Vitamin D and Calcium Intakes, Physical Activity, and Calcaneus BMC among School-Going 13-Year Old Malaysian Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Anthropometric Measurements
2.3. Dietary Assessment
2.4. Pubertal Stage
2.5. Bone Measurement
2.6. Physical Activity Level
2.7. Statistical Analysis
3. Results
3.1. Descriptive Characteristics of Male and Female Subjects
3.2. Sample Characteristics According to Puberty Level
3.3. Quartile Values
3.4. Regression Analysis
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
BMC | Bone Mineral Content |
BMD | Bone Mineral Density |
BMR | Basal Metabolic Rate |
CS | Complex Sample |
EI:BMR | The ratio of the energy intake to the predicted basal metabolic rate |
FFQ | Food Frequency Questionnaire |
GLM | General Linear Model |
ISCD | International Society of Clinical Densitometry |
MyHeARTs | The Malaysian Health and Adolescents Longitudinal Research Team Cohort study |
PBM | Peak Bone Mass |
PAQ-C | Physical Activity Questionnaire for older Children |
QUS | Calcaneal Quantitative Ultrasound |
RNI | Recommended Nutrient Intake |
UM | University of Malaya |
UV | Ultra Violet |
25OHD | 25-hydroxyvitamin D |
References
- Bonjour, J.P.; Chevalley, T.; Ferrari, S.; Rizzoli, R. The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex. 2009, 51, 5–17. [Google Scholar] [CrossRef]
- Heaney, R.P.; Abrams, S.; Dawson-Hughes, B.; Looker, A.; Marcus, R.; Matkovic, V.; Weaver, C. Peak bone mass. Osteoporos. Int. 2000, 11, 985–1009. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [PubMed]
- Boot, A.M.; de Ridder, M.A.J.; Pols, H.A.P.; Krenning, E.P.; de Muinck Keizer-Schrama, S.M.P.F. Bone mineral density in children and adolescents: Relation to puberty, calcium intake, and physical activity. J. Clin. Endocrinol. Metab. 1997, 82, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Blum, R.W.; Bastos, F.I.; Kabiru, C.W.; Le, L.C. Adolescent health in the 21st century. Lancet 2012, 379, 1567–1568. [Google Scholar] [CrossRef]
- Braegger, C.; Campoy, C.; Colomb, V.; Decsi, T.; Domellof, M.; Fewtrell, M.; Hojsak, I.; Mihatsch, W.; Molgaard, C.; Shamir, R.; et al. Vitamin D in the healthy European paediatric population. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Pettifor, J.M.; Prentice, A. The role of vitamin D in paediatric bone health. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.M.; DePeter, K.C.; Feldman, H.A.; Grace, E.; Emans, S.J. Prevalence of vitamin D deficiency among healthy adolescents. Arch. Pediatr. Adolesc. Med. 2004, 158, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Vatanparast, H.; Nisbet, C.; Gushulak, B. Vitamin D insufficiency and bone mineral status in a population of newcomer children in Canada. Nutrients 2013, 5, 1561–1572. [Google Scholar] [CrossRef] [PubMed]
- Van Schoor, N.M.; Lips, P. Worldwide vitamin D status. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Golden, N.H.; Abrams, S.A. Optimizing bone health in children and adolescents. Pediatrics 2014, 134, e1229–e1243. [Google Scholar] [CrossRef] [PubMed]
- Palacios, C. The role of nutrients in bone health, from A to Z. Crit. Rev. Food Sci. Nutr. 2006, 46, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Mesías, M.; Seiquer, I.; Navarro, M.P. Calcium nutrition in adolescence. Crit. Rev. Food Sci. Nutr. 2011, 51, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.A.; McKay, H.A.; Mirwald, R.L.; Crocker, P.R.; Faulkner, R.A. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: The university of Saskatchewan bone mineral accrual study. J. Bone Miner. Res. 1999, 14, 1672–1679. [Google Scholar] [CrossRef] [PubMed]
- Slemenda, C.W.; Miller, J.Z.; Hui, S.L.; Reister, T.K.; Johnston, C.C. Role of physical activity in the development of skeletal mass in children. J. Bone Miner. Res. 1991, 6, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Tan, V.P.S.; Macdonald, H.M.; Kim, S.; Nettlefold, L.; Gabel, L.; Ashe, M.C.; McKay, H.A. Influence of physical activity on bone strength in children and adolescents: A systematic review and narrative synthesis. J. Bone Miner. Res. 2014, 29, 2161–2181. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen-Veromaa, M.K.M.; Mottonen, T.T.; Nuotio, I.O.; Irjala, K.M.A.; Leino, A.E.; Viikari, J.S.A. Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: A 3-y prospective study. Am. J. Clin. Nutr. 2002, 76, 1446–1453. [Google Scholar] [PubMed]
- Cashman, K.D. Diet, nutrition, and bone health. J. Nutr. 2007, 137, 2507S–2512S. [Google Scholar] [PubMed]
- Von Domarus, C.; Brown, J.; Barvencik, F.; Amling, M.; Pogoda, P. How much vitamin D do we need for skeletal health? Clin. Orthop. Relat. Res. 2011, 469, 3127–3133. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, A.; Deurenberg, P.; Calame, W.; van den Heuvel, E.G.H.M.; van Beusekom, C.; Hautvast, J.; Sandjaja; Bee Koon, P.; Rojroongwasinkul, N.; Le Nguyen, B.K.; et al. Design of the South East Asian Nutrition Survey (SEANUTS): A four-country multistage cluster design study. Br. J. Nutr. 2013, 110, S2–S10. [Google Scholar] [CrossRef] [PubMed]
- Institute for Public Health (IPH). The National Health and Morbidity Survey 2012 Malaysia School-Based Nutrition Survey 2012; Ministry of Health: Kuala Lumpur, Malaysia, 2013; Volume 13.
- Khor, G.L.; Chee, W.S.S.; Shariff, Z.M.; Poh, B.K.; Arumugam, M.; Rahman, J.A.; Theobald, H.E. High prevalence of vitamin D insufficiency and its association with BMI-for-age among primary school children in Kuala Lumpur, Malaysia. BMC Public Health 2011, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Elnajeh, M.; Jalaludin, M.; Harun, F. Vitamin D status of healthy adolescents from two states in Malaysia. Int. J. Pediatr. Endocrinol. 2015, 2015, P62. [Google Scholar] [CrossRef]
- Abdul Majid, H.; Ramli, L.; Ying, S.P.; Su, T.T.; Jalaludin, M.Y.; Abdul Mohsein, N.A.-S. Dietary intake among adolescents in a middle-income country: An outcome from the malaysian health and adolescents longitudinal research team study (the MyHeARTs Study). PLoS ONE 2016, 11, e0155447. [Google Scholar] [CrossRef] [PubMed]
- Sjöberg, A.; Hallberg, L.; Höglund, D.; Hulthén, L. Meal pattern, food choice, nutrient intake and lifestyle factors in The Göteborg Adolescence Study. Eur. J. Clin. Nutr. 2003, 57, 1569–1578. [Google Scholar] [CrossRef] [PubMed]
- Burrows, T.L.; Martin, R.J.; Collins, C.E. A systematic review of the validity of dietary assessment methods in children when compared with the method of doubly labeled water. J. Am. Diet. Assoc. 2010, 110, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.T.K.; Leung, S.S.F.; Leung, D.M.; Cheng, J.C. A follow-up withdrawal study on the effects of calcium-supplement and puberty on bone acquisition of children. Am. J. Clin. Nutr. 1996, 64, 71–711. [Google Scholar] [PubMed]
- Hazreen, M.A.; Su, T.T.; Jalaludin, M.Y.; Dahlui, M.; Chinna, K.; Ismail, M.; Murray, L.; Cantwell, M.; Sadat, N. An exploratory study on risk factors for chronic non-communicable diseases among adolescents in Malaysia: Overview of the malaysian health and adolescents longitudinal research team study (The MyHeART study). BMC Public Health 2014, 14 (Suppl. 3), S6. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [PubMed]
- Chinn, S.; Rona, R.J. International definitions of overweight and obesity for children: A lasting solution? Ann. Hum. Biol. 2002, 29, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Reilly, J.J. Assessment of childhood obesity: National reference data or international approach? Obes. Res. 2002, 10, 838–840. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, M.B.E.; Robson, P.J.; Wallace, J.M.W. Issues in dietary intake assessment of children and adolescents. Br. J. Nutr. 2004, 92 (Suppl. 2), S213–S222. [Google Scholar] [CrossRef] [PubMed]
- Shahar, S.; Safii, N.S.; Manaf, Z.A.; Haron, H. Atlas of Food Exchanges and Portion Sizes; MDC Publisher Sdn Bhd: Kuala Lumpur, Malaysia, 2009. [Google Scholar]
- Food Composition Health Promotion Board Singapore. Available online: http://focos.hpb.gov.sg/eservices/ENCF/ (accessed on 18 February 2016).
- Poh, B.K.; Ismail, M.; Zawiah, H.; Henry, C. Predictive equations for the estimation of basal metabolic rate in Malaysia adolescents. Malays. J. Nutr. 1999, 5, 1–14. [Google Scholar] [PubMed]
- Sichert-Hellert, W.; Kersting, M.; Schoch, G. Underreporting of energy intake in 1 to 18 year old German children and adolescents. Z. Ernahrungswiss. 1998, 37, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Krieg, M.A.; Barkmann, R.; Gonnelli, S.; Stewart, A.; Bauer, D.C.; del Rio Barquero, L.; Kaufman, J.J.; Lorenc, R.; Miller, P.D.; Olszynski, W.P.; et al. Quantitative ultrasound in the management of osteoporosis: The 2007 ISCD official positions. J. Clin. Densitom. 2008, 11, 163–187. [Google Scholar] [CrossRef] [PubMed]
- Baim, S.; Leonard, M.B.; Bianchi, M.L.; Hans, D.B.; Kalkwarf, H.J.; Langman, C.B.; Rauch, F. Official Positions of the International Society for Clinical Densitometry and Executive Summary of the 2007 ISCD Pediatric Position Development Conference. J. Clin. Densitom. 2008, 11, 6–21. [Google Scholar] [CrossRef] [PubMed]
- Guglielmi, G.; Adams, J.; Link, T.M. Quantitative ultrasound in the assessment of skeletal status. Eur. Radiol. 2009, 19, 1837–1848. [Google Scholar] [CrossRef] [PubMed]
- Khaw, K.-T.T.; Reeve, J.; Luben, R.; Bingham, S.; Welch, A.; Wareham, N.; Oakes, S.; Day, N. Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet 2004, 363, 197–202. [Google Scholar] [CrossRef]
- Krieg, M.-A.; Cornuz, J.; Ruffieux, C.; van Melle, G.; Büche, D.; Dambacher, M.A.; Hans, D.; Hartl, F.; Häuselmann, H.J.; Kraenzlin, M.; et al. Prediction of hip fracture risk by quantitative ultrasound in more than 7000 Swiss women > or =70 years of age: Comparison of three technologically different bone ultrasound devices in the SEMOF study. J. Bone Miner. Res. 2006, 21, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Bauer, D.C.; Glüer, C.C.; Cauley, J.A.; Vogt, T.M.; Ensrud, K.E.; Genant, H.K.; Black, D.M. Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch. Intern. Med. 1997, 157, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Hans, D.; Dargent-Molina, P.; Schott, A.M.; Sebert, J.L.; Cormier, C.; Kotzki, P.O.; Delmas, P.D.; Pouilles, J.M.; Breart, G.; Meunier, P.J. Ulrasonographic heel measurements to predict hip fracture in elderly women: The EPIDOS prospective study. Lancet 1996, 348, 511–514. [Google Scholar] [CrossRef]
- Chin, K.Y.; Ima-Nirwana, S. Calcaneal quantitative ultrasound as a determinant of bone health status: What properties of bone does it reflect? Int. J. Med. Sci. 2013, 10, 1778–1783. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, K.C.; Crocker, P.R.; Faulkner, R.A. Validation of the physical activity questionnaire for older children. Pediatr. Exerc. Sci. 1997, 9, 174–186. [Google Scholar] [CrossRef]
- Dan, S.P.; Mohd Nasir, M.T.; Zalilah, M.S. Determination of factors associated with physical activity levels among adolescents attending school in Kuantan, Malaysia. Malays. J. Nutr. 2011, 17, 175–187. [Google Scholar] [PubMed]
- Nor Aini, J.; Poh, B.K.; Chee, W.S.S. Validity of a children’s physical activity questionnaire (cPAQ) for the study of bone health. Pediatr. Int. 2013, 55, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Krabbe, S.; Transbøl, I.; Christiansen, C. Bone mineral homeostasis, bone growth, and mineralisation during years of pubertal growth: A unifying concept. Arch. Dis. Child. 1982, 57, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Espallargues, M.; Sampietro-Colom, L.; Estrada, M.D.; Solà, M.; del Rio, L.; Setoain, J.; Granados, A. Identifying bone-mass-related risk factors for fracture to guide bone densitometry measurements: A systematic review of the literature. Osteoporos. Int. 2001, 12, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, D.; Ersoy, B.; Bilgin, E.; Gümüşer, G.; Onur, E.; Pinar, E.D. Bone mineral density in girls and boys at different pubertal stages: Relation with gonadal steroids, bone formation markers, and growth parameters. J. Bone Miner. Metab. 2005, 23, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Saggese, G.; Baroncelli, G.I.; Bertelloni, S. Puberty and bone development. Best Pract. Res. Clin. Endocrinol. Metab. 2002, 16, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.; Agostoni, C.; Elmadfa, I.; Hulshof, K.; Krause, E.; Livingstone, B.; Socha, P.; Pannemans, D.; Samartín, S. Dietary intake and nutritional status of children and adolescents in Europe. Br. J. Nutr. 2004, 92 (Suppl. 2), S147–S211. [Google Scholar] [CrossRef] [PubMed]
- Kersting, M.; Alexy, U.; Sichert-Hellert, W. Dietary intake and food sources of minerals in 1 to 18 year old German children and adolescents. Nutr. Res. 2001, 21, 607–616. [Google Scholar] [CrossRef]
- Elmadfa, I.; Freisling, H. Nutritional status in Europe: Methods and results. Nutr. Rev. 2009, 67, S130–S134. [Google Scholar] [CrossRef] [PubMed]
- Kersting, M. Die Kalzium- und Vitamin-D-Zufuhr von Kindern. Wiss. Forsch. 2008, 55, 523–527. [Google Scholar]
- Mensink, G.B.M.; Bauch, A.; Vohmann, C.; Stahl, A.; Six, J.; Kohler, S.; Fischer, J.; Heseker, H. EsKiMo—Das Ernahrungs-modul im Kinder- und Jugendgesundheitssurvey (KiGGS). Bundesgesundheitsbla 2007, 50, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Lamberg-Allardt, C.; Ojaniemi, R.; Ahola, M.; Räsänen, L. The vitamin D intake of children and adolescents in Finland. Hum. Nutr. Appl. Nutr. 1984, 38, 377–382. [Google Scholar] [PubMed]
- Soininen, S.; Eloranta, A.-M.; Lindi, V.; Venäläinen, T.; Zaproudina, N.; Mahonen, A.; Lakka, T.A. Determinants of serum 25-hydroxyvitamin D concentration in Finnish children: The Physical Activity and Nutrition in Children (PANIC) study. Br. J. Nutr. 2016, 25, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Russell-Aulet, M.; Shapiro, B.; Jaffe, C.A.; Gross, M.D.; Barkan, A.L. Peak bone mass in young healthy men is correlated with the magnitude of endogenous growth hormone secretion. J. Clin. Endocrinol. Metab. 1998, 83, 3463–3468. [Google Scholar] [CrossRef] [PubMed]
- Van Coeverden, S.C.; de Ridder, C.M.; Roos, J.C.; van’t Hof, M.A.; Netelenbos, J.C.; de Delemarre-Van Waal, H.A. Pubertal maturation characteristics and the rate of bone mass development longitudinally toward menarche. J. Bone Miner. Res. 2001, 16, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Arabi, A.; Nabulsi, M.; Maalouf, J.; Choucair, M.; Khalifé, H.; Vieth, R.; El-Hajj Fuleihan, G. Bone mineral density by age, gender, pubertal stages, and socioeconomic status in healthy Lebanese children and adolescents. Bone 2004, 35, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Johnston, C.C.; Miller, J.Z.; Slemenda, C.W.; Reister, T.K.; Hui, S.; Christian, J.C.; Peacock, M. Calcium supplementation and increases in bone mineral density in children. N. Engl. J. Med. 1992, 327, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Fiorito, L.M.; Mitchell, D.C.; Smiciklas-Wright, H.; Birch, L.L. Girls’ calcium intake is associated with bone mineral content during middle childhood. J. Nutr. 2006, 136, 1281–1286. [Google Scholar] [PubMed]
- Molgaard, C.; Thomsen, B.L.; Michaelsen, K.F. The influence of calcium intake and physical activity on bone mineral content and bone size in healthy children and adolescents. Osteoporos. Int. 2001, 12, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Slemenda, C.W.; Peacock, M.; Hui, S.; Zhou, L.; Johnston, C.C. Reduced rates of skeletal remodeling are associated with increased bone mineral density during the development of peak skeletal mass. J. Bone Miner. Res. 1997, 12, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Mouratidou, T.; Vicente-Rodriguez, G.; Gracia-Marco, L.; Huybrechts, I.; Sioen, I.; Widhalm, K.; Valtueña, J.; González-Gross, M.; Moreno, L.A. Associations of dietary calcium, vitamin D, milk intakes, and 25-hydroxyvitamin D with bone mass in spanish adolescents: The HELENA study. J. Clin. Densitom. 2013, 16, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Winzenberg, T.; Powell, S.; Shaw, K.A.; Jones, G. Effects of vitamin D supplementation on bone density in healthy children: Systematic review and meta-analysis. BMJ 2011, 342, c7254. [Google Scholar] [CrossRef] [PubMed]
- Picard, D.; Imbach, A.; Couturier, M.; Lepage, R.; Ste-Marie, L.G. Longitudinal study of bone density and its determinants in women in peri- or early menopause. Calcif. Tissue Int. 2000, 67, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.C.; Mandel, C.; Garabedian, M. Influence of spontaneous calcium intake and physical exercise on the vertebral and femoral bone mineral density of children and adolescents. J. Bone Miner. Res. 1995, 10, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Specker, B.L. Evidence for an interaction between calcium intake and physical activity on changes in bone mineral density. J. Bone Miner. Res. 1996, 11, 1539–1544. [Google Scholar] [CrossRef] [PubMed]
- Van Staveren, W.A.; de Boer, J.O.; Burema, J. Validity and reproducibility of a dietary history method estimating the usual food intake during one month. Am. J. Clin. Nutr. 1985, 42, 554–559. [Google Scholar] [PubMed]
Characteristics | All a (n = 289) | Male a (n = 99, 34.23%) | Female a (n = 190, 65.7%) | p-Value b |
---|---|---|---|---|
Height (cm) | 150.8 ± 0.41 | 150.1 ± 0.89 | 151.1 ± 0.44 | NS |
Weight (kg) | 42. 6 ± 0.64 | 40.3 ± 1.04 | 43.7 ± 0.80 | 0.010 (S) |
BMI (kg/m2) | 18.65 ± 0.24 | 17.78 ± 0.36 | 19.08 ± 0.31 | 0.006 (S) |
Calcium intake (mg/day) | 377 ± 12 | 356 ± 16 | 387 ± 16 | NS |
Vitamin D intake (µg/day) | 2.51 ± 0.12 | 2.55 ± 0.23 | 2.50 ± 0.14 | NS |
BMC (Z-score) | 0.55 ± 0.01 | 0.52 ± 0.01 | 0.56 ± 0.01 | 0.004 (S) |
Physical Activity (Score) | 2.01 ± 0.03 | 2.18 ± 0.06 | 1.93 ± 0.04 | 0.001 (S) |
Characteristics | Alla (n = 289) | Pre-Pubertal a (n = 21, 0.1%) | Pubertal a (n = 268, 99.9%) | p-Value b |
---|---|---|---|---|
Height (cm) | 150.8 ± 0.41 | 146.9 ± 1.32 | 151.0 ± 0.42 | 0.004 (S) |
Weight (kg) | 42. 6 ± 0.64 | 41.4 ± 2.68 | 42.6 ± 0.66 | NS |
BMI (kg/m2) | 18.65 ± 0.24 | 19.1 ± 1.11 | 18.6 ± 0.31 | NS |
Calcium intake (mg/day) | 377 ± 12 | 414 ± 35 | 375 ± 12 | NS |
Vitamin D intake (µg/day) | 2.51 ± 0.12 | 2.39 ± 0.28 | 2.52 ± 0.13 | NS |
BMC (Z-score) | 0.55 ± 0.01 | 0.46 ± 0.02 | 0.56 ± 0.01 | 0.001 (S) |
Physical Activity (score) | 2.01 ± 0.03 | 2.18 ± 0.18 | 1.20 ± 0.03 | NS |
Parameter | Q1 a | Q2 a | Q3 a | Q4 a |
---|---|---|---|---|
Calcium intake (mg/day) | 207 ± 5 | 350 ± 6 | 581 ± 10 | 926 ± 55 |
Vitamin D intake (µg/day) | 0.85 ± 0.04 | 2.17 ± 0.04 | 3.71 ± 0.07 | 5.68 ± 0.22 |
Physical activity (score) | 1.49 ± 0.01 | 1.79 ± 0.01 | 2.11 ± 0.01 | 2.66 ± 0.01 |
Characteristics | BMC (Z-Score) R2 = 0.156 | ||
---|---|---|---|
B a | SE | p-Value b | |
Quartiles of vitamin D intake (µg/day) | 0.794 | 0.054 | 0.028 (S) |
Quartiles of calcium intake (mg/day) | 0.516 | 0.089 | NS |
Quartiles of combination of vitamin D (µg/day) and Calcium intake (mg/day) | 0.203 | 0.070 | 0.020 (S) |
Quartiles of physical activity (scores) | 0.639 | 0.036 | NS |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suriawati, A.A.; Majid, H.A.; Al-Sadat, N.; Mohamed, M.N.A.; Jalaludin, M.Y. Vitamin D and Calcium Intakes, Physical Activity, and Calcaneus BMC among School-Going 13-Year Old Malaysian Adolescents. Nutrients 2016, 8, 666. https://doi.org/10.3390/nu8100666
Suriawati AA, Majid HA, Al-Sadat N, Mohamed MNA, Jalaludin MY. Vitamin D and Calcium Intakes, Physical Activity, and Calcaneus BMC among School-Going 13-Year Old Malaysian Adolescents. Nutrients. 2016; 8(10):666. https://doi.org/10.3390/nu8100666
Chicago/Turabian StyleSuriawati, A. A., Hazreen Abdul Majid, Nabilla Al-Sadat, Mohd Nahar Azmi Mohamed, and Muhammad Yazid Jalaludin. 2016. "Vitamin D and Calcium Intakes, Physical Activity, and Calcaneus BMC among School-Going 13-Year Old Malaysian Adolescents" Nutrients 8, no. 10: 666. https://doi.org/10.3390/nu8100666
APA StyleSuriawati, A. A., Majid, H. A., Al-Sadat, N., Mohamed, M. N. A., & Jalaludin, M. Y. (2016). Vitamin D and Calcium Intakes, Physical Activity, and Calcaneus BMC among School-Going 13-Year Old Malaysian Adolescents. Nutrients, 8(10), 666. https://doi.org/10.3390/nu8100666