The Relationship between Dietary Patterns and Metabolic Health in a Representative Sample of Adult Australians
Abstract
:1. Introduction
2. Experimental Section
2.1. Data and Study Population
2.2. Dietary Data
2.3. Biomedical Measures
2.4. Metabolic Health
2.5. Factor Analysis
2.6. Statistical Analyses
3. Results
3.1. Dietary Patterns
| Red Meat and Vegetable | Refined and Processed | Healthy | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| All (n = 2415) | Tertile 1 | Tertile 2 | Tertile 3 | Tertile 1 | Tertile 2 | Tertile 3 | Tertile 1 | Tertile 2 | Tertile 3 | |
| Males/females (%) | 48/52 | 49/51 | 43/57 | 53/47 | 37/63 | 43/57 | 66/34 | 53/47 | 43/57 | 50/50 |
| Age group (%) | ||||||||||
| 45–60 years | 54 | 60 | 50 | 52 | 53 | 55 | 53 | 57 | 54 | 50 |
| 61–70 years | 25 | 20 | 27 | 27 | 27 | 22 | 24 | 26 | 23 | 25 |
| >70 years | 21 | 20 | 23 | 21 | 20 | 22 | 22 | 17 | 23 | 25 |
| BMI (%) | ||||||||||
| Obese (≥30 kg/m2) | 31 | 40 | 32 | 32 | 27 | 34 | 33 | 33 | 33 | 28 |
| Overweight (25–29.99 kg/m2) | 40 | 30 | 39 | 39 | 43 | 38 | 38 | 44 | 35 | 40 |
| Normal/underweight (<25 kg/m2) | 29 | 30 | 29 | 29 | 31 | 28 | 29 | 23 | 32 | 32 |
| Metabolic abnormalities (%) | ||||||||||
| 0 | 10 | 13 | 12 | 11 | 14 | 10 | 12 | 10 | 14 | 12 |
| 1–2 | 49 | 50 | 49 | 48 | 48 | 52 | 48 | 49 | 49 | 51 |
| 3–5 | 40 | 36 | 38 | 39 | 37 | 37 | 39 | 40 | 36 | 36 |
| 6–7 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 |
| Physical activity (%) | ||||||||||
| Inactive | 22 | 25 | 17 | 24 | 17 | 24 | 25 | 22 | 26 | 17 |
| Insufficiently active | 26 | 23 | 31 | 25 | 24 | 24 | 32 | 27 | 24 | 29 |
| Sufficiently active for health | 52 | 52 | 51 | 51 | 59 | 52 | 43 | 51 | 50 | 54 |
| SEIFA quintile (%) | ||||||||||
| Quintile 1 (lowest) | 19 | 17 | 20 | 18 | 17 | 18 | 21 | 19 | 18 | 20 |
| Quintile 2 | 19 | 21 | 18 | 19 | 16 | 21 | 20 | 21 | 19 | 17 |
| Quintile 3 | 21 | 22 | 19 | 22 | 19 | 20 | 23 | 19 | 22 | 20 |
| Quintile 4 | 19 | 19 | 19 | 18 | 22 | 17 | 17 | 19 | 17 | 20 |
| Quintile 5 (highest) | 23 | 21 | 24 | 23 | 26 | 24 | 19 | 22 | 23 | 22 |
| Smoking status (%) | ||||||||||
| Current smoker | 10 | 11 | 11 | 9 | 9 | 9 | 12 | 14 | 11 | 5 |
| Never a smoker | 47 | 46 | 47 | 48 | 50 | 47 | 43 | 39 | 47 | 54 |
| Previous/episodic smoker | 43 | 44 | 42 | 44 | 41 | 44 | 45 | 47 | 42 | 41 |
| Red Meat and Vegetable | Refined and Processed | Healthy | |||
|---|---|---|---|---|---|
| Food Group | Factor Loading | Food Group | Factor Loading | Food Group | Factor Loading |
| Yellow or red vegetables | 0.59 | Added sugar | 0.56 | Whole grains | 0.36 |
| Potatoes | 0.57 | Full-fat dairy products | 0.41 | Fresh fruit | 0.35 |
| Red meats | 0.50 | Unsaturated spreads | 0.36 | Low-fat dairy products | 0.33 |
| Other vegetables | 0.33 | Cakes, biscuits, sweet pastries | 0.32 | Dried fruit | 0.32 |
| Cruciferous vegetables | 0.29 | Processed meat | 0.25 | Legumes | 0.29 |
| Canned fruit | 0.25 | Unsaturated spreads | 0.25 | ||
| Soft drinks | 0.25 | ||||
| Meat-based mixed dishes | −0.40 | Other vegetables | −0.26 | Take-away foods | −0.28 |
| Fresh fruit | −0.32 | Soft drinks | −0.33 | ||
| Alcoholic drinks | −0.40 | ||||
| Fried potatoes | −0.42 | ||||
3.2. Dietary Patterns and Metabolic Health
| Metabolic Profile | Model 1 2 | 95% CI | Model 2 3 | 95% CI |
|---|---|---|---|---|
| Red meat and vegetable | 0.97 | 0.88, 1.08 | 0.99 | 0.89, 1.10 |
| Refined and processed | 0.86 | 0.76, 0.98 * | 0.92 | 0.81, 1.04 |
| Healthy | 1.18 | 1.06, 1.31 † | 1.16 | 1.04, 1.29 † |
3.3. Dietary Patterns and Metabolic Abnormalities
| Metabolic Number | Model 1 Estimate 1 | 95% CI | Model 2 Adjusted Estimate 2 | 95% CI |
|---|---|---|---|---|
| Red meat and vegetable | 0.0007 | −0.07, 0.07 | −0.004 | −0.07, 0.07 |
| Refined and processed | 0.10 | 0.03, 0.18 | 0.07 | −0.01, 0.15 |
| Healthy | −0.06 | −0.13, 0.01 | −0.04 | −0.11, 0.03 |
| Metabolic Health | Model 1 2 | 95% CI | Model 2 3 | 95% CI |
|---|---|---|---|---|
| Red meat and vegetable | 1.00 | 0.90, 1.11 | 1.01 | 0.91, 1.12 |
| Refined and processed | 0.89 | 0.78, 1.02 | 0.94 | 0.82, 1.07 |
| Healthy | 1.10 | 0.98, 1.23 | 1.08 | 0.96, 1.21 |
4. Discussion
5. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Grundy, S.M.; Brewer, H.B., Jr.; Cleeman, J.I.; Smith, S.C., Jr.; Lenfant, C. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004, 109, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- Kimokoti, R.W.; Judd, S.E.; Shikany, J.M.; Newby, P.K. Food intake does not differ between obese women who are metabolically healthy or abnormal. J. Nutr. 2014, 144, 2018–2026. [Google Scholar] [CrossRef] [PubMed]
- Pajunen, P.; Kotronen, A.; Korpi-Hyovalti, E.; Keinanen-Kiukaanniemi, S.; Oksa, H.; Niskanen, L.; Saaristo, T.; Saltevo, J.T.; Sundvall, J.; Vanhala, M.; et al. Metabolically healthy and unhealthy obesity phenotypes in the general population: The FIN-D2D Survey. BMC Public Health 2011, 11. [Google Scholar] [CrossRef] [PubMed]
- Bluher, M. The distinction of metabolically “healthy” from “unhealthy” obese individuals. Curr. Opin. Lipidol. 2010, 21, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Sims, E.A. Are there persons who are obese, but metabolically healthy? Metabolism 2001, 50, 1499–1504. [Google Scholar] [CrossRef] [PubMed]
- Hinnouho, G.M.; Czernichow, S.; Dugravot, A.; Batty, G.D.; Kivimaki, M.; Singh-Manoux, A. Metabolically healthy obesity and risk of mortality: Does the definition of metabolic health matter? Diabetes Care 2013, 36, 2294–2300. [Google Scholar] [CrossRef] [PubMed]
- Lee, K. Metabolically obese but normal weight (MONW) and metabolically healthy but obese (MHO) phenotypes in Koreans: Characteristics and health behaviors. Asia Pac. J. Clin. Nutr. 2009, 18, 280–284. [Google Scholar] [PubMed]
- Shin, J.Y.; Kim, J.Y.; Kang, H.T.; Han, K.H.; Shim, J.Y. Effect of fruits and vegetables on metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Int. J. Food Sci. Nutr. 2015, 66, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Moeller, S.M.; Reedy, J.; Millen, A.E.; Dixon, L.B.; Newby, P.K.; Tucker, K.L.; Krebs-Smith, S.M.; Guenther, P.M. Dietary patterns: Challenges and opportunities in dietary patterns research an Experimental Biology workshop, 1 April 2006. J. Am. Diet. Assoc. 2007, 107, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. Australian Health Survey 2011–13, Expanded CURF, RADL. Findings based on use of ABS CURF data. Available online: http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/D9707300945AE90FCA257B8D00229E78?opendocument (accessed on 13 January 2015).
- Calton, E.; James, A.; Pannu, P.; Soares, M. Certain dietary patterns are beneficial for the metabolic syndrome: Reviewing the evidence. Nutr. Res. 2014, 34, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Raper, N.; Perloff, B.; Ingwersen, L.; Steinfeldt, L.; Anand, J. An overview of USDA’s dietary intake data system. J. Food Compos. Anal. 2004, 17, 545–555. [Google Scholar] [CrossRef]
- Roberson, L.L.; Aneni, E.C.; Maziak, W.; Agatston, A.; Feldman, T.; Rouseff, M.; Tran, T.; Blaha, M.J.; Santos, R.D.; Sposito, A.; et al. Beyond BMI: The “metabolically healthy obese” phenotype & its association with clinical/subclinical cardiovascular disease and all-cause mortality—A systematic review. BMC Public Health 2014, 14, 14. [Google Scholar] [PubMed]
- Schulze, M.B.; Hoffmann, K.; Kroke, A.; Boeing, H. An approach to construct simplified measures of dietary patterns from exploratory factor analysis. Br. J. Nutr. 2003, 89, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Kline, P.K. An Easy Guide to Factor Analysis; Routledge: London, UK; New York, NY, USA, 1994. [Google Scholar]
- Cui, Z.; Truesdale, K.P.; Bradshaw, P.T.; Cai, J.; Stevens, J. Three-year weight change and cardiometabolic risk factors in obese and normal weight adults who are metabolically healthy: The atherosclerosis risk in communities study. Int. J. Obes. (Lond.) 2015. [Google Scholar] [CrossRef] [PubMed]
- Hwang, L.C.; Bai, C.H.; Sun, C.A.; Chen, C.J. Prevalence of metabolically healthy obesity and its impacts on incidences of hypertension, diabetes and the metabolic syndrome in Taiwan. Asia Pac. J. Clin. Nutr. 2012, 21, 227–233. [Google Scholar] [PubMed]
- Kip, K.E.; Marroquin, O.C.; Kelley, D.E.; Johnson, B.D.; Kelsey, S.F.; Shaw, L.J.; Rogers, W.J.; Reis, S.E. Clinical importance of obesity versus the metabolic syndrome in cardiovascular risk in women: A report from the Women’s Ischemia Syndrome Evaluation (WISE) study. Circulation 2004, 109, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Velho, S.; Paccaud, F.; Waeber, G.; Vollenweider, P.; Marques-Vidal, P. Metabolically healthy obesity: Different prevalences using different criteria. Eur. J. Clin. Nutr. 2010, 64, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Manabe, I. Chronic inflammation links cardiovascular, metabolic and renal diseases. Circ. J. 2011, 75, 2739–2748. [Google Scholar] [CrossRef] [PubMed]
- Camhi, S.M.; Whitney Evans, E.; Hayman, L.L.; Lichtenstein, A.H.; Must, A. Healthy eating index and metabolically healthy obesity in U.S. adolescents and adults. Prev. Med. 2015, 77, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed]
- Balkau, B.; Charles, M.A. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet. Med. 1999, 16, 442–443. [Google Scholar] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Lutsey, P.L.; Steffen, L.M.; Stevens, J. Dietary intake and the development of the metabolic syndrome: The Atherosclerosis Risk in Communities study. Circulation 2008, 117, 754–761. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, Y.; Lai, J.; Wang, D.; Zhang, J.; Fu, P.; Yang, X.; Qi, L. Dietary patterns as compared with physical activity in relation to metabolic syndrome among Chinese adults. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Arisawa, K.; Uemura, H.; Yamaguchi, M.; Nakamoto, M.; Hiyoshi, M.; Sawachika, F.; Katsuura-Kamano, S. Associations of dietary patterns with metabolic syndrome and insulin resistance: A cross-sectional study in a Japanese population. J. Med. Investig. 2014, 61, 333–344. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Skoumas, Y.; Stefanadis, C. The association between food patterns and the metabolic syndrome using principal components analysis: The ATTICA Study. J. Am. Diet. Assoc. 2007, 107, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, N.S.; Sabate, J.; Jaceldo-Siegl, K.; Fraser, G.E. Vegetarian dietary patterns are associated with a lower risk of metabolic syndrome: The adventist health study 2. Diabetes Care 2011, 34, 1225–1227. [Google Scholar] [CrossRef] [PubMed]
- Viscogliosi, G.; Cipriani, E.; Liguori, M.L.; Marigliano, B.; Saliola, M.; Ettorre, E.; Andreozzi, P. Mediterranean dietary pattern adherence: Associations with prediabetes, metabolic syndrome, and related microinflammation. Metab. Syndr. Relat. Disord. 2013, 11, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Aekplakorn, W.; Satheannoppakao, W.; Putwatana, P.; Taneepanichskul, S.; Kessomboon, P.; Chongsuvivatwong, V.; Chariyalertsak, S. Dietary pattern and metabolic syndrome in Thai adults. J. Nutr. Metab. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Rice, T.; Perusse, L.; Bouchard, C.; Rao, D.C. Familial clustering of abdominal visceral fat and total fat mass: The Quebec Family Study. Obes. Res. 1996, 4, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Naukkarinen, J.; Heinonen, S.; Hakkarainen, A.; Lundbom, J.; Vuolteenaho, K.; Saarinen, L.; Hautaniemi, S.; Rodriguez, A.; Fruhbeck, G.; Pajunen, P.; et al. Characterising metabolically healthy obesity in weight-discordant monozygotic twins. Diabetologia 2014, 57, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Koster, A.; Stenholm, S.; Alley, D.E.; Kim, L.J.; Simonsick, E.M.; Kanaya, A.M.; Visser, M.; Houston, D.K.; Nicklas, B.J.; Tylavsky, F.A.; et al. Body fat distribution and inflammation among obese older adults with and without metabolic syndrome. Obesity (Silver Spring) 2010, 18, 2354–2361. [Google Scholar] [CrossRef] [PubMed]
- Esser, N.; L’Homme, L.; de Roover, A.; Kohnen, L.; Scheen, A.J.; Moutschen, M.; Piette, J.; Legrand-Poels, S.; Paquot, N. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia 2013, 56, 2487–2497. [Google Scholar] [CrossRef] [PubMed]
- Lebovitz, H.E.; Banerji, M.A. Point: Visceral adiposity is causally related to insulin resistance. Diabetes Care 2005, 28, 2322–2325. [Google Scholar] [CrossRef] [PubMed]
- Bonora, E.; Tuomilehto, J. The pros and cons of diagnosing diabetes with A1C. Diabetes Care 2011, 34, S184–S190. [Google Scholar] [CrossRef] [PubMed]
- Sculze, M.; Hoffmann, K.; Kroke, A.; Boeing, H. Dietary patterns and their association with food and nutrient intake in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Br. J. Nutr. 2001, 85, 363–373. [Google Scholar] [CrossRef]
- Petersen, S.B.; Rasmussen, M.A.; Olsen, S.F.; Vestergaard, P.; Molgaard, C.; Halldorsson, T.I.; Strom, M. Maternal dietary patterns during pregnancy in relation to offspring forearm fractures: Prospective study from the Danish National Birth Cohort. Nutrients 2015, 7, 2382–2400. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Buys, N.J.; Hills, A.P. Dietary pattern and its association with the prevalence of obesity, hypertension and other cardiovascular risk factors among Chinese older adults. Int. J. Environ. Res. Public Health 2014, 11, 3956–3971. [Google Scholar] [CrossRef] [PubMed]
- Grieger, J.A.; Grzeskowiak, L.E.; Clifton, V.L. Preconception dietary patterns in human pregnancies are associated with preterm delivery. J. Nutr. 2014, 144, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bell, L.K.; Edwards, S.; Grieger, J.A. The Relationship between Dietary Patterns and Metabolic Health in a Representative Sample of Adult Australians. Nutrients 2015, 7, 6491-6505. https://doi.org/10.3390/nu7085295
Bell LK, Edwards S, Grieger JA. The Relationship between Dietary Patterns and Metabolic Health in a Representative Sample of Adult Australians. Nutrients. 2015; 7(8):6491-6505. https://doi.org/10.3390/nu7085295
Chicago/Turabian StyleBell, Lucinda K., Suzanne Edwards, and Jessica A. Grieger. 2015. "The Relationship between Dietary Patterns and Metabolic Health in a Representative Sample of Adult Australians" Nutrients 7, no. 8: 6491-6505. https://doi.org/10.3390/nu7085295
APA StyleBell, L. K., Edwards, S., & Grieger, J. A. (2015). The Relationship between Dietary Patterns and Metabolic Health in a Representative Sample of Adult Australians. Nutrients, 7(8), 6491-6505. https://doi.org/10.3390/nu7085295

