00) |
p-Coumaric acid (ng/mL) | ||||
White flour | 7.83 (0.55) | 17.23 (4.45) * | 3.71 (2.26) | 3768.92 (795.69) |
Barley | 9.76 (2.73) | 14.57 (4.45) * | 6.23 (2.26) | 2829.41 (795.69) |
Oats | 12.78 (3.82) | 15.47 (4.54) * | 5.00 (2.39) | 2356.21 (878.18) |
Ferulic Acid (ng/mL) | ||||
White flour | 27.20 (5.08) | 33.44 (8.84) * | 2.44 (1.49) | 2016.09 (381.85) |
Barley | 25.25 (3.99) | 36.19 (8.84) * | 4.85 (1.49) | 2725.58 (381.85) |
Oats | 40.67 (12.11) | 50.96 (9.53) * | 5.88 (1.64) | 2192.43 (421.66) |
4-OH-phenylacetic acid (ng/mL) | ||||
White flour | 436.74 (44.87) | 504.86 (42.21) * | 7.93 (2.53) | 2226.48 (156.92) |
Barley | 401.60 (38.91) | 476.70 (42.21) * | 6.87 (2.53) | 2243.40 (156.92) |
Oats | 381.08 (40.11) | 469.17 (44.86) * | 5.79 (2.80) | 2174.89 (167.74) |
4-OH-3-MeOH-phenylacetic acid (ng/mL) | ||||
White flour | 21.98 (11.92) | 23.58 (8.23) | 0.80 (0.53) | 2406.07 (172.43) |
Barley | 13.96 (5.06) | 15.58 (8.23) | 0.14 (0.53) | 2241.05 (172.43) |
Oats | 13.48 (3.61) | 17.72 (8.92) | 1.08 (0.58) | 2186.59 (186.03) |
Protocatechuic acid (ng/mL) | ||||
White flour | 37.31 (13.38) | 44.82 (28.12) * | 5.96 (2.52) | 2292.83 (527.21) |
Barley | 34.47 (12.32) | 59.16 (28.12) * | 8.64 (2.52) | 3381.82 (527.21) |
Oats | 67.52 (38.40) | 89.18 (30.14) * | 6.98 (2.67) | 2577.70 (577.78) |
Sinapinic acid (ng/mL) | ||||
White flour | 8.27 (1.09) | 11.01 (2.43) | 0.46 (0.78) | 2361.71 (77.00) |
Barley | 8.00 (0.79) | 9.28 (2.43) | 1.66 (0.78) | 2452.80 (77.00) |
Oats | 8.22 (0.83) | 9.22 (2.61) | 1.76 (0.85) | 2560.90 (84.05) |
Vanillic acid (ng/mL) | ||||
White flour | 166.49 (27.06) | 219.87 (29.70) * | 3.37 (1.56) | 2010.91 (198.18) |
Barley | 148.35 (24.18) | 184.75 (29.70) * | 5.79 (1.56) | 2039.76 (198.18) |
Oats | 161.87 (27.83) | 169.59 (30.63) * | 1.96 (1.68) | 2161.16 (219.06) |
Baseline Mean (SE) | Cmax Mean (SE) | Tmax (h) Mean (SE) | AUC (%) Mean (SE) | |
---|---|---|---|---|
Total Antioxidant Capacity | ||||
Ferric reducing ability of plasma (FRAP) (µmol/L) | ||||
White flour | 408.93 (27.44) | 424.91 (29.88) * | 9.80 (3.25) | 2252.67 (67.30) |
Barley | 399.73 (23.49) | 423.62 (29.26) * | 3.81 (3.17) | 2227.55 (65.44) |
Oats | 390.41 (24.49) | 428.45 (28.45) * | 6.50 (2.92) | 2405.67 (61.32) |
Total thiols (mmol/L) | ||||
White flour | 0.28 (0.01) | 0.33 (0.02) * | 7.13 (1.94) | 2469.79 (90.39) |
Barley | 0.32 (0.02) | 0.34 (0.01) * | 1.60 (1.71) | 2135.75 (80.49) |
Oats | 0.29 (0.01) | 0.34 (0.02) * | 3.52 (2.16) | 2466.64 (100.52) |
Lag Time of LDL oxidation (min) | ||||
White flour | 100.23 (6.26) | 125.16 (8.99) * | 8.68 (2.07) | 2406.08 (86.09) |
Barley | 102.40 (6.06) | 126.32 (9.07) * | 3.63 (2.14) | 2394.40 (88.91) |
Oats | 107.52 (8.59) | 132.40 (9.06) * | 5.22 (2.14) | 2392.58 (88.90) |
Inflammation | ||||
hsCRP (mg/L) | ||||
White flour | 5.90 (0.59) | 12.38 (3.74) * | 9.62 (3.58) | 2858.15 (374.92) |
Barley | 11.08 (3.28) | 13.54 (3.28) * | 11.88 (3.17) | 2327.15 (340.48) |
Oats | 7.35 (1.08) | 10.38 (3.52) * | 9.07 (3.38) | 2874.58 (358.53) |
IL-6 (pg/mL) | ||||
White flour | 3.05 (1.09) | 6.03 (1.74) * | 13.60 (1.92) | 4343.36 (835.79) |
Barley | 2.84 (0.80) | 5.00 (1.64) * | 5.77 (1.80) | 3255.87 (794.41) |
Oats | 4.13 (2.36) | 7.51 (1.64) * | 9.25 (1.80) | 4596.24 (794.36) |
IL-8 (pg/mL) | ||||
White flour | 4.33 (0.05) | 5.84 (0.65) * | 5.94 (1.99) | 2491.11 (305.91) |
Barley | 4.46 (0.72) | 5.70 (0.65) * | 6.19 (1.99) | 2241.28 (305.91) |
Oats | 4.15 (0.62) | 6.88 (0.63) * | 7.87 (1.88) | 2941.49 (288.48) |
TNF-α (pg/mL) | ||||
White flour | 4.33 (0.41) | 5.53 (0.72) * | 10.84 (2.52) | 2683.58 (137.83) |
Barley | 5.30 (0.58) | 5.81 (0.70) * | 5.67 (2.38) | 2181.28 (129.96) |
Oats | 5.26 (0.68) | 6.30 (0.70) * | 8.99 (2.38) | 2419.13 (129.96) |
Vascular Remodeling | ||||
Matrix Metalloprotein 9 (MMP9) (ng/mL) | ||||
White flour | 59.93 (13.91) | 151.57 (24.79) * | 6.29 (1.28) | 4558.91 (563.75) |
Barley | 69.40 (12.21) | 154.13 (24.68) * | 5.11 (1.26) | 3714.29 (551.07) |
Oats | 87.0 (17.71) | 161.40 (24.68) * | 6.32 (1.26) | 3178.33 (551.07) |
Glucoregulation and Insulin Sensitivity | ||||
Glucose (mg/dL) | ||||
White flour | 106.85 (2.14) | 187.00 (9.37) * | 0.68 (0.10) | 383.46 (17.96) |
Barley | 104.75 (2.83) | 186.07 (9.23) * | 0.75 (0.10) | 391.82 (17.76) |
Oats | 104.50 (3.35) | 196.53 (9.92) * | 0.93 (0.11) | 396.40 (18.65) |
Insulin (IU/mL) | ||||
White flour | 22.68 (3.00) | 163.24 (17.44) * | 1.29 (0.17) | 1432.11 (121.44) |
Barley | 21.07 (2.07) | 152.69 (17.44) * | 1.23 (0.17) | 1429.87 (121.44) |
Oats | 20.98 (2.53) | 157.45 (17.44) * | 1.43 (0.17) | 1407.78 (121.44) |
Leptin (ng/mL) | ||||
White flour | 4.12 (1.51) | 5.91 (1.60) * | 8.78 (1.30) | 2637.31 (228.45) |
Barley | 3.72 (0.91) | 5.25 (1.58) * | 5.41 (1.12) | 2283.19 (205.02) |
Oats | 3.91 (1.20) | 5.81 (1.58) * | 7.69 (1.12) | 3065.44 (204.98) |
Adiponectin (ng/mL) | ||||
White flour | 16.83 (3.07) | 23.45 (3.77) * | 8.92 (2.58) | 2842.75 (286.91) |
Barley | 18.58 (3.56) | 20.96 (3.59) * | 3.98 (2.30) | 2327.23 (273.41) |
Oats | 18.72 (2.90) | 21.32 (3.68) * | 7.20 (2.44) | 2133.00 (280.96) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawicki, C.M.; McKay, D.L.; McKeown, N.M.; Dallal, G.; Chen, C.-Y.O.; Blumberg, J.B. Phytochemical Pharmacokinetics and Bioactivity of Oat and Barley Flour: A Randomized Crossover Trial. Nutrients 2016, 8, 813. https://doi.org/10.3390/nu8120813
Sawicki CM, McKay DL, McKeown NM, Dallal G, Chen C-YO, Blumberg JB. Phytochemical Pharmacokinetics and Bioactivity of Oat and Barley Flour: A Randomized Crossover Trial. Nutrients. 2016; 8(12):813. https://doi.org/10.3390/nu8120813
Chicago/Turabian StyleSawicki, Caleigh M., Diane L. McKay, Nicola M. McKeown, Gerard Dallal, C. -Y. Oliver Chen, and Jeffrey B. Blumberg. 2016. "Phytochemical Pharmacokinetics and Bioactivity of Oat and Barley Flour: A Randomized Crossover Trial" Nutrients 8, no. 12: 813. https://doi.org/10.3390/nu8120813
APA StyleSawicki, C. M., McKay, D. L., McKeown, N. M., Dallal, G., Chen, C.-Y. O., & Blumberg, J. B. (2016). Phytochemical Pharmacokinetics and Bioactivity of Oat and Barley Flour: A Randomized Crossover Trial. Nutrients, 8(12), 813. https://doi.org/10.3390/nu8120813