Measuring Population Sodium Intake: A Review of Methods
Abstract
:1. Introduction
2. Monitoring
2.1. Dietary Assessment
2.2. 24 h Urine Collection
2.3. Spot Urine
- Is an estimate based on a single spot urine a valid reflection of an individual’s mean 24 h excretion?
- Is an estimate based on the mean of a single spot urine collection in a population, a valid reflection of the mean sodium intake of that population?
3. Epidemiological Studies
4. Conclusions
Conflicts of Interest
References and Notes
- World Health Organization. Follow-up to the Political Declaration of the High-Level Meeting of the General Assembly on the Prevention and control of Non-Communicable Diseases: Sixty-Sixth World Health Assembly (WHA66.10); World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- World Health Organization. Reducing Salt Intake in Populations: Report of a WHO Forum and Technical Meeting 5–7 October 2006, Paris, France; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Aburto, N.J.; Ziolkovska, A.; Hooper, L.; Elliott, P.; Cappuccio, F.P.; Meerpohl, J.J. Effect of lower sodium intake on health: Systematic review and meta-analyses. BMJ 2013, 346. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Li, J.; Macgregor, G. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ 2013, 346. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guideline: Sodium Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Powles, J.; Fahimi, S.; Micha, R.; Khatibzadeh, S.; Shi, P.; Ezzati, M.; Lim, S.; Mozaffarian, D. Global, regional and national sodium intakes in 1990 and 2010: A systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Dyer, A.R.; Elliott, P.; Chee, D.; Stamler, J. Urinary biochemical markers of dietary intake in the INTERSALT Study. Am. J. Clin. Nutr. 1997, 65, 1246–1253. [Google Scholar]
- Gemming, L.; Jiang, Y.; Swinburn, B.; Utter, J.; Ni Mhurchu, C. Under-reporting remains a key limitation of self-reported dietary intake: An analysis of the 2008/09 New Zealand Adult Nutrition Survey. Eur. J. Clin. Nutr. 2013, 68, 259–264. [Google Scholar]
- Freisling, H.; van Bakel, M.M.E.; Biessy, C.; May, A.M.; Byrnes, G.; Norat, T.; Rinaldi, S.; de Magistris, M.S.; Grioni, S.; Bueno-de-Mesquita, H.B.; et al. Dietary reporting errors on 24 h recalls and dietary questionnaires are associated with BMI across six European countries as evaluated with recovery biomarkers for protein and potassium intake. Br. J. Nutr. 2012, 107, 910–920. [Google Scholar]
- Whelton, P.; Appel, L.; Sacco, R.; Anderson, C.; Antman, E.; Campbell, N.; Dunbar, S.B.; Frohlich, E.D.; Hall, J.E.; Jessup, M.; et al. Sodium, Blood Pressure, and Cardiovascular Disease Further Evidence Supporting the American Heart Association Sodium Reduction Recommendations. Circulation 2012, 126, 2880–2889. [Google Scholar]
- Bailey, R.L.; Mitchell, D.C.; Miller, C.; Smiciklas-Wright, H. Assessing the effect of underreporting energy intake on dietary patterns and weight status. J. Am. Diet. Assoc. 2007, 107, 64–71. [Google Scholar] [CrossRef]
- Mattes, R.D.; Donnelly, D. Relative contributions of dietary sodium sources. J. Am. Coll. Nutr. 1991, 10, 383–393. [Google Scholar] [CrossRef]
- Anderson, C.A.M.; Appel, L.J.; Okuda, N.; Brown, I.J.; Chan, Q.; Zhao, L.; Ueshima, H.; Kesteloot, H.; Miura, K.; Curb, J.D.; et al. Dietary sources of sodium in China, Japan, the United Kingdom, and the United States, women and men aged 40 to 59 years: The INTERMAP study. J. Am. Diet. Assoc. 2010, 110, 736–745. [Google Scholar]
- Rhodes, D.G.; Murayi, T.; Clemens, J.C.; Baer, D.J.; Sebastian, R.S.; Moshfegh, A.J. The USDA Automated Multiple-Pass Method accurately assesses population sodium intakes. Am. J. Clin. Nutr. 2013, 97, 958–964. [Google Scholar] [CrossRef]
- Strazzullo, P. Sodium in drugs and hypertension. BMJ 2013, 347. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C. Comparison of Food Frequency Questionnaires. Am. J. Epidemiol. 1998, 148, 1157–1159. [Google Scholar] [CrossRef]
- Day, N.; McKeown, N.; Wong, M.; Welch, A.; Bingham, S. Epidemiological assessment of diet: A comparison of a 7-day diary with a food frequency questionnaire using urinary markers of nitrogen, potassium and sodium. Int. J. Epidemiol. 2001, 30, 309–317. [Google Scholar]
- Du, S.; Neiman, A.; Batis, C.; Wang, H.; Zhang, B.; Zhang, J.; Popkin, B.M. Understanding the patterns and trends of sodium intake, potassium intake, and sodium to potassium ratio and their effect on hypertension in China. Am. J. Clin. Nutr. 2014, 99, 334–343. [Google Scholar] [CrossRef]
- Willett, W. Dietary diaries versus food frequency questionnaires—A case of undigestible data. Int. J. Epidemiol. 2001, 30, 317–319. [Google Scholar] [CrossRef]
- Holbrook, J.T.; Patterson, K.Y.; Bodner, J.; Douglas, L.; Veillon, C.; Kelsay, J.; Mertz, W.; Smith, J.C. Sodium and potassium intake and balance in adults consuming self-selected diets. Am. J. Clin. Nutr. 1984, 40, 786–793. [Google Scholar]
- He, F.J.; Brinsden, H.C.; MacGregor, G.A. Salt reduction in the United Kingdom: A successful experiment in public health. J. Hum. Hypertens. 2014, 28, 345–352. [Google Scholar] [CrossRef]
- Joint Health Surveys Unit. An Assessment of Dietary Sodium Levels among Adults (aged 19–64) in the General Population, Based on Analyisis of Dietary Sodium in 24 hour Urine Samples; National Centre for Social Research: London, UK, 2006. [Google Scholar]
- Ribic, C.H.; Zakotnik, J.M.; Vertnik, L.; Vegnuti, M.; Cappuccio, F.P. Salt intake of the Slovene population assessed by 24 h urinary sodium excretion. Public Health Nutr. 2010, 13, 1803–1809. [Google Scholar] [CrossRef]
- Hawkes, C.; Webster, J. National Approaches to monitoring population salt intake: A trade-off between accuracy and practicality? PLoS One 2012, 7. [Google Scholar] [CrossRef]
- Land, M.-A.; Webster, J.; Christoforou, A.; Praveen, D.; Jeffery, P.; Chalmers, J.; Smith, W.; Woodward, M.; Barzi, F.; Nowson, C.; et al. Salt intake assessed by 24 h urinary sodium excretion in a random and opportunistic sample in Australia. BMJ Open 2014, 4. [Google Scholar] [CrossRef]
- Joint Health Surveys Unit. A Survey of 24 hour and Spot Urinary Sodium and Potassium Excretion in a Representative Sample of the Scottish Population; National Centre for Social Research: London, UK, 2007. [Google Scholar]
- Dennis, B.; Stamler, J.; Buzzard, M.; Conway, R.; Elliott, P.; Moag-Stahlberg, A.; Okayama, A.; Okuda, N.; Robertson, C.; Robinson, F.; et al. INTERMAP: The dietary data—Process and quality control. J. Hum. Hypertens. 2003, 17, 609–622. [Google Scholar]
- Johansson, G.; Bingham, S.; Vahter, M. A method to compensate for incomplete 24-hour urine collections in nutritional epidemiology studies. Public Health Nutr. 1999, 2, 587–591. [Google Scholar] [CrossRef]
- Jakobsen, J.; Pedersen, A.N.; Ovesen, L. Para-aminobenzoic acid (PABA) used as a marker for completeness of 24 hour urine: Effects of age and dosage scheduling. Eur. J. Clin. Nutr. 2003, 57, 138–142. [Google Scholar] [CrossRef]
- De Keyzer, W.; Huybrechts, I.; Dekkers, A.L.; Geelen, A.; Crispim, S.; Hulshof, P.J.; Andersen, L.F.; Řehůřková, I.; Ruprich, J.; Volatier, J.L.; et al. Predicting urinary creatinine excretion and its usefulness to identify incomplete 24 h urine collections. Br. J. Nutr. 2012, 108, 1118–1125. [Google Scholar]
- WHO/PAHO Regional Expert Group for Cardiovasular Disease Prevention through Population-Wide Dietary Salt Reduction. Protocol for Population Level Sodium Determination in 24-Hour Urine Samples; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- The INTERSALT Co-operative Research Group. An International Co-operative Study on the Relation of Blood Pressure to Electrolyte Excretion in Populations. I. Design and Methods. J. Hypertens. 1986, 4, 781–787. [Google Scholar]
- Cogswell, M.E.; Elliott, P.; Wang, C.-Y.; Rhodes, D.G.; Pfeiffer, C.M.; Loria, C.M. Assessing US sodium intake through dietary data and urine biomarkers. Adv. Nutr. 2013, 4, 560–562. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Cogswell, M.E.; Loria, C.M.; Chen, T.-C.; Pfeiffer, C.M.; Swanson, C.A.; Caldwell, K.L.; Perrine, C.G.; Carriquiry, A.L.; Liu, K.; et al. Urinary excretion of sodium, potassium, and chloride, but not iodine, varies by timing of collection in a 24-hour calibration study. J. Nutr. 2013, 143, 1276–1282. [Google Scholar]
- Department of Health. National Diet and Nutrition Survey—Assessment of Dietary Sodium in Adults (Aged 19 to 64 Years) in England, 2011; Department of Health: London, UK, 2011. [Google Scholar]
- Zimmermann, M.B. Methods to assess iron and iodine status. Br. J. Nutr. 2008, 99, 2–9. [Google Scholar] [CrossRef]
- Martin, H. Laboratory measurement of urine albumin and urine total protein in screening for proteinuria in chronic kidney disease. Clin. Biochem. Rev. 2011, 32, 97–102. [Google Scholar]
- Ji, C.; Dary, O.; Campbell, N.R.; Cappuccio, F.P. Spot and overnight urine are inappropriate to assess population sodium intake. Rev. Panam. Salud Pública 2013, 34, 283. [Google Scholar]
- Tanaka, T.; Okamura, T.; Miura, K.; Kadowaki, T.; Ueshima, H.; Nakagawa, H.; Hashimoto, T. A simple method to estimate populational 24-h urinary sodium and potassium excretion using a casual urine specimen. J. Hum. Hypertens. 2002, 16, 97–103. [Google Scholar] [CrossRef]
- Kawasaki, T.; Itoh, K.; Uezono, K.; Sasaki, H. A simple method for estimating 24 h urinary sodium and potassium excretion from second morning voiding urine specimen in adults. Clin. Exp. Pharmacol. Physiol. 1993, 20, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, C.M.; Hughes, J.P.; Cogswell, M.E.; Burt, V.L.; Lacher, D.A.; LaVoie, D.J.; Rabinowitz, D.J.; Johnson, C.L.; Pirkle, J.L. Urine sodium excretion increased slightly among U.S. adults between 1988 and 2010. J. Nutr. 2014, 144, 698–705. [Google Scholar] [CrossRef]
- Brown, I.J.; Dyer, A.R.; Chan, Q.; Cogswell, M.E.; Ueshima, H.; Stamler, J.; Elliott, P.; INTERSALT Co-Operative Research Group. Estimating 24-hour urinary sodium excretion from casual urinary sodium concentrations in western populations: The INTERSALT study. Am. J. Epidemiol. 2013, 177, 1180–1192. [Google Scholar] [CrossRef]
- Mage, D.T.; Allen, R.H.; Kodali, A. Creatinine corrections for estimating children’s and adult’s pesticide intake doses in equilibrium with urinary pesticide and creatinine concentrations. J. Expo. Sci. Environ. Epidemiol. 2007, 18, 360–368. [Google Scholar]
- McLean, R.; Williams, S.; Mann, J. Monitoring population sodium intake using spot urine samples: Validation in a New Zealand population. J. Hum. Hypertens. 2014, 28, 657–662. [Google Scholar] [CrossRef]
- Ji, C.; Sykes, L.; Paul, C.; Dary, O.; Legetic, B.; Campbell, N.R.C.; Cappuccio, F.P. Systematic review of studies comparing 24-hour and spot urine collections for estimating population salt intake. Rev. Panam. Salud Pública 2012, 32, 307–315. [Google Scholar] [CrossRef]
- Huang, L.; Crino, M.; Jeffery, P.; Woodward, M.; Barzi, F.; McLean, R.; Land, M.A.; Neal, B. Can spot urine be used to replace 24-h urine for monitoring population salt intake? J. Hypertens. 2014, 32 (Suppl. 1), 110. [Google Scholar] [CrossRef]
- Ji, C.; Miller, M.; Venezia, A.; Strazzullo, P.; Cappuccio, F. Comparisons of spot vs. 24-h urine samples for estimating population salt intake: Validation study in two independent samples of adults in Britain and Italy. Nutr. Metab. Cardiovasc. Dis. 2013, 24, 140–147. [Google Scholar]
- Webster, J.; Snowdon, W.; Moodie, M.; Viali, S.; Schultz, J.; Bell, C.; Land, M.-A.; Downs, S.; Christoforou, A.; Dunford, E.; et al. Cost-effectiveness of reducing salt intake in the Pacific Islands: Protocol for a before and after intervention study. BMC Public Health 2014, 14, 107. [Google Scholar]
- Bernstein, A.M.; Willett, W.C. Trends in 24-h urinary sodium excretion in the United States, 1957–2003: A systematic review. Am. J. Clin. Nutr. 2010, 92, 1172–1180. [Google Scholar]
- Iseki, K.; Iseki, C.; Itoh, K.; Uezono, K.; Sanefuji, M.; Ikemiya, Y.; Fukiyama, K.; Kawasaki, T. Urinary excretion of sodium and potassium in a screened cohort in Okinawa, Japan. Hypertens. Res. 2002, 25, 731–736. [Google Scholar]
- Neal, B.; Land, M.-A.; Woodward, M. An update on the salt wars—Genuine controversy, poor science, or vested interest? Curr. Hypertens. Rep. 2013, 15, 687–693. [Google Scholar]
- Luft, F.; Fineberg, N.; Sloan, R.S. Estimating dietary sodium intake in individuals receiving a randomly fluctuating intake. Hypertension 1982, 4, 805–808. [Google Scholar] [PubMed]
- Mason, B.; Ross, L.; Gill, E.; Healy, H.; Juffs, P.; Kark, A. Development and validation of a dietary screening tool for high sodium consumption in Australian renal patients. J. Ren. Nutr. 2014, 24, 123–134. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McLean, R.M. Measuring Population Sodium Intake: A Review of Methods. Nutrients 2014, 6, 4651-4662. https://doi.org/10.3390/nu6114651
McLean RM. Measuring Population Sodium Intake: A Review of Methods. Nutrients. 2014; 6(11):4651-4662. https://doi.org/10.3390/nu6114651
Chicago/Turabian StyleMcLean, Rachael M. 2014. "Measuring Population Sodium Intake: A Review of Methods" Nutrients 6, no. 11: 4651-4662. https://doi.org/10.3390/nu6114651