Diet Soft Drink Consumption is Associated with the Metabolic Syndrome: A Two Sample Comparison
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Sample
2.1.1. Participants in MSLS (USA)
2.1.2. Participants in ORISCAV-LUX (Luxembourg)
2.2. Procedure
2.2.1. Dietary Assessment
2.2.2. Lifestyle and Heath Data
2.2.3. Definition of MetS
2.3. Statistical Analysis
3. Results
3.1. Participant Characteristics and Soft Drink Consumption
Characteristic | MSLS, n = 803 | ORISCAV-LUX, n = 1323 | ||||||
---|---|---|---|---|---|---|---|---|
Soft Drink Consumption | Soft Drink Consumption | |||||||
Non-consumer | Diet only | Regular only | Diet and regular | Non-consumer | Diet only | Regular only | Diet and regular | |
n (%) | 460 (57.3) | 192 (23.9) | 130 (16.2) | 21 (2.6) | 525 (39.7) | 139 (10.5) | 484 (36.6) | 175 (13.2) |
Age (years) | 64.5 ± 12.9 | 59.3 ± 11.2 1 | 55.6 ± 12.2 1 | 61.7 ± 14.8 | 49.2 ± 12.2 | 45.5 ± 12.8 1 | 40.9 ± 12.6 1 | 38.7 ± 11.9 1 |
Sex (% male) | 36.3 | 36.5 | 56.2 | 57.1 | 40.6 | 36.0 | 58.8 | 54.3 |
Mean no. soft drinks/day | 0 | 1.7 ± 1.2 1 | 1.8 ± 1.8 1 | 3.1 ± 1.9 1,2,3 | 0 | 0.8 ± 1.1 1 | 0.8 ± 1.2 1,4 | 1.1 ± 1.7 1 |
Physical activity (mins/day) | 35 ± 47 | 40 ± 49 | 39 ± 57 | 34 ± 43 | 100 ± 122 | 116 ± 131 | 117 ± 149 | 106 ± 124 |
Smoking (cigs/day) | 0.7 ± 3.7 | 1.2 ± 5.7 | 4.0 ± 8.5 1,2,4 | 0 | 2.1 ± 6.3 | 1.7 ± 5.3 | 4.1 ± 8.1 1,2,4 | 2.1 ± 6.4 |
MetS (% within each group) | 38.7 | 49.0 | 55.4 | 42.9 | 26.9 | 33.8 | 24.6 | 22.3 |
Systolic BP (mmHg) | 131 ± 22 | 131 ± 23 | 131 ± 22 | 138 ± 26 | 132 ± 18 | 134 ± 20 | 129 ± 17 1,2 | 128 ± 17 2 |
Diastolic BP (mmHg) | 70 ± 10 | 70 ± 9.2 | 71 ± 10 | 71 ± 13 | 83 ± 10 | 83 ± 11 | 82 ± 11 | 81 ± 11 |
Waist circumference (cm) | 92 ± 15 | 96 ± 14 1 | 102 ± 15 1,2 | 101 ± 25 | 90 ± 14 | 93 ± 15 | 89 ± 13 2 | 90 ± 15 |
Total cholesterol (mg/dL) | 204 ± 38 | 199 ± 41 | 204 ± 45 | 194 ± 41 | 207 ± 40 | 199 ± 37 | 199 ± 42 1 | 196 ± 39 1 |
HDL cholesterol (mg/dL) | 56 ± 16 | 54 ± 16 | 45 ± 11 1,2,4 | 57 ± 17 | 64 ± 18 | 62 ± 15 | 60 ± 16 1 | 59 ± 17 1 |
LDL cholesterol (mg/dL) | 122 ± 32 | 118 ± 33 | 125 ± 38 | 118 ± 30 | 128 ± 35 | 121 ± 36 | 123 ± 36 | 120 ± 33 |
Fasting plasma glucose (mg/dL) | 97 ± 28 | 101 ± 29 | 100 ± 20 | 102 ± 46 | 97 ± 22 | 98 ± 20 | 94 ± 16 | 92 ± 10 1,2 |
Triglycerides (mg/dL) | 135 ± 90 | 140 ± 98 | 189 ± 176 1,2,4 | 118 ± 64 | 110 ± 87 | 119 ± 80 | 118 ± 94 | 123 ± 126 |
BMI (kg/m2) | 28.1 ± 5.4 | 30.2 ± 5.6 1 | 31.7 ± 7.4 1 | 30.7 ± 9.9 * | 26.5 ± 5.0 | 28.0 ± 5.3 1,3 | 26.0 ± 4.7 | 27.0 ± 5.2 |
Diabetes mellitus (%) | 9.6 | 16.1 | 13.8 | 14.3 | 25.6 | 28.8 | 20.2 | 20.6 |
Hypertension (%) | 60.4 | 60.9 | 63.1 | 66.7 | 45.9 | 44.6 | 35.3 | 29.7 |
Obesity (%) | 30.2 | 46.8 | 50.8 | 42.9 | 21.0 | 30.9 | 20.2 | 27.4 |
Dietary variables | ||||||||
Total energy intake a | 14.2 ± 4.2 | 13.6 ± 3.7 | 16.5 ± 5.5 1,2 | 16.9 ± 4.5 1,2 | 2187 ± 808 | 2223 ± 875 | 2627 ± 985 1,2 | 2688 ± 995 1,2 |
Vegetables (servings/day) | 2.8 ± 1.1 | 2.8 ± 1.1 | 2.3 ± 1.1 1,2 | 2.6 ± 1.0 | 4.2 ± 2.9 | 4.2 ± 2.9 | 3.4 ± 2.5 1,2 | 3.9 ± 2.6 |
Fruit (servings/day) | 1.7 ± 1.1 | 1.5 ± 0.9 | 1.4 ± 1.0 1 | 1.8 ± 0.9 | 2.0 ± 2.0 | 1.7 ± 1.7 | 1.6 ± 1.9 1 | 1.8 ± 1.8 |
Grains (servings/day) | 3.6 ± 2.0 | 3.4 ± 1.8 4 | 4.0 ± 2.2 | 4.7 ± 1.6 | 2.8 ± 1.2 | 2.5 ± 1.3 | 2.7 ± 1.1 | 2.9 ± 1.3 2 |
Meat (servings/day) | 2.0 ± 0.8 | 2.1 ± 1.0 | 2.2 ± 1.0 | 2.0 ± 0.8 | 1.0 ± 0.6 | 1.1 ± 0.6 | 1.3 ± 0.7 1,2 | 1.4 ± 0.8 1,2 |
Alcohol (standard drinks/day) | 0.6 ± 1.0 | 0.4 ± 0.7 | 0.4 ± 1.1 | 0.4 ± 1.6 | 0.8 ± 0.7 | 0.8 ± 0.8 | 0.8 ± 0.8 | 0.7 ± 0.8 |
3.2. Soft Drink Consumption and Prevalence of MetS in MSLS
3.3. Soft Drink Consumption and Prevalence of MetS in ORISCAV-LUX
Soft Drink Consumption (Servings/day) | n (%) of Sample | % with MetS within each Group | MSLS, USA, n = 803 | |||||
---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | ||||||
OR | 95% CI | OR | 95% CI | OR | 95% CI | |||
Total (regular, diet, or both) | ||||||||
None | 460 (57.3) | 178 (38.7) | 1 (Reference group) | 1 (Reference group) | 1 (Reference group) | |||
1 per day | 201 (25.0) | 103 (51.2) | 2.5 *** | 1.5–3.9 | 2.4 *** | 1.5–3.9 | 2.4 *** | 1.5–3.9 |
2 or more per day | 142 (17.7) | 72 (50.7) | 2.5 ** | 1.4–4.3 | 2.2 ** | 1.2–3.9 | 2.1 * | 1.2–3.8 |
Diet a | ||||||||
None | 590 (73.5) | 250 (42.4) | 1 (Reference group) | 1 (Reference group) | 1 (Reference group) | |||
1 per day | 136 (16.9) | 67 (49.3) | 1.9 * | 1.2–3.2 | 2.2 ** | 1.3–3.7 | 2.2 ** | 1.3–3.7 |
2 or more per day | 77 (9.6) | 36 (46.8) | 1.9 | 1.0–3.7 | 1.7 | 0.9–3.3 | 1.8 | 0.9–3.5 |
Regular b | ||||||||
None | 650 (81.1) | 271 (41.7) | 1 (Reference group) | 1 (Reference group) | 1 (Reference group) | |||
1 per day | 92 (11.5) | 48 (52.2) | 1.8 | 1.0–3.2 | 1.9 * | 1.1–3.5 | 1.8 | 0.9–3.4 |
2 or more per day | 59 (7.4) | 33 (55.9) | 1.9 | 0.8–4.5 | 1.9 | 0.8–4.6 | 1.7 | 0.7–4.5 |
Soft Drink Consumption (Servings/day) | % of total Sample | % with MetS within each Group | ORISCAV-LUX, Luxembourg, n = 1323 | |||||
---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | ||||||
OR | 95% CI | OR | 95% CI | OR | 95% CI | |||
Total (regular, diet, or both) | ||||||||
None | 525 (39.7) | 141 (26.9) | 1 (Reference group) | 1 (Reference group) | 1 (Reference group) | |||
1 per day | 685 (51.8) | 179 (26.1) | 1.7 ** | 1.2–2.3 | 1.9 *** | 1.3–2.6 | 2.0 *** | 1.4–2.8 |
2 or more per day | 113 (8.5) | 26 (23.0) | 1.5 | 0.8–2.6 | 1.5 | 0.8–2.9 | 2.1 * | 1.1–4.0 |
Diet a | ||||||||
None | 1009 (76.3) | 260 (25.8) | 1 (Reference group) | 1 (Reference group) | 1 (Reference group) | |||
1 per day | 287 (21.7) | 74 (25.8) | 1.6 * | 1.1–2.2 | 1.3 | 0.9–2.0 | 1.4 | 0.9–2.0 |
2 or more per day | 27 (2.0) | 12 (44.4) | 4.5 ** | 1.8–11.4 | 3.7 ** | 1.4–9.8 | 3.9 ** | 1.5–10.3 |
Regular b | ||||||||
None | 664 (50.2) | 188 (28.3) | 1 (Reference group) | 1 (Reference group) | 1 (Reference group) | |||
1 per day | 577 (43.6) | 146 (25.3) | 1.4 * | 1.0–1.9 | 1.6 ** | 1.2–2.3 | 1.7 ** | 1.2–2.4 |
2 or more per day | 82 (6.2) | 12 (14.6) | 0.6 | 0.3–1.2 | 0.6 | 0.3–1.3 | 0.8 | 0.3–1.8 |
3.4. Soft Drink Consumption and Individual Components of MetS
3.5. Sensitivity Analyses
MetS Component | Predictor (Soft Drink) a | MSLS, USA, n = 803 | ORISCAV-LUX, Luxembourg, n = 1323 | ||||
---|---|---|---|---|---|---|---|
b | SE | p | b | SE | p | ||
Systolic blood pressure (mmHg) | Diet | 0.49 | 0.74 | 0.5 | 1.6 | 0.78 | 0.036 |
Regular | 0.46 | 0.86 | 0.6 | −0.35 | 0.51 | 0.5 | |
Diastolic blood pressure (mmHg) | Diet | −0.09 | 0.36 | 0.8 | 0.13 | 0.55 | 0.8 |
Regular | −0.13 | 0.42 | 0.7 | −0.30 | 0.36 | 0.4 | |
Waist circumference (cm) | Diet | 1.2 | 0.48 | 0.01 | 2.0 | 0.62 | 0.001 |
Regular | 2.1 | 0.56 | <0.001 | −1.4 | 0.41 | 0.001 | |
HDL-cholesterol (mg/dL) | Diet | 0.68 | 0.50 | 0.2 | −0.70 | 0.81 | 0.4 |
Regular | −0.29 | 0.59 | 0.6 | −0.39 | 0.54 | 0.5 | |
Triglycerides (mg/dL) | Diet | −5.1 | 4.1 | 0.2 | 2.0 | 5.0 | 0.7 |
Regular | 13.4 | 4.7 | 0.005 | −4.0 | 3.3 | 0.2 | |
Fasting glucose (mg/dL) | Diet | 0.34 | 0.86 | 0.7 | 1.6 | 0.79 | 0.049 |
Regular | 0.84 | 1.0 | 0.4 | −0.65 | 0.53 | 0.2 |
4. Discussion
Strengths and Weaknesses
5. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Galassi, A.; Reynolds, K.; He, J. Metabolic syndrome and risk of cardiovascular disease: A meta-analysis. Am. J. Med. 2006, 119, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome. An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Executive summary. Cardiol. Rev. 2005, 13, 322–327. [Google Scholar]
- National Cancer Institute. Usual Intake of Added Sugars. Applied Research Program web site; 2014. Available online: http://appliedresearch.cancer.gov/diet/usualintakes/pop/2001–04/added_sugars.html (accessed on 26 March 2015). [Google Scholar]
- Marriott, B.P.; Olsho, L.; Hadden, L.; Connor, P. Intake of added sugars and selected nutrients in the United States, National Health and Nutrition Examination Survey (NHANES) 2003–2006. Crit. Rev. Food Sci. Nutr. 2010, 50, 228–258. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.C.; Neumark-Sztainer, D.; Hannan, P.J.; Story, M. Five-Year Longitudinal and Secular Shifts in Adolescent Beverage Intake: Findings from Project EAT (Eating Among Teens)-II. J. Am. Diet. Assoc. 2009, 109, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.J.; Popkin, B.M. Changes in beverage intake between 1977 and 2001. Am. J. Prev. Med. 2004, 27, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M. Patterns of beverage use across the lifecycle. Physiol. Behav. 2010, 100, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Vereecken, C.A.; Inchley, J.; Subramanian, S.V.; Hublet, A.; Maes, L. The relative influence of individual and contextual socio-economic status on consumption of fruit and soft drinks among adolescents in Europe. Eur. J. Public Health 2005, 15, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Despres, J.-P.; Hu, F.B. Sugar-Sweetened Beverages, Obesity, Type 2 Diabetes Mellitus, and Cardiovascular Disease Risk. Circulation 2010, 121, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Despres, J.-P.; Willett, W.C.; Hu, F.B. Sugar-Sweetened Beverages and Risk of Metabolic Syndrome and Type 2 Diabetes. Diabetes Care 2010, 33, 2477–2483. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Malik, V.S. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: Epidemiologic evidence. Physiol. Behav. 2010, 100, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; McKee, M.; Galea, G.; Stuckler, D. Relationship of Soft Drink Consumption to Global Overweight, Obesity, and Diabetes: A Cross-National Analysis of 75 Countries. Am. J. Public Health 2013, 103, 2071–2077. [Google Scholar] [CrossRef] [PubMed]
- Woodward-Lopez, G.; Kao, J.; Ritchie, L. To what extent have sweetened beverages contributed to the obesity epidemic? Public Health Nutr. 2011, 14, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, R.; Sullivan, L.; Jacques, P.F.; Wang, T.J.; Fox, C.S.; Meigs, J.B.; D'Agostino, R.B.; Gaziano, J.M.; Vasan, R.S. Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation 2007, 116, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Gardener, H.; Rundek, T.; Markert, M.; Wright, C.B.; Elkind, M.S.V.; Sacco, R.L. Diet Soft Drink Consumption is Associated with an Increased Risk of Vascular Events in the Northern Manhattan Study. J. Gen. Intern. Med. 2012, 27, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Lutsey, P.L.; Steffen, L.M.; Stevens, J. Dietary intake and the development of the metabolic syndrome. The Atherosclerosis Risk in Communities Study. Circulation 2008, 117, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Nettleton, J.A.; Lutsey, P.L.; Wang, Y.; Lima, J.A.; Michos, E.D.; Jacobs, D.R., Jr. Diet soda intake and risk of incident metabolic syndrome and type 2 diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 2009, 32, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Barrio-Lopez, M.T.; Martinez-Gonzalez, M.A.; Fernandez-Montero, A.; Beunza, J.J.; Zazpe, I.; Bes-Rastrollo, M. Prospective study of changes in sugar-sweetened beverage consumption and the incidence of the metabolic syndrome and its components: The SUN cohort. Br. J. Nutr. 2013, 110, 1722–1731. [Google Scholar] [CrossRef] [PubMed]
- Hostmark, A.T. The Oslo Health Study: A Dietary Index estimating high intake of soft drinks and low intake of fruits and vegetables was positively associated with components of the metabolic syndrome. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Et Metab. 2010, 35, 816–825. [Google Scholar] [CrossRef]
- Della Valle, E.; Stranges, S.; Trevisan, M.; Krogh, V.; Fusconi, E.; Dorn, J.M.; Farinaro, E. Drinking habits and health in Northern Italian and American men. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Crichton, G.E.; Elias, M.F.; Davey, A.; Sauvageot, N.; Delagardelle, C.; Beissel, J.; Alkerwi, A. Cardiovascular health: A cross-national comparison between the Maine Syracuse Study (Central New York, USA) and ORISCAV-LUX (Luxembourg). BMC Public Health 2014, 14, 253. [Google Scholar] [CrossRef] [PubMed]
- Alkerwi, A.; Sauvageot, N.; Couffignal, S.; Albert, A.; Lair, M.L.; Guillaume, M. Comparison of participants and non-participants to the ORISCAV-LUX population-based study on cardiovascular risk factors in Luxembourg. BMC Med. Res. Methodol. 2010, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- Alkerwi, A.; Sauvageot, N.; Donneau, A.F.; Lair, M.L.; Couffignal, S.; Beissel, J.; Delagardelle, C.; Wagener, Y.; Albert, A.; Guillaume, M. First nationwide survey on cardiovascular risk factors in Grand-Duchy of Luxembourg (ORISCAV-LUX). BMC Public Health 2010, 10, 468. [Google Scholar] [CrossRef] [PubMed]
- Elias, M.F.; Robbins, M.A.; Budge, M.M.; Elias, P.K.; Brennan, S.L.; Johnston, C.; Nagy, Z.; Bates, C.J. Homocysteine, folate, and vitamins B6 and B12 blood levels in relation to cognitive performance: The Maine-Syracuse study. Psychosom. Med. 2006, 68, 547–554. [Google Scholar] [CrossRef]
- Robbins, M.A.; Elias, M.F.; Elias, P.K.; Budge, M.M. Blood pressure and cognitive function in an African-American and a Caucasian-American sample: The Maine-Syracuse Study. Psychosom. Med. 2005, 67, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Dore, G.A.; Elias, M.F.; Robbins, M.A.; Budge, M.M.; Elias, P.K. Relation between central adiposity and cognitive function in the Maine-Syracuse Study: Attenuation by physical activity. Ann. Behav. Med. 2008, 35, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Elias, M.F.; Robbins, M.A.; Budge, M.M.; Abhayaratna, W.P.; Dore, G.A.; Elias, P.K. Arterial pulse wave velocity and cognition with advancing age. Hypertension 2009, 53, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Kroke, A.; Klipstein-Grobusch, K.; Voss, S.; Moseneder, J.; Thielecke, F.; Noack, R.; Boeing, H. Validation of a self-administered food-frequency questionnaire administered in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study: Comparison of energy, protein, and macronutuient intakes estimated with the doubly labeled water, urinary nitrogen, and repeated 24-h dietary recall methods. Am. J. Clin. Nutr. 1999, 70, 439–447. [Google Scholar] [PubMed]
- Kaaks, R.; Riboli, E. Validation and calibration of dietary intake measurements in the EPIC project: Methodological considerations. European Prospective Investigation into Cancer and Nutrition. Int. J. Epidemiol. 1997, 26, S15–S25. [Google Scholar] [CrossRef] [PubMed]
- Riboli, E.; Kaaks, R. The EPIC Project: Rationale and study design. European Prospective Investigation into Cancer and Nutrition. Int. J. Epidemiol. 1997, 26, S6–S14. [Google Scholar] [CrossRef] [PubMed]
- Crichton, G.E.; Elias, M.F.; Dore, G.A.; Robbins, M.A. Relation between dairy food intake and cognitive function: The Maine-Syracuse Longitudinal Study. Int. Dairy J. 2012, 22, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Sauvageot, N.; Alkerwi, A.; Adelin, A.; Guillaume, M. Validation of the food frequency questionnaire used to assess the association between dietary habits and cardiovascular risk factors in the NESCAV study. J. Nutr. Food Sci. 2013, 3, 208. [Google Scholar] [CrossRef]
- Sauvageot, N.; Alkerwi, A.; Albert, A.; Guillaume, M. Use of food frequency questionnaire to assess relationships between dietary habits and cardiovascular risk factors in NESCAV study: Validation with biomarkers. Nutr. J. 2013, 12, 143. [Google Scholar] [CrossRef] [PubMed]
- Alkerwi, A.; Donneau, A.F.; Sauvageot, N.; Lair, M.L.; Scheen, A.; Albert, A.; Guillaume, M. Prevalence of the metabolic syndrome in Luxembourg according to the Joint Interim Statement definition estimated from the ORISCAV-LUX study. BMC Public Health 2011, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.M.; Hunter, D.J.; Colditz, G.A.; Manson, J.E.; Stampfer, M.J.; Corsano, K.A.; Rosner, B.; Kriska, A.; Willett, W.C. Reproducibility and validity of a self-administered physical-activity quesionnaire. Int. J. Epidemiol. 1994, 23, 991–999. [Google Scholar] [CrossRef] [PubMed]
- International Physical Activity Questionnaire. 2005. Available online: http://www.ipaq.ki.se/ipaq.html (accessed on 9 July 2013).
- Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497.
- DiMeglio, D.P.; Mattes, R.D. Liquid versus solid carbohydrate: Effects on food intake and body weight. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 794–800. [Google Scholar] [CrossRef]
- Bray, G.A. Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people. Adv. Nutr. (Bethesda, Md.) 2013, 4, 220–225. [Google Scholar] [CrossRef]
- Davidson, T.L.; Swithers, S.E. A Pavlovian approach to the problem of obesity. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 933–935. [Google Scholar] [CrossRef] [PubMed]
- Butchko, H.H.; Stargel, W.W.; Comer, C.P.; Mayhew, D.A.; Benninger, C.; Blackburn, G.L.; de Sonneville, L.M.J.; Geha, R.S.; Hertelendy, Z.; Koestner, A.; et al. Aspartame: Review of safety. Regul. Toxicol. Pharmacol. 2002, 35, S1–S93. [Google Scholar] [CrossRef] [PubMed]
- Tordoff, M.G.; Alleva, A.M. Oral stimulation with aspartame increases hunger. Physiol. Behav. 1990, 47, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Massien, C.; Louis-Sylvestre, J.; Fricker, J.; Chapelot, D.; Apfelbaum, M. Comparing the effects of aspartame and sucrose on motivational ratings, taste preferences, and energy intakes in humans. Am. J. Clin. Nutr. 1994, 59, 338–345. [Google Scholar] [PubMed]
- Canty, D.J.; Chan, M.M. Effects of consumption of caloric vs noncaloric sweet drinks on indices of hunger and food consumption in normal adults. Am. J. Clin. Nutr. 1991, 53, 1159–1164. [Google Scholar] [PubMed]
- Rodin, J. Comparative effects of fructose, aspartame, glucose, and water preloads on calorie and macronutrient intake. Am. J. Clin. Nutr. 1990, 51, 428–435. [Google Scholar]
- De Koning, L.; Malik, V.S.; Kellogg, M.D.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Sweetened Beverage Consumption, Incident Coronary Heart Disease, and Biomarkers of Risk in Men. Circulation 2012, 125, U1735–U1784. [Google Scholar] [CrossRef]
- Mackenzie, T.; Brooks, B.; O’Connor, G. Beverage intake, diabetes, and glucose control of adults in America. Ann. Epidemiol. 2006, 16, 688–691. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Moudon, A.V.; Jiao, J.; Aggarwal, A.; Charreire, H.; Chaix, B. Food environment and socioeconomic status influence obesity rates in Seattle and in Paris. Int. J. Obes. 2014, 38, 306–314. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crichton, G.; Alkerwi, A.; Elias, M. Diet Soft Drink Consumption is Associated with the Metabolic Syndrome: A Two Sample Comparison. Nutrients 2015, 7, 3569-3586. https://doi.org/10.3390/nu7053569
Crichton G, Alkerwi A, Elias M. Diet Soft Drink Consumption is Associated with the Metabolic Syndrome: A Two Sample Comparison. Nutrients. 2015; 7(5):3569-3586. https://doi.org/10.3390/nu7053569
Chicago/Turabian StyleCrichton, Georgina, Ala'a Alkerwi, and Merrrill Elias. 2015. "Diet Soft Drink Consumption is Associated with the Metabolic Syndrome: A Two Sample Comparison" Nutrients 7, no. 5: 3569-3586. https://doi.org/10.3390/nu7053569
APA StyleCrichton, G., Alkerwi, A., & Elias, M. (2015). Diet Soft Drink Consumption is Associated with the Metabolic Syndrome: A Two Sample Comparison. Nutrients, 7(5), 3569-3586. https://doi.org/10.3390/nu7053569