The Relationship between Dietary Patterns and Metabolic Health in a Representative Sample of Adult Australians
Abstract
:1. Introduction
2. Experimental Section
2.1. Data and Study Population
2.2. Dietary Data
2.3. Biomedical Measures
2.4. Metabolic Health
2.5. Factor Analysis
2.6. Statistical Analyses
3. Results
3.1. Dietary Patterns
Red Meat and Vegetable | Refined and Processed | Healthy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
All (n = 2415) | Tertile 1 | Tertile 2 | Tertile 3 | Tertile 1 | Tertile 2 | Tertile 3 | Tertile 1 | Tertile 2 | Tertile 3 | |
Males/females (%) | 48/52 | 49/51 | 43/57 | 53/47 | 37/63 | 43/57 | 66/34 | 53/47 | 43/57 | 50/50 |
Age group (%) | ||||||||||
45–60 years | 54 | 60 | 50 | 52 | 53 | 55 | 53 | 57 | 54 | 50 |
61–70 years | 25 | 20 | 27 | 27 | 27 | 22 | 24 | 26 | 23 | 25 |
>70 years | 21 | 20 | 23 | 21 | 20 | 22 | 22 | 17 | 23 | 25 |
BMI (%) | ||||||||||
Obese (≥30 kg/m2) | 31 | 40 | 32 | 32 | 27 | 34 | 33 | 33 | 33 | 28 |
Overweight (25–29.99 kg/m2) | 40 | 30 | 39 | 39 | 43 | 38 | 38 | 44 | 35 | 40 |
Normal/underweight (<25 kg/m2) | 29 | 30 | 29 | 29 | 31 | 28 | 29 | 23 | 32 | 32 |
Metabolic abnormalities (%) | ||||||||||
0 | 10 | 13 | 12 | 11 | 14 | 10 | 12 | 10 | 14 | 12 |
1–2 | 49 | 50 | 49 | 48 | 48 | 52 | 48 | 49 | 49 | 51 |
3–5 | 40 | 36 | 38 | 39 | 37 | 37 | 39 | 40 | 36 | 36 |
6–7 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 |
Physical activity (%) | ||||||||||
Inactive | 22 | 25 | 17 | 24 | 17 | 24 | 25 | 22 | 26 | 17 |
Insufficiently active | 26 | 23 | 31 | 25 | 24 | 24 | 32 | 27 | 24 | 29 |
Sufficiently active for health | 52 | 52 | 51 | 51 | 59 | 52 | 43 | 51 | 50 | 54 |
SEIFA quintile (%) | ||||||||||
Quintile 1 (lowest) | 19 | 17 | 20 | 18 | 17 | 18 | 21 | 19 | 18 | 20 |
Quintile 2 | 19 | 21 | 18 | 19 | 16 | 21 | 20 | 21 | 19 | 17 |
Quintile 3 | 21 | 22 | 19 | 22 | 19 | 20 | 23 | 19 | 22 | 20 |
Quintile 4 | 19 | 19 | 19 | 18 | 22 | 17 | 17 | 19 | 17 | 20 |
Quintile 5 (highest) | 23 | 21 | 24 | 23 | 26 | 24 | 19 | 22 | 23 | 22 |
Smoking status (%) | ||||||||||
Current smoker | 10 | 11 | 11 | 9 | 9 | 9 | 12 | 14 | 11 | 5 |
Never a smoker | 47 | 46 | 47 | 48 | 50 | 47 | 43 | 39 | 47 | 54 |
Previous/episodic smoker | 43 | 44 | 42 | 44 | 41 | 44 | 45 | 47 | 42 | 41 |
Red Meat and Vegetable | Refined and Processed | Healthy | |||
---|---|---|---|---|---|
Food Group | Factor Loading | Food Group | Factor Loading | Food Group | Factor Loading |
Yellow or red vegetables | 0.59 | Added sugar | 0.56 | Whole grains | 0.36 |
Potatoes | 0.57 | Full-fat dairy products | 0.41 | Fresh fruit | 0.35 |
Red meats | 0.50 | Unsaturated spreads | 0.36 | Low-fat dairy products | 0.33 |
Other vegetables | 0.33 | Cakes, biscuits, sweet pastries | 0.32 | Dried fruit | 0.32 |
Cruciferous vegetables | 0.29 | Processed meat | 0.25 | Legumes | 0.29 |
Canned fruit | 0.25 | Unsaturated spreads | 0.25 | ||
Soft drinks | 0.25 | ||||
Meat-based mixed dishes | −0.40 | Other vegetables | −0.26 | Take-away foods | −0.28 |
Fresh fruit | −0.32 | Soft drinks | −0.33 | ||
Alcoholic drinks | −0.40 | ||||
Fried potatoes | −0.42 |
3.2. Dietary Patterns and Metabolic Health
Metabolic Profile | Model 1 2 | 95% CI | Model 2 3 | 95% CI |
---|---|---|---|---|
Red meat and vegetable | 0.97 | 0.88, 1.08 | 0.99 | 0.89, 1.10 |
Refined and processed | 0.86 | 0.76, 0.98 * | 0.92 | 0.81, 1.04 |
Healthy | 1.18 | 1.06, 1.31 † | 1.16 | 1.04, 1.29 † |
3.3. Dietary Patterns and Metabolic Abnormalities
Metabolic Number | Model 1 Estimate 1 | 95% CI | Model 2 Adjusted Estimate 2 | 95% CI |
---|---|---|---|---|
Red meat and vegetable | 0.0007 | −0.07, 0.07 | −0.004 | −0.07, 0.07 |
Refined and processed | 0.10 | 0.03, 0.18 | 0.07 | −0.01, 0.15 |
Healthy | −0.06 | −0.13, 0.01 | −0.04 | −0.11, 0.03 |
Metabolic Health | Model 1 2 | 95% CI | Model 2 3 | 95% CI |
---|---|---|---|---|
Red meat and vegetable | 1.00 | 0.90, 1.11 | 1.01 | 0.91, 1.12 |
Refined and processed | 0.89 | 0.78, 1.02 | 0.94 | 0.82, 1.07 |
Healthy | 1.10 | 0.98, 1.23 | 1.08 | 0.96, 1.21 |
4. Discussion
5. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Grundy, S.M.; Brewer, H.B., Jr.; Cleeman, J.I.; Smith, S.C., Jr.; Lenfant, C. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004, 109, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- Kimokoti, R.W.; Judd, S.E.; Shikany, J.M.; Newby, P.K. Food intake does not differ between obese women who are metabolically healthy or abnormal. J. Nutr. 2014, 144, 2018–2026. [Google Scholar] [CrossRef] [PubMed]
- Pajunen, P.; Kotronen, A.; Korpi-Hyovalti, E.; Keinanen-Kiukaanniemi, S.; Oksa, H.; Niskanen, L.; Saaristo, T.; Saltevo, J.T.; Sundvall, J.; Vanhala, M.; et al. Metabolically healthy and unhealthy obesity phenotypes in the general population: The FIN-D2D Survey. BMC Public Health 2011, 11. [Google Scholar] [CrossRef] [PubMed]
- Bluher, M. The distinction of metabolically “healthy” from “unhealthy” obese individuals. Curr. Opin. Lipidol. 2010, 21, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Sims, E.A. Are there persons who are obese, but metabolically healthy? Metabolism 2001, 50, 1499–1504. [Google Scholar] [CrossRef] [PubMed]
- Hinnouho, G.M.; Czernichow, S.; Dugravot, A.; Batty, G.D.; Kivimaki, M.; Singh-Manoux, A. Metabolically healthy obesity and risk of mortality: Does the definition of metabolic health matter? Diabetes Care 2013, 36, 2294–2300. [Google Scholar] [CrossRef] [PubMed]
- Lee, K. Metabolically obese but normal weight (MONW) and metabolically healthy but obese (MHO) phenotypes in Koreans: Characteristics and health behaviors. Asia Pac. J. Clin. Nutr. 2009, 18, 280–284. [Google Scholar] [PubMed]
- Shin, J.Y.; Kim, J.Y.; Kang, H.T.; Han, K.H.; Shim, J.Y. Effect of fruits and vegetables on metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Int. J. Food Sci. Nutr. 2015, 66, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Moeller, S.M.; Reedy, J.; Millen, A.E.; Dixon, L.B.; Newby, P.K.; Tucker, K.L.; Krebs-Smith, S.M.; Guenther, P.M. Dietary patterns: Challenges and opportunities in dietary patterns research an Experimental Biology workshop, 1 April 2006. J. Am. Diet. Assoc. 2007, 107, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. Australian Health Survey 2011–13, Expanded CURF, RADL. Findings based on use of ABS CURF data. Available online: http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/D9707300945AE90FCA257B8D00229E78?opendocument (accessed on 13 January 2015).
- Calton, E.; James, A.; Pannu, P.; Soares, M. Certain dietary patterns are beneficial for the metabolic syndrome: Reviewing the evidence. Nutr. Res. 2014, 34, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Raper, N.; Perloff, B.; Ingwersen, L.; Steinfeldt, L.; Anand, J. An overview of USDA’s dietary intake data system. J. Food Compos. Anal. 2004, 17, 545–555. [Google Scholar] [CrossRef]
- Roberson, L.L.; Aneni, E.C.; Maziak, W.; Agatston, A.; Feldman, T.; Rouseff, M.; Tran, T.; Blaha, M.J.; Santos, R.D.; Sposito, A.; et al. Beyond BMI: The “metabolically healthy obese” phenotype & its association with clinical/subclinical cardiovascular disease and all-cause mortality—A systematic review. BMC Public Health 2014, 14, 14. [Google Scholar] [PubMed]
- Schulze, M.B.; Hoffmann, K.; Kroke, A.; Boeing, H. An approach to construct simplified measures of dietary patterns from exploratory factor analysis. Br. J. Nutr. 2003, 89, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Kline, P.K. An Easy Guide to Factor Analysis; Routledge: London, UK; New York, NY, USA, 1994. [Google Scholar]
- Cui, Z.; Truesdale, K.P.; Bradshaw, P.T.; Cai, J.; Stevens, J. Three-year weight change and cardiometabolic risk factors in obese and normal weight adults who are metabolically healthy: The atherosclerosis risk in communities study. Int. J. Obes. (Lond.) 2015. [Google Scholar] [CrossRef] [PubMed]
- Hwang, L.C.; Bai, C.H.; Sun, C.A.; Chen, C.J. Prevalence of metabolically healthy obesity and its impacts on incidences of hypertension, diabetes and the metabolic syndrome in Taiwan. Asia Pac. J. Clin. Nutr. 2012, 21, 227–233. [Google Scholar] [PubMed]
- Kip, K.E.; Marroquin, O.C.; Kelley, D.E.; Johnson, B.D.; Kelsey, S.F.; Shaw, L.J.; Rogers, W.J.; Reis, S.E. Clinical importance of obesity versus the metabolic syndrome in cardiovascular risk in women: A report from the Women’s Ischemia Syndrome Evaluation (WISE) study. Circulation 2004, 109, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Velho, S.; Paccaud, F.; Waeber, G.; Vollenweider, P.; Marques-Vidal, P. Metabolically healthy obesity: Different prevalences using different criteria. Eur. J. Clin. Nutr. 2010, 64, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Manabe, I. Chronic inflammation links cardiovascular, metabolic and renal diseases. Circ. J. 2011, 75, 2739–2748. [Google Scholar] [CrossRef] [PubMed]
- Camhi, S.M.; Whitney Evans, E.; Hayman, L.L.; Lichtenstein, A.H.; Must, A. Healthy eating index and metabolically healthy obesity in U.S. adolescents and adults. Prev. Med. 2015, 77, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed]
- Balkau, B.; Charles, M.A. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet. Med. 1999, 16, 442–443. [Google Scholar] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Lutsey, P.L.; Steffen, L.M.; Stevens, J. Dietary intake and the development of the metabolic syndrome: The Atherosclerosis Risk in Communities study. Circulation 2008, 117, 754–761. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, Y.; Lai, J.; Wang, D.; Zhang, J.; Fu, P.; Yang, X.; Qi, L. Dietary patterns as compared with physical activity in relation to metabolic syndrome among Chinese adults. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Arisawa, K.; Uemura, H.; Yamaguchi, M.; Nakamoto, M.; Hiyoshi, M.; Sawachika, F.; Katsuura-Kamano, S. Associations of dietary patterns with metabolic syndrome and insulin resistance: A cross-sectional study in a Japanese population. J. Med. Investig. 2014, 61, 333–344. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Skoumas, Y.; Stefanadis, C. The association between food patterns and the metabolic syndrome using principal components analysis: The ATTICA Study. J. Am. Diet. Assoc. 2007, 107, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, N.S.; Sabate, J.; Jaceldo-Siegl, K.; Fraser, G.E. Vegetarian dietary patterns are associated with a lower risk of metabolic syndrome: The adventist health study 2. Diabetes Care 2011, 34, 1225–1227. [Google Scholar] [CrossRef] [PubMed]
- Viscogliosi, G.; Cipriani, E.; Liguori, M.L.; Marigliano, B.; Saliola, M.; Ettorre, E.; Andreozzi, P. Mediterranean dietary pattern adherence: Associations with prediabetes, metabolic syndrome, and related microinflammation. Metab. Syndr. Relat. Disord. 2013, 11, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Aekplakorn, W.; Satheannoppakao, W.; Putwatana, P.; Taneepanichskul, S.; Kessomboon, P.; Chongsuvivatwong, V.; Chariyalertsak, S. Dietary pattern and metabolic syndrome in Thai adults. J. Nutr. Metab. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Rice, T.; Perusse, L.; Bouchard, C.; Rao, D.C. Familial clustering of abdominal visceral fat and total fat mass: The Quebec Family Study. Obes. Res. 1996, 4, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Naukkarinen, J.; Heinonen, S.; Hakkarainen, A.; Lundbom, J.; Vuolteenaho, K.; Saarinen, L.; Hautaniemi, S.; Rodriguez, A.; Fruhbeck, G.; Pajunen, P.; et al. Characterising metabolically healthy obesity in weight-discordant monozygotic twins. Diabetologia 2014, 57, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Koster, A.; Stenholm, S.; Alley, D.E.; Kim, L.J.; Simonsick, E.M.; Kanaya, A.M.; Visser, M.; Houston, D.K.; Nicklas, B.J.; Tylavsky, F.A.; et al. Body fat distribution and inflammation among obese older adults with and without metabolic syndrome. Obesity (Silver Spring) 2010, 18, 2354–2361. [Google Scholar] [CrossRef] [PubMed]
- Esser, N.; L’Homme, L.; de Roover, A.; Kohnen, L.; Scheen, A.J.; Moutschen, M.; Piette, J.; Legrand-Poels, S.; Paquot, N. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia 2013, 56, 2487–2497. [Google Scholar] [CrossRef] [PubMed]
- Lebovitz, H.E.; Banerji, M.A. Point: Visceral adiposity is causally related to insulin resistance. Diabetes Care 2005, 28, 2322–2325. [Google Scholar] [CrossRef] [PubMed]
- Bonora, E.; Tuomilehto, J. The pros and cons of diagnosing diabetes with A1C. Diabetes Care 2011, 34, S184–S190. [Google Scholar] [CrossRef] [PubMed]
- Sculze, M.; Hoffmann, K.; Kroke, A.; Boeing, H. Dietary patterns and their association with food and nutrient intake in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Br. J. Nutr. 2001, 85, 363–373. [Google Scholar] [CrossRef]
- Petersen, S.B.; Rasmussen, M.A.; Olsen, S.F.; Vestergaard, P.; Molgaard, C.; Halldorsson, T.I.; Strom, M. Maternal dietary patterns during pregnancy in relation to offspring forearm fractures: Prospective study from the Danish National Birth Cohort. Nutrients 2015, 7, 2382–2400. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Buys, N.J.; Hills, A.P. Dietary pattern and its association with the prevalence of obesity, hypertension and other cardiovascular risk factors among Chinese older adults. Int. J. Environ. Res. Public Health 2014, 11, 3956–3971. [Google Scholar] [CrossRef] [PubMed]
- Grieger, J.A.; Grzeskowiak, L.E.; Clifton, V.L. Preconception dietary patterns in human pregnancies are associated with preterm delivery. J. Nutr. 2014, 144, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bell, L.K.; Edwards, S.; Grieger, J.A. The Relationship between Dietary Patterns and Metabolic Health in a Representative Sample of Adult Australians. Nutrients 2015, 7, 6491-6505. https://doi.org/10.3390/nu7085295
Bell LK, Edwards S, Grieger JA. The Relationship between Dietary Patterns and Metabolic Health in a Representative Sample of Adult Australians. Nutrients. 2015; 7(8):6491-6505. https://doi.org/10.3390/nu7085295
Chicago/Turabian StyleBell, Lucinda K., Suzanne Edwards, and Jessica A. Grieger. 2015. "The Relationship between Dietary Patterns and Metabolic Health in a Representative Sample of Adult Australians" Nutrients 7, no. 8: 6491-6505. https://doi.org/10.3390/nu7085295
APA StyleBell, L. K., Edwards, S., & Grieger, J. A. (2015). The Relationship between Dietary Patterns and Metabolic Health in a Representative Sample of Adult Australians. Nutrients, 7(8), 6491-6505. https://doi.org/10.3390/nu7085295