Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance
Abstract
:1. Introduction
2. Search and Selection Criteria
3. Intermittent Sports Overview
Classification | Examples | Sport Distinctions |
---|---|---|
Endurance-based field sports | Soccer, field hockey, lacrosse | Large playing area, longer distances covered, continuous activity at variable speeds. |
Court sports | Basketball, volleyball, tennis | Smaller playing area, shorter duration games, frequent substitution, often several games per day or over several days. |
Strength and power field sports | American football, rugby | Shorter distance covered, frequent short bursts, high contact. |
Batting field sports | Baseball, softball, cricket | Lower overall energy demands, many hours on field, greater rest duration between efforts. |
4. Potential Mechanisms for Effects of Carbohydrate Ingestion on Intermittent Sports Performance
4.1. Historical Perspective
4.2. Metabolic Effects of Carbohydrate
4.2.1. Carbohydrate, Exercise Metabolism, and Fatigue
4.2.2. The Role of Muscle Glycogen
4.2.3. The Role of Blood Glucose
4.3. Non-Metabolic Effects of Carbohydrate
4.4. Summary
5. Intermittent Sport Performance Research Review
5.1. Intermittent High-Intensity Exercise Capacity
Summary
5.2. Sprinting
Summary
5.3. Jumping
Summary
5.4. Sport-Specific Skill
Summary
5.5. Change of Direction Speed
Summary
5.6. Cognition: Attention and Response Time
Summary
6. Study Limitations, Gaps in the Literature, and Future Directions
Sports Tested | Literature Summary | Additional Comments | |
---|---|---|---|
Intermittent high-intensity exercise capacity | Soccer [73,79,80] Soccer, rugby, and field hockey [40,50,77,78] Basketball [56] Non-specific [74,75,76,81] | Consistent performance enhancement | This finding is perhaps not surprising, given the well-established benefit of carbohydrate intake on endurance exercise capacity |
Sprinting | Soccer [53,55,82,84] Soccer, rugby, and field hockey [33,40,47,50,77,78,81,83] Basketball [56,85,86,87] American football [88] | Mixed results | Most studies suggest no benefit of carbohydrate ingestion on sprint performance in soccer, rugby, field hockey, or American football. However, 3 out of 4 basketball studies report a benefit of carbohydrate ingestion on sprint performance in the 4th quarter of a simulated game. |
Jumping | Basketball [56,85,86,87] Soccer [89] | Minimal effects | Limited data available. |
Skill | Soccer [48,53,55,82,89,90,91,94] Basketball [85,86] Tennis [54,95,96,9798] Badminton [99] Squash [100] | Mixed results | Consistent beneficial effect of carbohydrate in soccer studies (sport with the most protocol/skill test validation work). Studies in basketball and racquet sports have found mixed results. Skill is difficult to measure and many different tests have been used. More validation work is needed for measurement of skill in court-based and other sports. |
Change of direction speed | Soccer [80,82,89,90] Basketball [85,86] Tennis [95] Rugby [83] Non-specific [56,87] | Mixed results | Limited data available for pre-planned change of direction speed. No studies involving changes in direction in response to a stimulus. Difficult to measure. More validation work is needed. |
Cognition: Attention and response time | Basketball [56,87,103] Tennis [97] Badminton [99] Squash [100] | Minimal effects | Limited data available. Difficult to measure. Most cognitive tests are not specific to team sports. More validation work is needed. |
7. Recommendations
7.1. Amount and Timing of Carbohydrate Intake
7.2. Form of Carbohydrate
7.3. Type of Carbohydrate
Description | Examples | |
---|---|---|
Amount: | 30–60 g/h | 0.5–1.0 L/h of a 6% carbohydrate solution |
Type: | Rapidly digested, absorbed, and oxidized | The sugars glucose, sucrose, and maltose, as well as the glucose polymer maltodextrin and the starch amylopectin |
Form: | Liquid, semisolid, or solid | Carbohydrate-electrolyte solution (<8%) or gel, chew, or bar with sufficient water to aid absorption |
Other considerations: | Personal preference, experience, goals, and timing | Preference for a certain flavor and/or form of carbohydrate may promote intake and limit gastrointestinal distress |
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interests
References
- Holway, F.E.; Spriet, L.L. Sport-specific nutrition: Practical strategies for team sports. J. Sports Sci. 2011, 29 (Suppl. S1), S115–S125. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.; Jeukendrup, A.E. Carbohydrates for training and competition. J. Sports Sci. 2011, 29 (Suppl. S1), S17–S27. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, N.R.; DiMarco, N.M.; Langley, S. Joint position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J. Am. Diet Assoc. 2009, 109, 509–527. [Google Scholar] [PubMed]
- Mujika, I.; Burke, L.M. Nutrition in team sports. Ann. Nutr. Metab. 2010, 57 (Suppl. S2), 26–35. [Google Scholar] [CrossRef] [PubMed]
- Ranchordas, M.K.; Rogerson, D.; Ruddock, A.; Killer, S.C.; Winter, E.M. Nutrition for tennis: Practical recommendations. J. Sports Sci. Med. 2013, 12, 211–224. [Google Scholar] [PubMed]
- Russell, M.; Kingsley, M. The efficacy of acute nutritional interventions on soccer skill performance. Sports Med. 2014, 44, 957–970. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M. Carbohydrate supplementation and prolonged intermittent high-intensity exercise in adolescents: Research findings, ethical issues and suggestions for the future. Sports Med. 2012, 42, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, G.B. The Creation of American Team Sports: Baseball and Cricket; University of Illinois Press: Champaign, IL, USA, 1989; p. 227. [Google Scholar]
- Taylor, M. Early years, c. 1863–1885. In The Association Game: A History of British Football; Routledge: Abingdon, UK, 2013; pp. 19–61. [Google Scholar]
- Rampinini, E.; Impellizzeri, F.M.; Castagna, C.; Coutts, A.J.; Wisloff, U. Technical performance during soccer matches of the Italian Serie A League: Effect of fatigue and competitive level. J. Sci. Med. Sport 2009, 12, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Unnithan, V.; White, J.; Georgiou, A.; Iga, J.; Drust, B. Talent identification in youth soccer. J. Sports Sci. 2012, 30, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.M.; Young, W.B. Agility literature review: Classifications, training and testing. J. Sports Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef] [PubMed]
- Young, W.B.; James, R.; Montgomery, I. Is muscle power related to running speed with changes of direction? J. Sports Med. Phys. Fit. 2002, 42, 282–288. [Google Scholar]
- Russell, M.; Sparkes, W.; Northeast, J.; Cook, C.J.; Love, T.D.; Bracken, R.M.; Kilduff, L.P. Changes in acceleration and deceleration capacity throughout professional soccer match-play. J. Strength Cond. Res. 2014. [Google Scholar] [CrossRef] [PubMed]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sports Sci. 2003, 21, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Gordon, B.; Kohn, L.A.; Levine, S.A.; Malton, M.; Soriven, W.; Whiting, W.B. Sugar content of the blood in runners following a marathon race. J. Am. Med. Assoc. 1925, 85, 508–509. [Google Scholar] [CrossRef]
- Cade, J.R.; Free, H.J.; De Quesada, A.M.; Shires, D.L.; Roby, L. Changes in body fluid composition and volume during vigorous exercise by athletes. J. Sports Med. Phys. Fit. 1971, 11, 172–178. [Google Scholar]
- Cade, R.; Spooner, G.; Schlein, E.; Pickering, M.; Dean, R. Effect of fluid, electrolyte, and glucose replacement during exercise on performance, body temperature, rate of sweat loss, and compositional changes of extracellular fluid. J. Sports Med. Phys. Fit. 1972, 12, 150–156. [Google Scholar]
- Saltin, B. Metabolic fundamentals in exercise. Med. Sci. Sports 1973, 5, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Agnevik, G. Fotball: Indrottsfysiologi; Trygg-Hansa: Stockholm, Sweeden, 1970. [Google Scholar]
- Reilly, T.; Thomas, V. A time motion analysis of work rate in different positional roles in professional match play. J. Hum. Mov. Stud 1976, 2, 87–99. [Google Scholar]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Fatigue in soccer: A brief review. J. Sports Sci. 2005, 23, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Mohr, M.; Krustrup, P.; Andersson, H.; Kirkendal, D.; Bangsbo, J. Match activities of elite women soccer players at different performance levels. J. Strength Cond. Res. 2008, 22, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.J.; Bradley, P.S.; Nassis, G.P. Factors affecting match running performance of elite soccer players: Shedding some light on the complexity. Int. J Sports Physiol. Perform. 2015, 10, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Mohr, M.; Krustrup, P. Physical and metabolic demands of training and match-play in the elite football player. J. Sports Sci. 2006, 24, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Nevill, A.M.; Jones, D.A.; McIntyre, D.; Bogdanis, G.C.; Nevill, M.E. A model for phosphocreatine resynthesis. J. Appl. Physiol. 1997, 82, 329–335. [Google Scholar] [PubMed]
- Cheetham, M.E.; Boobis, L.H.; Brooks, S.; Williams, C. Human muscle metabolism during sprint running. J. Appl. Physiol. 1986, 61, 54–60. [Google Scholar] [PubMed]
- Gaitanos, G.C.; Williams, C.; Boobis, L.H.; Brooks, S. Human muscle metabolism during intermittent maximal exercise. J. Appl. Physiol. 1993, 75, 712–719. [Google Scholar] [PubMed]
- Krustrup, P.; Mohr, M.; Steensberg, A.; Bencke, J.; Kjaer, M.; Bangsbo, J. Muscle and blood metabolites during a soccer game: Implications for sprint performance. Med. Sci. Sports Exerc. 2006, 38, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- Greenhaff, P.L.; Nevill, M.E.; Soderlund, K.; Bodin, K.; Boobis, L.H.; Williams, C.; Hultman, E. The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J. Physiol. 1994, 478, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Saltin, B. Substrate metabolism of the skeletal musculature during exercise. 5. Muscle glycogen. Lakartidningen 1972, 69, 1637–1640. [Google Scholar] [PubMed]
- Nicholas, C.W.; Nuttall, F.E.; Williams, C. The Loughborough Intermittent Shuttle Test: A field test that simulates the activity pattern of soccer. J. Sports Sci. 2000, 18, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, C.W.; Tsintzas, K.; Boobis, L.; Williams, C. Carbohydrate-electrolyte ingestion during intermittent high-intensity running. Med. Sci. Sports Exerc. 1999, 31, 1280–1286. [Google Scholar] [CrossRef] [PubMed]
- Kirkendall, D.T.; Foster, C.; Dean, J.; Grogan, J.; Thompson, N. Effect of a glucose polymer supplementation on performance of soccer players. In Science and Football Proceedings of the First World Congress of Science and Football; Reilly, T., Lees, A., David, K., Murphy, W., Eds.; Routledge: New York, NY, USA, 1988; pp. 33–41. [Google Scholar]
- Gregson, W.; Drust, B.; Atkinson, G.; Salvo, V.D. Match-to-match variability of high-speed activities in premier league soccer. Int. J. Sports Med. 2010, 31, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Bendiksen, M.; Bischoff, R.; Randers, M.B.; Mohr, M.; Rollo, I.; Suetta, C.; Bangsbo, J.; Krustrup, P. The Copenhagen Soccer Test: Physiological response and fatigue development. Med. Sci. Sports Exerc. 2012, 44, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J. The physiology of soccer-With special reference to intense intermittent exercise. Acta Physiol. Scand. Suppl. 1994, 619, 1–155. [Google Scholar] [PubMed]
- Nielsen, J.; Holmberg, H.C.; Schroder, H.D.; Saltin, B.; Ortenblad, N. Human skeletal muscle glycogen utilization in exhaustive exercise: Role of subcellular localization and fibre type. J. Physiol. 2011, 589, 2871–2885. [Google Scholar] [CrossRef] [PubMed]
- Gejl, K.D.; Hvid, L.G.; Frandsen, U.; Jensen, K.; Sahlin, K.; Ortenblad, N. Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes. Med. Sci. Sports Exerc. 2014, 46, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Foskett, A.; Williams, C.; Boobis, L.; Tsintzas, K. Carbohydrate availability and muscle energy metabolism during intermittent running. Med. Sci. Sports Exerc. 2008, 40, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Benton, D.; Kingsley, M. Carbohydrate ingestion before and during soccer match play and blood glucose and lactate concentrations. J. Athl. Train. 2014, 49, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Coyle, E.F.; Coggan, A.R.; Hemmert, M.K.; Ivy, J.L. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J. Appl. Physiol. 1986, 61, 165–172. [Google Scholar] [PubMed]
- Bangsbo, J. Physiological demands. In IOC Handbook of Sports Medicine and Science: Football (Soccer), 1st ed.; Ekblom, B., Ed.; Blackwell Scientific Publications: Oxford, UK, 1994; pp. 43–58. [Google Scholar]
- Ekblom, B. Applied physiology of soccer. Sports Med. 1986, 3, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Kjaer, M. Regulation of hormonal and metabolic responses during exercise in humans. Exerc. Sport Sci. Rev. 1992, 20, 161–184. [Google Scholar] [PubMed]
- Kjaer, M. Epinephrine and some other hormonal responses to exercise in man: With special reference to physical training. Int. J. Sports Med. 1989, 10, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, M.; Penas-Ruiz, C.; Terry, C.; Russell, M. Effects of carbohydrate-hydration strategies on glucose metabolism, sprint performance and hydration during a soccer match simulation in recreational players. J. Sci. Med. Sport 2014, 17, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Benton, D.; Kingsley, M. Influence of carbohydrate supplementation on skill performance during a soccer match simulation. J. Sci. Med. Sport 2012, 15, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Rees, G.; Benton, D.; Kingsley, M. An exercise protocol that replicates soccer match-play. Int. J. Sports Med. 2011, 32, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, C.W.; Williams, C.; Lakomy, H.K.; Phillips, G.; Nowitz, A. Influence of ingesting a carbohydrate-electrolyte solution on endurance capacity during intermittent, high-intensity shuttle running. J. Sports Sci. 1995, 13, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Harper, L.D.; Briggs, M.A.; McNamee, G.; West, D.J.; Kilduff, L.P.; Stevenson, E.; Russell, M. Physiological and performance effects of carbohydrate gels consumed prior to the extra-time period of prolonged simulated soccer match-play. J. Sci. Med. Sport 2015. [Google Scholar] [CrossRef] [PubMed]
- Rollo, I. Carbohydrate: The football fuel. GSSI Sports Sci. Exch. 2014, 27, 1–8. Available online: http://www.gssiweb.org/en/Article/sse-127-carbohydrate-the-football-fuel (accessed on 24 June 2015). [Google Scholar]
- Ali, A.; Williams, C.; Nicholas, C.W.; Foskett, A. The influence of carbohydrate-electrolyte ingestion on soccer skill performance. Med. Sci. Sports Exer. 2007, 39, 1969–1976. [Google Scholar] [CrossRef] [PubMed]
- McRae, K.A.; Galloway, S.D. Carbohydrate-electrolyte drink ingestion and skill performance during and after 2 hr of indoor tennis match play. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 38–46. [Google Scholar] [PubMed]
- Ali, A.; Williams, C. Carbohydrate ingestion and soccer skill performance during prolonged intermittent exercise. J. Sports Sci. 2009, 27, 1499–1508. [Google Scholar] [CrossRef] [PubMed]
- Welsh, R.S.; Davis, J.M.; Burke, J.R.; Williams, H.G. Carbohydrates and physical/mental performance during intermittent exercise to fatigue. Med. Sci. Sports Exerc. 2002, 34, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Bandelow, S.; Maughan, R.; Shirreffs, S.; Ozgunen, K.; Kurdak, S.; Ersoz, G.; Binnet, M.; Dvorak, J. The effects of exercise, heat, cooling and rehydration strategies on cognitive function in football players. Scand. J. Med. Sci. Sports 2010, 20 (Suppl. S3), 148–160. [Google Scholar] [CrossRef] [PubMed]
- Duelli, R.; Kuschinsky, W. Brain glucose transporters: Relationship to local energy demand. News Physiol. Sci. 2001, 16, 71–76. [Google Scholar] [PubMed]
- Tsintzas, K.; Williams, C. Human muscle glycogen metabolism during exercise. Effect of carbohydrate supplementation. Sports Med. 1998, 25, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Nybo, L. CNS fatigue and prolonged exercise: Effect of glucose supplementation. Med. Sci. Sports Exerc. 2003, 35, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Ali, A. Measuring soccer skill performance: A review. Scand. J. Med. Sci. Sports 2011, 21, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Nybo, L.; Secher, N.H. Cerebral perturbations provoked by prolonged exercise. Prog. Neurobiol. 2004, 72, 223–261. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E.; Killer, S.C. The myths surrounding pre-exercise carbohydrate feeding. Ann. Nutr. Metab. 2010, 57 (Suppl. S2), 18–25. [Google Scholar] [CrossRef] [PubMed]
- Rollo, I.; Williams, C. Effect of mouth-rinsing carbohydrate solutions on endurance performance. Sports Med. 2011, 41, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Rauch, H.G.; St Clair Gibson, A.; Lambert, E.V.; Noakes, T.D. A signalling role for muscle glycogen in the regulation of pace during prolonged exercise. Br. J. Sports Med. 2005, 39, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Gant, N.; Stinear, C.M.; Byblow, W.D. Carbohydrate in the mouth immediately facilitates motor output. Brain Res. 2010, 1350, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Chambers, E.S.; Bridge, M.W.; Jones, D.A. Carbohydrate sensing in the human mouth: Effects on exercise performance and brain activity. J. Physiol. 2009, 587, 1779–1794. [Google Scholar] [CrossRef] [PubMed]
- Dorling, J.L.; Earnest, C.P. Effect of carbohydrate mouth rinsing on multiple sprint performance. J. Int. Soc. Sports Nutr. 2013, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Rollo, I.; Homewood, G.; Williams, C.; Carter, J.; Goosey-Tolfrey, V.L. The influence of carbohydrate mouth rinse on self-selected intermittent running performance. Int. J. Sport Nutr. Exerc. Metab. 2015. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Foskett, A.; Gant, N. Measuring intermittent exercise performance using shuttle running. J. Sports Sci. 2014, 32, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.E.; Byblow, W.D.; Stinear, C.M.; Gant, N. Carbohydrate in the mouth enhances activation of brain circuitry involved in motor performance and sensory perception. Appetite 2014, 80C, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M.; Sproule, J.; Turner, A.P. Carbohydrate ingestion during team games exercise: Current knowledge and areas for future investigation. Sports Med. 2011, 41, 559–585. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.D.; Gray, S.C. Carbohydrate-gel supplementation and endurance performance during intermittent high-intensity shuttle running. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 445–455. [Google Scholar] [PubMed]
- Davis, J.M.; Welsh, R.S.; Alerson, N.A. Effects of carbohydrate and chromium ingestion during intermittent high-intensity exercise to fatigue. Int. J. Sport Nutr. Exerc. Metab. 2000, 10, 476–485. [Google Scholar] [PubMed]
- Davis, J.M.; Welsh, R.S.; De Volve, K.L.; Alderson, N.A. Effects of branched-chain amino acids and carbohydrate on fatigue during intermittent, high-intensity running. Int. J. Sports Med. 1999, 20, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Davison, G.W.; McClean, C.; Brown, J.; Madigan, S.; Gamble, D.; Trinick, T.; Duly, E. The effects of ingesting a carbohydrate-electrolyte beverage 15 minutes prior to high-intensity exercise performance. Res. Sports Med. 2008, 16, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M.; Turner, A.P.; Gray, S.; Sanderson, M.F.; Sproule, J. Ingesting a 6% carbohydrate-electrolyte solution improves endurance capacity, but not sprint performance, during intermittent, high-intensity shuttle running in adolescent team games players aged 12–14 years. Eur. J. Appl. Physiol. 2010, 109, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M.; Turner, A.P.; Sanderson, M.F.; Sproule, J. Carbohydrate gel ingestion significantly improves the intermittent endurance capacity, but not sprint performance, of adolescent team games players during a simulated team games protocol. Eur. J. Appl. Physiol. 2012, 112, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Alghannam, A.F. Carbohydrate-protein ingestion improves subsequent running capacity towards the end of a football-specific intermittent exercise. Appl. Physiol. Nutr. Metab. 2011, 36, 748–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goedecke, J.H.; White, N.J.; Chicktay, W.; Mahomed, H.; Durandt, J.; Lambert, M.I. The effect of carbohydrate ingestion on performance during a simulated soccer match. Nutrients 2013, 5, 5193–5204. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.G.; Nevill, M.E.; Thompson, D.; Collie, J.; Williams, C. The influence of a 6.5% carbohydrate-electrolyte solution on performance of prolonged intermittent high-intensity running at 30 degrees C. J. Sports Sci. 2003, 21, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Abbey, E.L.; Rankin, J.W. Effect of ingesting a honey-sweetened beverage on soccer performance and exercise-induced cytokine response. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 659–672. [Google Scholar] [PubMed]
- Roberts, S.P.; Stokes, K.A.; Trewartha, G.; Doyle, J.; Hogben, P.; Thompson, D. Effects of carbohydrate and caffeine ingestion on performance during a rugby union simulation protocol. J. Sports. Sci. 2010, 28, 833–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gant, N.; Leiper, J.B.; Williams, C. Gastric emptying of fluids during variable-intensity running in the heat. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 270–283. [Google Scholar] [PubMed]
- Baker, L.B.; Dougherty, K.A.; Chow, M.; Kenney, W.L. Progressive dehydration causes a progressive decline in basketball skill performance. Med. Sci. Sports Exerc. 2007, 39, 1114–1123. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, K.A.; Baker, L.B.; Chow, M.; Kenney, W.L. Two percent dehydration impairs and six percent carbohydrate drink improves boys basketball skills. Med. Sci. Sports Exerc. 2006, 38, 1650–1658. [Google Scholar] [CrossRef] [PubMed]
- Winnick, J.J.; Davis, J.M.; Welsh, R.S.; Carmichael, M.D.; Murphy, E.A.; Blackmon, J.A. Carbohydrate feedings during team sport exercise preserve physical and cns function. Med. Sci. Sports Exerc. 2005, 37, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Criswell, D.; Powers, S.; Lawler, J.; Tew, J.; Dodd, S.; Iryiboz, Y.; Tulley, R.; Wheeler, K. Influence of a carbohydrate-electrolyte beverage on performance and blood homeostasis during recovery from football. Int. J. Sport Nutr. 1991, 1, 178–191. [Google Scholar] [PubMed]
- Currell, K.; Conway, S.; Jeukendrup, A.E. Carbohydrate ingestion improves performance of a new reliable test of soccer performance. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 34–46. [Google Scholar] [PubMed]
- Ostojic, S.M.; Mazic, S. Effects of a carbohydrate-electrolyte drink on specific soccer tests and performance. J. Sports Sci. Med. 2002, 1, 47–53. [Google Scholar] [PubMed]
- Northcott, S.; Kenward, M.; Purnell, K.; McMorris, T. Effect of a carbohydrate solution on motor skill proficiency during simulated soccer performance. Appl. Res. Coach Athl. Ann. 1999, 14, 105–118. [Google Scholar]
- Ali, A.; Williams, C.; Hulse, M.; Strudwick, A.; Reddin, J.; Howarth, L.; Eldred, J.; Hirst, M.; McGregor, S. Reliability and validity of two tests of soccer skill. J. Sports Sci. 2007, 25, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Benton, D.; Kingsley, M. Reliability and construct validity of soccer skills tests that measure passing, shooting, and dribbling. J. Sports Sci. 2010, 28, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Zeederberg, C.; Leach, L.; Lambert, E.V.; Noakes, T.D.; Dennis, S.C.; Hawley, J.A. The effect of carbohydrate ingestion on the motor skill proficiency of soccer players. Int. J. Sport Nutr. 1996, 6, 348–355. [Google Scholar] [PubMed]
- Ferrauti, A.; Weber, K.; Struder, H.K. Metabolic and ergogenic effects of carbohydrate and caffeine beverages in tennis. J. Sports Med.Phys. Fit. 1997, 37, 258–266. [Google Scholar]
- Gomes, R.V.; Capitani, C.D.; Ugrinowitsch, C.; Zourdos, M.C.; Fernandez-Fernandez, J.; Mendez-Villanueva, A.; Aoki, M.S. Does carbohydrate supplementation enhance tennis match play performance? J. Int. Soc. Sports Nutr. 2013, 10, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornery, D.J.; Farrow, D.; Mujika, I.; Young, W.B. Caffeine, carbohydrate, and cooling use during prolonged simulated tennis. Int. J. Sports Physiol. Perform. 2007, 2, 423–438. [Google Scholar] [PubMed]
- Vergauwen, L.; Brouns, F.; Hespel, P. Carbohydrate supplementation improves stroke performance in tennis. Med. Sci. Sports Exerc. 1998, 30, 1289–1295. [Google Scholar] [CrossRef] [PubMed]
- Bottoms, L.; Sinclair, J.; Taylor, K.; Polman, R.; Fewtrell, D. The effects of carbohydrate ingestion on the badminton serve after fatiguing exercise. J. Sports Sci. 2012, 30, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Bottoms, L.M.; Hunter, A.M.; Galloway, S.D.R. Effects of carbohyrate ingestion on skill maintenance in squash players. Eur. J. Sport Sci. 2006, 6, 187–195. [Google Scholar] [CrossRef]
- Roberts, S.P.; Stokes, K.A.; Weston, L.; Trewartha, G. The Bath University Rugby Shuttle Test (BURST): A pilot study. Int. J. Sports Physiol. Perform. 2010, 5, 64–74. [Google Scholar] [PubMed]
- Kindlon, D.J. The measurement of attention. Child Psychol. Psychiatry Rev. 1998, 3, 72–78. [Google Scholar] [CrossRef]
- Baker, L.B.; Conroy, D.E.; Kenney, W.L. Dehydration impairs vigilance-related attention in male basketball players. Med. Sci. Sports Exerc. 2007, 39, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Currell, K.; Jeukendrup, A.E. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008, 38, 297–316. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Kingsley, M. Influence of exercise on skill proficiency in soccer. Sports Med. 2011, 41, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef] [PubMed]
- Clarke, N.D.; Drust, B.; Maclaren, D.P.; Reilly, T. Fluid provision and metabolic responses to soccer-specific exercise. Eur. J. Appl. Physiol. 2008, 104, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Clarke, N.D.; Drust, B.; MacLaren, D.P.; Reilly, T. Strategies for hydration and energy provision during soccer-specific exercise. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 625–640. [Google Scholar] [PubMed]
- Chryssanthopoulos, C.; Williams, C. Pre-exercise carbohydrate meal and endurance running capacity when carbohydrates are ingested during exercise. Int. J. Sports Med. 1997, 18, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.B.; Jeukendrup, A.E. Optimal composition of fluid-replacement beverages. Compr. Physiol. 2014, 4, 575–620. [Google Scholar] [PubMed]
- Murray, R.; Bartoli, W.; Stofan, J.; Horn, M.; Eddy, D. A comparison of the gastric emptying characteristics of selected sports drinks. Int. J. Sport Nutr. 1999, 9, 263–274. [Google Scholar] [PubMed]
- Shi, X.; Horn, M.K.; Osterberg, K.L.; Stofan, J.R.; Zachwieja, J.J.; Horswill, C.A.; Passe, D.H.; Murray, R. Gastrointestinal discomfort during intermittent high-intensity exercise: Effect of carbohydrate-electrolyte beverage. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 673–683. [Google Scholar] [PubMed]
- Phillips, S.M.; Turner, A.P.; Sanderson, M.F.; Sproule, J. Beverage carbohydrate concentration influences the intermittent endurance capacity of adolescent team games players during prolonged intermittent running. Eur. J. Appl. Physiol. 2012, 112, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, B.; Stellingwerff, T.; Zaltas, E.; Jeukendrup, A.E. Oxidation of solid versus liquid cho sources during exercise. Med. Sci. Sports Exerc. 2010, 42, 2030–2037. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, B.; Stellingwerff, T.; Zaltas, E.; Jeukendrup, A.E. CHO oxidation from a CHO gel compared with a drink during exercise. Med. Sci. Sports Exerc. 2010, 42, 2038–2045. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E. Carbohydrate and exercise performance: The role of multiple transportable carbohydrates. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E. Nutrition for endurance sports: Marathon, triathlon, and road cycling. J. Sports Sci. 2011, 29 (Suppl. S1), S91–S99. [Google Scholar] [CrossRef] [PubMed]
- Clarke, N.D.; Campbell, I.T.; Drust, B.; Evans, L.; Reilly, T.; Maclaren, D.P. The ingestion of combined carbohydrates does not alter metabolic responses or performance capacity during soccer-specific exercise in the heat compared to ingestion of a single carbohydrate. J. Sports Sci. 2012, 30, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Little, J.P.; Chilibeck, P.D.; Ciona, D.; Forbes, S.; Rees, H.; Vandenberg, A.; Zello, G.A. Effect of low- and high-glycemic-index meals on metabolism and performance during high-intensity, intermittent exercise. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 447–456. [Google Scholar] [PubMed]
- Little, J.P.; Chilibeck, P.D.; Ciona, D.; Vandenberg, A.; Zello, G.A. The effects of low- and high-glycemic index foods on high-intensity intermittent exercise. Int. J. Sports Physiol. Perform. 2009, 4, 367–380. [Google Scholar] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baker, L.B.; Rollo, I.; Stein, K.W.; Jeukendrup, A.E. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance. Nutrients 2015, 7, 5733-5763. https://doi.org/10.3390/nu7075249
Baker LB, Rollo I, Stein KW, Jeukendrup AE. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance. Nutrients. 2015; 7(7):5733-5763. https://doi.org/10.3390/nu7075249
Chicago/Turabian StyleBaker, Lindsay B., Ian Rollo, Kimberly W. Stein, and Asker E. Jeukendrup. 2015. "Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance" Nutrients 7, no. 7: 5733-5763. https://doi.org/10.3390/nu7075249