Postprandial Effect of a High-Fat Meal on Endotoxemia in Arab Women with and without Insulin-Resistance-Related Diseases
Abstract
:1. Introduction
2. Experimental Section
2.1. In Vivo Assessment of the Biochemical Profile
2.2. Analysis of Circulating Endotoxin
2.3. Statistical Analysis
3. Results
Control | Overweight+ | T2DM | p-Value | |
---|---|---|---|---|
N | 18 | 24 | 50 | |
Age (years) | 24.4 ± 7.9 | 32.0 ± 7.8 * | 41.5 ± 6.2 *! | <0.001 |
T2DM Duration (years) | -- | -- | 2.04 (0–9) | |
BMI (Kg/m2) | 22.2 ± 2.2 | 28.5 ± 1.5 * | 35.2 ± 7.7 *! | <0.001 |
Waist (cm) | 80.6 ± 7.2 | 95.8 ± 7.4 * | 112.3 ± 13.4 *! | <0.001 |
Hip (cm) | 98.7 ± 7.3 | 109.7 ± 5.0 * | 117.1 ± 11.6 *! | <0.001 |
WHR | 0.8 ± 0.05 | 0.9 ± 0.05 * | 1.0 ± 0.07 *! | <0.001 |
Glucose (mmol/L) | 4.8 ± 0.9 | 4.7 ± 0.4 | 7.9 ± 2.7 *! | <0.001 |
LDL-Cholesterol (mmol/L) | 2.8 ± 0.6 | 2.8 ± 0.7 | 3.7 ± 0.8 *! | <0.001 |
Triglycerides (mmol/L) # | 1.0 ± 0.4 | 1.3 ± 0.8 | 1.9 ± 1.0 *! | 0.001 |
Total Cholesterol (mmol/L) | 4.2 ± 0.7 | 4.5 ± 01.0 | 5.4 ± 1.1 *! | 0.003 |
HDL-Cholesterol (mmol/L) | 1.3 ± 0.2 | 1.1 ± 0.4 | 0.96 ± 0.2 *! | <0.001 |
3.1. Effects of High-Fat Meal in Different Groups
0 h | 1 h | 2 h | 3 h | 4 h | |
---|---|---|---|---|---|
GLUCOSE (mmol/L) | |||||
T2DM (N = 50) | 7.9 ± 2.7 | 7.8 ± 2.5 | 7.5 ± 2.5 * | 7.29 ± 2.7 *!§ | 7.0 ± 2.8 *!§† |
Overweight+ (N = 24) | 4.7 ± 0.4 | 4.6 ± 0.4 | 4.6 ± 0.4 | 4.6 ± 0.39 | 4.63 ± 0.7 |
Control (N = 18) | 4.8 ± 0.86 | 5.1 ± 2.3 | 5.02 ± 1.7 | 4.76 ± 1.51 | 4.79 ± 1.6 |
TRIGLYCERIDES (mmol/L) # | |||||
T2DM (N = 50) | 1.9 ± 1.0 | 1.8 ± 0.7 | 2.4 ± 0.9 *! | 2.7 ± 1.1 *!§ | 2.7 ± 1.3 *!§ |
Overweight+ (N = 24) | 1.3 ± 0.8 | 1.4 ± 0.8 | 1.7 ± 0.9 *! | 2.0 ± 1.1 *!§ | 1.9 ± 1.3 *!§ |
Control (N = 18) | 1.0 ± 0.4 | 1.2 ± 0.6 | 1.4 ± 0.9 | 1.44 ± 0.91 | 1.54 ± 1.0 |
TOTAL CHOLESTEROL (mmol/L) | |||||
T2DM (N = 50) | 5.4 ± 1.1 | 5.3 ± 1.0 | 5.4 ± 1.1 | 5.3 ± 1.1 | 5.4 ± 1.1 |
Overweight+ (N = 24) | 4.5 ± 1.0 | 4.5 ± 0.9 | 4.4 ± 0.8 | 4.4 ± 0.8 | 4.4 ± 1.0 |
Control (N = 18) | 4.2 ± 0.7 | 4.1 ± 0.7 | 4.1 ± 0.6 | 4.1 ± 0.6 | 4.2 ± 0.7 |
HDL-CHOLESTEROL (mmol/L) | |||||
T2DM (N = 50) | 1.0 ± 0.2 | 1.0 ± 0.2 | 0.9 ± 0.2 | 0.9 ± 0.2 *! | 0.89 ± 0.2 *!§† |
Overweight+ (N = 24) | 1.2 ± 0.3 | 1.1 ± 0.3 | 1.1 ± 0.3 | 1.1 ± 0.4 *! | 1.1 ± 0.4 *!§ |
Control (N = 18) | 1.3 ± 0.2 | 1.2 ± 0.3 | 1.2 ± 0.3 | 1.2 ± 0.3 | 1.2 ± 0.3 |
LDL-CHOLESTEROL (mmol/L) | |||||
T2DM (N = 50) | 3.7 ± 0.8 | 3.6 ± 0.8 | 3.4 ± 0.9 * | 3.2 ± 0.9 * | 3.3 ± 0.9 * |
Overweight+ (N = 24) | 2.8 ± 0.7 | 2.7 ± 0.6 | 2.5 ± 0.6 * | 2.4 ± 0.6 * | 2.4 ± 0.6 * |
Control (N = 18) | 2.7 ± 0.6 | 2.6 ± 0.6* | 2.6 ± 0.6 * | 2.6 ± 0.6 | 2.7 ± 0.6 |
Endotoxin (EU/mL) | |||||
T2DM (N = 50) | 3.4 ± 0.8 | 3.0 ± 0.8 | 3.4 ± 0.9 ! | 3.5 ± 0.9 ! | 3.6 ± 0.9 ! |
Overweight+ (N = 24) | 3.0 ± 0.5 | 2.9 ± 1.4 | 3.5 ± 0.9 | 3.8 ± 1.6 | 3.5 ± 1.9 |
Control (N = 18) | 1.5 ± 0.1 | 1.8 ± 0.1 * | 1.7 ± 0.8 * | 1.9 ± 0.2 * | 2.1 ± 0.2 * |
Insulin (IU/mL) # | |||||
T2DM (N = 50) | 11.7 ± 5.5 | 21.9 ± 17.7 * | 19.3 ± 12.6 * | 16.2 ± 12.3 * | 14.3 ± 8.2 * |
Overweight+ (N = 24) | 5.0 ± 3.4 | 15.6 ± 16.2 * | 16.9 ± 16.0 * | 13.1 ± 8.0 * | 10.3 ± 5.3 * |
Control (N = 18) | 5.8 ± 0.64 | 10.3 ± 1.7 | 9.6 ± 3.4 | 8.2 ± 1.6 | 10.2 ± 2.6 |
HOMA-IR # | |||||
T2DM (N = 50) | 3.7 ± 2.0 | 8.7 ± 12.0 *‡ | 6.6 ± 6.0 *‡ | 5.6 ± 5.4 ‡ | 3.9 ± 2.4 |
Overweight+ (N = 24) | 1.12 ± 0.7 | 3.5 ± 4.1 * | 3.9 ± 4.1 * | 2.8 ± 1.9 * | 2.1 ± 1.2 |
Control (N = 18) | 1.3 ± 0.2 | 1.9 ± 0.4 | 2.1 ± 0.7 * | 1.9 ± 0.4 | 2.2 ± 0.6 |
3.2. Associations of Metabolic Parameters to Endotoxin after a High-Fat Meal
ALL SUBJECTS | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Glucose | Triglycerides | Total Cholesterol | HDL-Cholesterol | LDL-Cholesterol | ||||||||||||||||||||||||
0 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | 3 | 4 | ||||
−0.17 | 0.04 | 0.13 | 0.08 | 0.00 | −0.13 | 0.10 | 0.14 | 0.22 | 0.20 | 0.16 | −0.08 | 0.00 | −0.07 | −0.21 | −0.16 | 0.15 | −0.01 | −0.08 | −0.06 | 0.22 | −0.06 | 0.05 | 0.38 | −0.12 | ||||
T2DM SUBJECTS (N = 50) | ||||||||||||||||||||||||||||
−0.20 | 0.23 | 0.29 | 0.23 | 0.08 | −0.12 | 0.32 | 0.26 | 0.52 | 0.50 | 0.18 | 0.04 | 0.02 | 0.0 | −0.08 | −0.28 | -0.15 | −0.14 | −0.30 | −0.05 | 0.30 | 0.02 | 0.005 | −0.06 | −0.19 | ||||
OVERWEIGHT+ SUBJECTS (N = 24) | ||||||||||||||||||||||||||||
0.23 | 0.14 | 0.08 | 0.0 | −0.18 | 0.63 | 0.04 | 0.08 | 0.26 | 0.25 | 0.71 | −0.08 | 0.10 | −0.13 | −0.33 | −0.13 | 0.41 | 0.13 | −0.07 | −0.18 | 0.36 | 0.14 | 0.43 | 0.64 | 0.28 | ||||
CONTROL SUBJECTS (N = 18) | ||||||||||||||||||||||||||||
−0.36 | 0.15 | 0.22 | 0.24 | 0.14 | −0.20 | 0.16 | 0.30 | −0.14 | −0.17 | -- | 0.01 | 0.14 | −0.05 | −0.26 | −0.28 | −0.20 | −0.39 | −0.16 | −0.31 | −0.02 | 0.08 | 0.24 | 0.07 | −0.09 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Musaiger, A.O.; Al-Hazzaa, H.M. Prevalence and risk factors associated with nutrition-related noncommunicable diseases in the Eastern Mediterranean region. Int. J. Gen. Med. 2012, 5, 199–217. [Google Scholar] [CrossRef] [PubMed]
- Al-Shoshan, A.A. The affluent diet and its consequences: Saudi Arabia—A case in point. World Rev. Nutr. Diet. 1992, 69, 113–165. [Google Scholar] [PubMed]
- Amuna, P.; Zotor, F.B. Epidemiological and nutrition transition in developing countries: Impact on human health and development. Proc. Nutr. Soc. 2008, 67, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care 2011, 34, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Magnan, C.; Collins, S.; Berthault, M.F.; Kassis, N.; Vincent, M.; Gilber, M.; Pénicaud, L.; Ktorza, A.; Assimacopoulos-Jeannet, F. Lipid infusion lowers sympathetic nervous activity and leads to increased β-cell responsiveness to glucose. J. Clin. Investig. 1999, 103, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Wellen, K.E.; Hotamisligil, G.S. Inflammation, stress, and diabetes. J. Clin. Investig. 2005, 115, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S.; Shargill, N.S.; Spiegelman, B.M. Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science 1993, 259, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S.; Peraldi, P.; Budavari, A.; Ellis, R.; White, M.F.; Spiegelman, B.M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 1996, 271, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Jung, U.J.; Choi, M.S. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2014, 15, 6184–6223. [Google Scholar] [CrossRef] [PubMed]
- Aljada, A.; Mohanty, P.; Ghanim, H.; Abdo, T.; Tripathy, D.; Chaudhuri, A.; Dandona, P. Increase in intranuclear nuclear factor κB and decrease in inhibitor κB in mononuclear cells after a mixed meal: Evidence for a proinflammatory effect. Am. J. Clin. Nutr. 2004, 79, 682–690. [Google Scholar] [PubMed]
- Blanco-Colio, L.M.; Valderrama, M.; Alvarez-Sala, L.A.; Bustos, C.; Ortego, M.; Hernández-Presa, M.A.; Cancelas, P.; Gómez-Gerique, J.; Millán, J.; Egido, J. Red Wine Intake Prevents Nuclear Factor-κB Activation in Peripheral Blood Mononuclear Cells of Healthy Volunteers During Postprandial Lipemia. Circulation 2000, 102, 1020–1026. [Google Scholar] [CrossRef] [PubMed]
- Van Oostrom, A.J.; Rabelink, T.J.; Verseyden, C.; Sijmonsma, T.P.; Plokker, H.W.; De Jaegere, P.P.; Cabezas, M.C. Activation of leukocytes by postprandial lipemia in healthy volunteers. Atherosclerosis 2004, 177, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Van Oostrom, A.J.; Sijmonsma, T.P.; Verseyden, C.; Jansen, E.H.; de Koning, E.J.; Rabelink, T.J.; Castro-Cabezas, M. Postprandial recruitment of neutrophils may contribute to endothelial dysfunction. J. Lipid Res. 2003, 44, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Youssef-Elabd, E.M.; McGee, K.C.; Tripathi, G.; Aldaghri, N.; Abdalla, M.S.; Sharada, H.M.; Ashour, E.; Amin, A.I.; Ceriello, A.; O’Hare, J.P. Acute and chronic saturated fatty acid treatment as a key instigator of the TLR-mediated inflammatory response in human adipose tissue, in vitro. J. Nutr. Biochem. 2012, 23, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Creely, S.J.; McTernan, P.G.; Kusminski, C.M.; Da Silva, N.; Khanolkar, M.; Evans, M.; Harte, A.; Kumar, S. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E740–E747. [Google Scholar] [CrossRef] [PubMed]
- Berg, R.D. The indigenous gastrointestinal microflora. Trends Microbiol. 1996, 4, 430–435. [Google Scholar] [CrossRef]
- Wiedermann, C.J.; Kiechl, S.; Dunzendorfer, S.; Schratzberger, P.; Egger, G.; Oberhollenzer, F.; Willeit, J. Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: Prospective results from the Bruneck study. J. Am. Coll. Cardiol. 1999, 34, 1975–1981. [Google Scholar] [CrossRef]
- Baker, A.R.; Harte, A.L.; Howell, N.; Pritlove, D.C.; Ranasinghe, A.M.; da Silva, N.F.; Youssef, E.M.; Khunti, K.; Davies, M.J.; Bonser, R.S.; et al. Epicardial Adipose Tissue as a Source of Nuclear Factor-κB and c-Jun N-Terminal Kinase Mediated Inflammation in Patients with Coronary Artery Disease. J. Clin. Endocrinol. Metab. 2009, 94, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Al-Attas, O.S.; Al-Daghri, N.M.; Al-Rubeaan, K.; da Silva, N.F.; Sabico, S.L.; Kumar, S.; McTernan, P.G.; Harte, A.L. Changes in endotoxin levels in T2DM subjects on anti-diabetic therapies. Cardiovasc. Diabetol. 2009, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.A.; McTernan, P.G.; Harte, A.L.; da Silva, N.F.; Strazzullo, P.; Alberti, K.; Kumar, S.; Cappuccio, F.P. Ethnic and sex differences in circulating endotoxin levels: A novel marker of atherosclerotic and cardiovascular risk in a British multi-ethnic population. Atherosclerosis 2009, 203, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Harte, A.L.; da Silva, N.F.; Creely, S.J.; McGee, K.C.; Billyard, T.; Youssef-Elabd, E.M.; Tripathi, G.; Ashour, E.; Abdalla, M.S.; Sharada, H.M.; et al. Elevated endotoxin levels in non-alcoholic fatty liver disease. J. Inflamm. (Lond.) 2010, 7. [Google Scholar] [CrossRef] [PubMed]
- Dixon, A.N.; Valsamakis, G.; Hanif, M.W.; Field, A.; Boutsiadis, A.; Harte, A.; McTernan, P.G.; Barnett, A.H.; Kumar, S. Effect of the orlistat on serum endotoxin lipopolysaccharide and adipocytokines in South Asian individuals with impaired glucose tolerance. Int. J. Clin. Pract. 2008, 62, 1124–1129. [Google Scholar] [CrossRef] [PubMed]
- Ceriello, A.; Taboga, C.; Tonutti, L.; Quagliaro, L.; Piconi, L.; Bais, B.; Da Ros, R.; Motz, E. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: Effects of short- and long-term simvastatin treatment. Circulation 2002, 106, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Bonora, E.; Formentini, G.; Calcaterra, F.; Lombardi, S.; Marini, F.; Zenari, L.; Saggiani, F.; Poli, M.; Perbellini, S.; Raffaelli, A. HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects prospective data from the Verona Diabetes Complications Study. Diabetes Care 2002, 25, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Obin, M.S.; Zhao, L. The gut microbiota, obesity and insulin resistance. Mol. Aspects. Med. 2013, 34, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Harte, A.L.; Varma, M.C.; Tripathi, G.; McGee, K.C.; Al-Daghri, N.M.; Al-Attas, O.S.; Sabico, S.; O’Hare, J.P.; Ceriello, A.; Saravanan, P.; et al. High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care 2012, 5, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Herieka, M.; Erridge, C. High-fat meal induced postprandial inflammation. Mol. Nutr. Food Res. 2014, 58, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Hawkesworth, S.; Moore, S.; Fulford, A.; Barclay, G.; Darboe, A.; Mark, H.; Nyan, O.; Prentice, A. Evidence for metabolic endotoxemia in obese and diabetic Gambian women. Nutr. Diabetes 2013, 3, e83. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, T.; Hou, L. Change and correlated factors of fasting level of the plasma endotoxin in subjects with different glucose tolerances and body mass indices. Sichuan Da Xue Xue Bao Yi Xue Ban 2013, 44, 769–773, 778. [Google Scholar] [PubMed]
- Monte, S.V.; Caruana, J.A.; Ghanim, H.; Sia, C.L.; Korzeniewski, K.; Schentag, J.J.; Dandona, P. Reduction in endotoxemia, oxidative and inflammatory stress, and insulin resistance after Roux-en-Y gastric bypass surgery in patients with morbid obesity and type 2 diabetes mellitus. Surgery 2012, 151, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Piya, M.K.; Harte, A.L.; McTernan, P.G. Metabolic endotoxaemia: Is it more than just a gut feeling? Curr. Opin. Lipidol. 2013, 24, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Brun, P.; Castagliuolo, I.; Di Leo, V.; Buda, A.; Pinzani, M.; Palù, G.; Martines, D. Increased intestinal permeability in obese mice: New evidence in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G518–G525. [Google Scholar] [CrossRef] [PubMed]
- Wojczynski, M.K.; Glasser, S.P.; Oberman, A.; Kabagambe, E.K.; Hopkins, P.N.; Tsai, M.Y.; Straka, R.J.; Ordovas, J.M.; Arnett, D.K. High-fat meal effect on LDL, HDL, and VLDL particle size and number in the Genetics of Lipid-Lowering drugs and diet network (GOLDN): An interventional study. Lipids Health Dis. 2011, 10, 181. [Google Scholar] [CrossRef] [PubMed]
- Camargo, A.; Meneses, M.E.; Pérez-Martínez, P.; Delgado-Lista, J.; Rangel-Zúñiga, O.A.; Marín, C.; Almadén, Y.; Yubero-Serrano, E.M.; González-Guardia, L.; Fuentes, F. Dietary fat modifies lipid metabolism in the adipose tissue of metabolic syndrome patients. Genes Nutr. 2014, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Meher, D.; Dutta, D.; Ghosh, S.; Mukhopadhyay, P.; Chowdhury, S.; Mukhopadhyay, S. Effect of a mixed meal on plasma lipids, insulin resistance and systemic inflammation in non-obese Indian adults with normal glucose tolerance and treatment naïve type-2 diabetes. Diabetes Res. Clin. Pract. 2014, 104, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Camargo, A.; Rangel-Zúñiga, O.A.; Peña-Orihuela, P.; Marín, C.; Pérez-Martínez, P.; Delgado-Lista, J.; Gutierrez-Mariscal, F.M.; Malagón, M.M.; Roche, H.M.; Tinahones, F.J. Postprandial changes in the proteome are modulated by dietary fat in patients with metabolic syndrome. J. Nutr. Biochem. 2013, 24, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Bonham, M.P.; Linderborg, K.M.; Dordevic, A.; Larsen, A.E.; Nguo, K.; Weir, J.M.; Gran, P.; Luotonen, M.K.; Meikle, P.J.; Cameron-Smith, D. Lipidomic profiling of chylomicron triacylglycerols in response to high fat meals. Lipids 2013, 48, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Pirillo, A.; Norata, G.D.; Catapano, A.L. Postprandial lipemia as a cardiometabolic risk factor. Curr. Med. Res. Opin. 2014, 30, 1489–1503. [Google Scholar] [CrossRef] [PubMed]
- Munsters, M.; Saris, W.H. Body Weight Regulation and Obesity: Dietary Strategies to Improve the Metabolic Profile. Annu. Rev. Food. Sci. Technol. 2014, 5, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Tushuizen, M.E.; Diamant, M.; Heine, R.J. Postprandial dysmetabolism and cardiovascular disease in type 2 diabetes. Postgrad. Med. J. 2005, 81, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- Alssema, M.; Schindhelm, R.K.; Dekker, J.M.; Diamant, M.; Nijpels, G.; Teerlink, T.; Scheffer, P.G.; Kostense, P.J.; Heine, R.J. Determinants of postprandial triglyceride and glucose responses after two consecutive fat-rich or carbohydrate-rich meals in normoglycemic women and in women with type 2 diabetes mellitus: The Hoorn Prandial Study. Metabolism 2008, 57, 1262–1269. [Google Scholar] [CrossRef] [PubMed]
- Schindhelm, R.K.; Alssema, M.; Scheffer, P.G.; Diamant, M.; Dekker, J.M.; Barto, R.; Nijpels, G.; Kostense, P.J.; Heine, R.J.; Schalkwijk, C.G.; et al. Fasting and Postprandial Glycoxidative and Lipoxidative Stress Are Increased in Women with Type 2 Diabetes. Diabetes Care 2007, 30, 1789–1794. [Google Scholar] [CrossRef] [PubMed]
- Umpaichitra, V.; Banerji, M.A.; Castells, S. Postprandial hyperlipidemia after a fat loading test in minority adolescents with type 2 diabetes mellitus and obesity. J. Pediatr. Endocrinol. Metab. 2004, 7, 853–864. [Google Scholar] [CrossRef]
- Charpentier, G.; Riveline, J.P.; Dardari, D.; Varroud-Vial, M. Should postprandial hyperglycaemia in prediabetic and type 2 diabetic patients be treated? Drugs 2006, 66, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Leiter, L.A.; Ceriello, A.; Davidson, J.A.; Hanefeld, M.; Monnier, L.; Owens, D.R.; Tajima, N.; Tuomilehto, J. Postprandial glucose regulation: New data and new implications. Clin. Ther. 2005, 27, S42–S56. [Google Scholar] [CrossRef] [PubMed]
- Guerci, B.; Verges, B.; Durlach, V.; Hadjadi, S.; Drouin, P.; Paul, J.L. Relationship between altered postprandial lipemia and insulin resistance in normolipidemic and normoglucose tolerant obese patients. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 468–478. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Disi, D.A.; Al-Daghri, N.M.; Khan, N.; Alfadda, A.A.; Sallam, R.M.; Alsaif, M.; Sabico, S.; Tripathi, G.; McTernan, P.G. Postprandial Effect of a High-Fat Meal on Endotoxemia in Arab Women with and without Insulin-Resistance-Related Diseases. Nutrients 2015, 7, 6375-6389. https://doi.org/10.3390/nu7085290
Al-Disi DA, Al-Daghri NM, Khan N, Alfadda AA, Sallam RM, Alsaif M, Sabico S, Tripathi G, McTernan PG. Postprandial Effect of a High-Fat Meal on Endotoxemia in Arab Women with and without Insulin-Resistance-Related Diseases. Nutrients. 2015; 7(8):6375-6389. https://doi.org/10.3390/nu7085290
Chicago/Turabian StyleAl-Disi, Dara A., Nasser M. Al-Daghri, Nasiruddin Khan, Assim A. Alfadda, Reem M. Sallam, Mohammed Alsaif, Shaun Sabico, Gyanendra Tripathi, and Philip G. McTernan. 2015. "Postprandial Effect of a High-Fat Meal on Endotoxemia in Arab Women with and without Insulin-Resistance-Related Diseases" Nutrients 7, no. 8: 6375-6389. https://doi.org/10.3390/nu7085290
APA StyleAl-Disi, D. A., Al-Daghri, N. M., Khan, N., Alfadda, A. A., Sallam, R. M., Alsaif, M., Sabico, S., Tripathi, G., & McTernan, P. G. (2015). Postprandial Effect of a High-Fat Meal on Endotoxemia in Arab Women with and without Insulin-Resistance-Related Diseases. Nutrients, 7(8), 6375-6389. https://doi.org/10.3390/nu7085290