Dietary Fatty Acids and Immune Response to Food-Borne Bacterial Infections
Abstract
:1. Introduction
2. Effect of Fatty Acids on Salmonella and Campylobacter Invasion, Colonization, and Clearance
Species | Fatty acid | Measures: Organ colonization or mortality | Effect of Fatty acid on measures | Reference |
---|---|---|---|---|
Rhode Island red chickens | Dietary mixture of formic and propionic acids | Salmonella gallinarum strain 9 induced mortality | Decrease (↓) | [46] |
Leghorn layer chickens | Dietary mixture of formic and propionic acids | Crop and cecal colonization with Salmonella pullorum | ↓ | [47] |
Broiler chickens | Dietary butyric acid | Salmonella Enteritidis (SE) shedding in ceca. Crop, liver & spleen colonization | ↓ | [48] |
Broiler chickens | Dietary caprylic acid | Ceca, crop, liver, small intestine, cloaca, liver & spleen colonization with SE | Dose dependent reduction | [49] |
Young chicks | Dietary formic or propionic acid | Cecal colonization with Salmonella Typhimurium (ST) | ↓ | [50] |
White leghorn chickens | Dietary formic, acetic, propionic or butyric acid | Cecal colonization with SE | ↓ with butyric acid | [51] |
Male broiler chicks | Dietary propionic acid | Crop and cecal colonization with ST | No difference (↔) with propionic acid | [52] |
Lohmann white chicks | Dietary caproic acid | Cecal, hepatic and splenic colonization with SE | ↓ | [53] |
Lohmann white chicks | Dietary butyric acid followed by intraesophageal SE infection | Shedding & cecal colonization with SE | ↓ | [54] |
Male Cornish Rockbroiler chickens | Dietary butyric acid | Cecal colonization with SE | ↓ | [44] |
Four day old male Cornish Rock broiler chickens | 0.5% acetate, 0.2% propionate, or 0.1% butyrate individually or in combination | Cecal colonization with SE | ↓ | [45] |
Pigs | Dietary lactic and formic acids | Shedding and sero prevalence | ↓ | [55] |
Six week old piglets | Dietary butyrate, caprylate | Shedding and organ colonization | ↔ with either fatty acid | [56] |
Female Swiss and C57BL/6 mice | Intramuscular injection of liposome containing myristic, stearic or oleic acids | % survival after intraperitoneal (i.p.) infection with ST | Increase (↑) with myristic, stearic acid & oleic acid | [57] |
Male Wistar rats | Dietary corn oil or fish oil (FO) | i.p. infection with SE | ↔ in spleen and liver colonization with FO; ↓ in serum IFN-γ, delayed type hypersensitivity & IgG to Salmonella antigen in FO group | [58] |
Cell model | Fatty acid | Measures: Invasion and clearance | Effect of fatty acid on measures | Reference |
---|---|---|---|---|
Study with avian intestinal cell line | Formic, acetic, propionic or butyric acid | SE invasion | ↓ with butyric & propionic acids | [42] |
Study with the chicken cecal epithelial cells | Acetic or butyric acid | SE invasion | ↓ with butyric acid & ↑ with acetic acid | [41] |
Study with chicken macrophage cell line | Arachidonic, α-linolenic, palmitic, stearic, linoleic, eicosapentanoic and docosahexanoic acids | SE clearance | ↑ with α-linolenic & docosahexanoic acids | [59] |
Study with chicken macrophage cell line (HD11), primary monocytes, bone marrow cells & jejunal, cecal explants | Butyric acid | Induction of host defense gene expression and SE clearance Oxidative burst, phagocytosis & macrophage activation | ↑ ↔ | [44] |
Study with HD11 and primary monocytes | Butyrate, propionate, acetate individually or in combination; medium chain & long chain fatty acids | Induction of host defense peptide (HDP) gene expression | ↑ HDP expression-Short chain fatty acids most effective (especially in combination), medium chain moderate; long chain fatty acids were marginal | [45] |
Study with porcine intestinal epithelial cell line | Formic, acetic, propionic, butyric, caproic, caprylic, capric acids | ST invasion | ↓ with propionic, butyric, caproic and caprylic acids | [57] |
3. Effect of Fatty Acids on Growth and Pathogenesis of Shiga Toxin-Producing Escherichia coli and Shigella
Fatty Acid | Measures: Bacterial growth or host response | Effect of Fatty acid on measures | Reference | |
---|---|---|---|---|
In vitro studies | ||||
Bacterial culture | Acetate, propionate, & butyrate | O157:H7 933, 4477, 3081, & DBL No. 192-5-01, 336-2-02, 396-2-02, 647-6-04, & 768-2-01 growth | ↓ | [78] |
Bacterial culture | Acetate, propionate, & butyrate | O157:H7 NCTC 12900 growth | ↓ | [80] |
Bacterial culture | Acetate, propionate, & butyrate | O157:H7 Sakai growth | ↓ | [81] |
Human colonic epithelial cells Caco-2 | Acetate | Translocation of Stx2 | ↓ | [82] |
Human blood monocytes & monocyte cell line U937 | Arachidonic acid, or dihomolinolenic acid | Phagocytosis of unspecified, FITC-labelled O157:H7 strain | ↑ | [83] |
Human renal tubular epithelial cell line ACHN | EPA, arachidonic acid, DHA, or α-linolenic acid | Cell death due to Stxs | ↓ | [84] |
Bacterial culture | Bioconverted EPA or DHA | Unspecified human & ATCC 43888 O157:H7 strains growth | ↓ | [85] |
Bacterial culture | Capric acid, lauric acid, or linoleic acid | CFUs of O157:H7 strain H4420N | ↓ | [86] |
In vivo studies | ||||
Mice | Acetate | Lethal infection with O157:H7 strain 44 | ↓ | [82] |
Cattle | Canola oil (oleic, linoleic, α-linoleic, & palmitic acids) | Shedding of O157:H7 strains E318N, R508N, E32511, & H4220N | ↔ | [87] |
Fatty Acid | Measures: Bacterial survival or clinical symptoms | Effect of Fatty acid on measures | Reference | |
---|---|---|---|---|
In vitro study | ||||
Bacterial culture | Formic or acetic acids | Shigella flexneri viability | ↓ | [88] |
In vivo studies | ||||
Adult rabbits | Acetate, propionate, & butyrate | After intracolonic Shigella flexneri 2a infection: | [89] | |
Adult rabbits | Butyrate | After oral Shigella flexneri 2a infection: | [90] |
4. Effect of Fatty Acids on Colonization and Survival of Listeria monocytogenes
Species | Fatty acid | Measures: Organ colonization or mortality | Effect of fatty acid on measures | Reference |
---|---|---|---|---|
8 week old BALB/c mice | Low fat, olive oil, fish oil or hydrogenated coconut oil (20% by weight) for 4 weeks | Ex vivo infection of peritoneal cells with LM at a multiplicity of infection (MOI) of 20:1 | Fish oil (FO) caused ↑ bacterial survival within peritoneal cells compared to other lipids | [100] |
In vitro treatment of peritoneal cells with 100 µM fatty acids | Oleic, stearic, eicosapentanoic, linoleic and linolenic acids | Bactericidal activity was measured 24 h post infection | Bacterial survival was ↑ with eicosapentanoic, linoleic and linolenic acids compared to control and other saturated fatty acids | [100] |
8–10 week old BALB/c mice | Low fat, olive oil, fish oil or sunflower oil for 4 weeks | Ex vivo infection of spleen cells with LM at a MOI of 20:1 | ↑ LM mediated cytotoxicity of spleen cells by FO and olive oil; FO caused immunosuppression | [98] |
8–10 week old BALB/c mice | Low fat, olive oil, fish oil or hydrogenated coconut oil (20% by weight) for 4 weeks | 105 LM through tail vein | ↓ survival and increased liver and spleen colonization in FO group | [101] |
8–10 week old BALB/c mice | Low fat, olive oil, fish oil or hydrogenated coconut oil (20% by weight) for 4 weeks | 104 LM through tail vein | ↑ spleen colonization in FO group | [102] |
8–10 week old BALB/c mice | Low fat, olive oil, fish oil or hydrogenated coconut oil (20% by weight) for 4 weeks | 104 LM through tail vein | ↑ spleen colonization in FO group at 24, 48, 72 and 96 h post infection (PI) and in hydrogenated coconut oil group at 96 h PI | [103] |
8–10 week old BALB/c mice | Low fat, olive oil, fish oil or hydrogenated coconut oil (20% by weight) for 4 weeks | Ex vivo infection of thymocytes with LM at a MOI of 20:1 | No effect on cytoxicity by any of the dietary fatty acid | [104] |
10 week old BALB/cmice | Low fat, olive oil, fish oil or hydrogenated coconut oil (20% by weight) for 4 weeks | 104 LM through tail vein | ↓ survival and ↑ spleen colonization in all oil groups compared to low fat group | [7] |
8 week old BALB/c mice | Low fat, olive oil, fish oil or sunflower oil for 8 weeks | In vivo infection with primary-103 LM and secondary-104 LM for colonization and 105 LM for survival studies 28 days after primary injection through tail vein | 100% survival in the FO group; spleen colonization ↓ at 72 h compared to 24 h in FO group | [105] |
3–4 week old BALB/cAnNHsd mice | Lard or fish oil diet for 4 weeks | In vivo infection with 2 × 105 LM intravenously | ↑ spleen and liver colonization in the FO compared to the lard group | [106] |
3 week old C3H/HeN mice | Lard, soybean or fish oil diet for 4 weeks | i.p. infection with 2 × 106 LM | Survival 100%, 58% and 33% for lard, soybean or fish oil, respectively ↑ spleen colonization in FO group | [107] |
3–4 week old BALB/cAnNHsd mice | Lard or fish oil diet for 4 weeks | Intravenous infection (i.v.) with 1.4 × 104 LM | ↑ spleen and liver colonization in the FO compared to the lard group | [108] |
3–4 week old BALB/cAnNHsd mice | Lard or fish oil diet for 4 weeks | i.v. infection with 105 or 106 LM | ↓ survival of mice in FO compared to lard group (100% at 105 dose and 30% at 106 dose) by day 14; ↑ spleen and liver colonization in FO compared to lard group | [96] |
6 week old female CD1 mice | Conjugated linoleic acid or control diet for 14 or 32 days | i.p. LM 2.5 × 105 or 1.5 × 105 in the two experiments, respectively | ↔ spleen and liver colonization or histopathological changes due to LM infection | [109] |
9 week old male Wistar rat | Rats were fed 10% or 40% fat diets corresponding to 4.2% & 19.6% milk fat for 2 weeks. In vitro study with different fatty acids in milk up to 2 mM | Oral infection by gastric gavage with 5 × 109 LM in vitro experiments done with 108 LM for 2 h | High milk fat diet ↓ fecal LM excretion, ↑ listericidal activity of gastric contents listericidal activity of fatty acids ranked in the order C14:0 < C18:2 < C10:0 < C18:1 < C12:0 | [99] |
5. Fatty Acids and Staphylococcus aureus
Animal species/cell culture | Fatty Acid | Measures: Organ Colonization or mortality | Effect of Fatty acid on measures | Reference |
---|---|---|---|---|
Cystic fibrosis (CF) patients | Correlating essential fatty acid deficiency to respiratory disease | Increased susceptibility of CF patients to S. aureus infections | Plasma phospholipid fatty acids revealed that all CF patients had ↓ n-3 and n-6 fatty acids | [124] |
5–7 week old male C57BL/6 or Ob/Ob mice | Low (4%) versus high (36%) fat diet for 8 weeks | 5 × 107 cfu intravenous injection in the tail vein | ↓ survival, 10 fold higher bacteria in kidneys, ↑ serum IL-1β, ↓ reactive oxygen species by peritoneal cells in high fat group | [120] |
One day old New Zealand white rabbits | High (5 g/kg body weight [bw]) or low (0.22 g/kg bw) fish oil or safflower oil for 8 days | 30 min exposure to S. aureus aerosol to produce intrapulmonary infection | ↓ bacterial clearance in high fish and safflower oil groups | [121] |
28 day old pigs | 10% fish oil, sunflower oil or animal fat for 35 days | After 3 weeks of dietary treatment, pigs had aortic vascular prosthetic graft inserted which was inoculated with 106 cfu S. aureus and monitored for 14 days | ↔ in clinical signs of infection such as rectal temperature, hindquarter function, general appearance and feed intake ↑ body weight gain in FO compared to sunflower oil group | [122] |
5–7 week old BALB/c mice for in vivo study and in vitro addition of fatty acids to bacterial cultures | Daily gavage with origanum oil, monolaurin or the combination in 0.2 mL olive oil for 30 days | Injected with 5 × LD50 S. aureus ATCC 14775; susceptibility tested as minimum inhibitory and minimum bactericidal concentrations [MBC] (ATCC 14154 & 14775) | 4/8 mice survived in the monolaurin group at 30 days & 5/8 survived in combination group; monolaurin & origanum oils were most potent against S. aureus ATCC 14154 & 14775 | [123] |
In vitro addition of fatty acids to bacterial cultures | Final concentrations of fatty acids were 0, 12.5, 25, 50, 100 or 200 μg/mL | 3 S. aureus strains were used (S. aureus MN8 (human isolate) S. aureus Novel and 305 (clinical bovine mastitis isolates)), and incubated with fatty acids for 24 h | 7 most potent inhibitors were lauric acid, glycerol monolaurate, capric, myristic, linoleic & conjugated linoleic acids; lauric, capric and myristic acids reduced overall growth; linoleic and conjugated linoleic acids delayed the initiation of exponential growth | [125] |
In vitro addition of fatty acids to bacterial cultures | 0, 0.25, 0.5 & 1 mM linoleic acid | 4 wild type S. aureus strains-SH1000, MRSA252, MSSA476 & N315 | ↓ survival of all 3 strains of S. aureus by linoleic acid especially at 1mM concentration | [126] |
In vitro addition of fatty acid to assess MBC using pork loin | Lauric acid, monolaurin and lactic acid, virgin coconut oil | 2 strains of S. aureus-ATCC 25923 and an isolate from pig carcass | ↓ bacterial counts with lauric acid, monolaurin and lactic acid; ↔ with virgin coconut oil | [127] |
In vitro addition of fatty acids to bacterial cultures | Lauric acid, d-sphingosine, phytoshpingosine, dihydro-sphingosine & sapienic acid | S. aureus ATCC 29213 | All lipids were bactericidal, except sapienic acid | [128] |
In vitro addition of sugar fatty acid esters to bacterial cultures | Sugar fatty acid esters with (C8–C16) | S. aureus A7510 | Fatty acids C10–C16 ↓ biofilm formation; C14 and C16 were bactericidal | [129] |
In vitro addition of fatty acids to bacterial cultures | Capric (20ppm), lauric & α-linolenic acids (1 ppm) | S. aureus ATCC 13565 | ↓ bacterial growth with lauric & α-linolenic acids but ↔ with capric acid | [130] |
6. Conclusions
Acknowledgments
Conflict of Interest
References
- Uthaisangsook, S.; Day, N.K.; Bahna, S.L.; Good, R.A.; Haraguchi, S. Innate immunity and its role against infections. Ann. Allergy. Asthma. Immunol. 2002, 88, 253–264. [Google Scholar] [CrossRef]
- Zielinski, C.E.; Corti, D.; Mele, F.; Pinto, D.; Lanzavecchia, A.; Sallusto, F. Dissecting the human immunologic memory for pathogens. Immunol. Rev. 2011, 240, 40–51. [Google Scholar] [CrossRef]
- Brodsky, I.E.; Medzhitov, R. Targeting of immune signalling networks by bacterial pathogens. Nat. Cell. Biol. 2009, 11, 521–526. [Google Scholar] [CrossRef]
- Mirmonsef, P.; Zariffard, M.R.; Gilbert, D.; Makinde, H.; Landay, A.L.; Spear, G.T. Short-chain fatty acids induce pro-inflammatory cytokine production alone and in combination with Toll-like receptor ligands. Am. J. Reprod. Immunol. 2012, 67, 391–400. [Google Scholar] [CrossRef]
- Protzer, U.; Maini, M.K.; Knolle, P.A. Living in the liver: Hepatic infections. Nat. Rev. Immunol. 2012, 12, 201–213. [Google Scholar] [CrossRef]
- Romao, S.; Munz, C. Autophagy of pathogens alarms the immune system and participates in its effector functions. Swiss. Med. Wkly. 2011, 141, w13198. [Google Scholar]
- De Pablo, M.A.; Puertollano, M.A.; Galvez, A.; Ortega, E.; Gaforio, J.J.; Alvarez de Cienfuegos, G. Determination of natural resistance of mice fed dietary lipids to experimental infection induced by Listeria monocytogenes. FEMS Immunol. Med. Microbiol. 2000, 27, 127–133. [Google Scholar]
- Leaf, A.; Kang, J.X.; Xiao, Y.F. Fish oil fatty acids as cardiovascular drugs. Curr. Vasc. Pharmacol. 2008, 6, 1–12. [Google Scholar] [CrossRef]
- Fernandes, G. Progress in nutritional immunology. Immunol. Res. 2008, 40, 244–261. [Google Scholar] [CrossRef]
- Kalinski, P. Regulation of immune responses by prostaglandin E2. J. Immunol. 2012, 188, 21–28. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. (Maywood) 2008, 233, 674–688. [Google Scholar] [CrossRef]
- McMurray, D.N.; Bonilla, D.L.; Chapkin, R.S. N-3 fatty acids uniquely affect anti-microbial resistance and immune cell plasma membrane organization. Chem. Phys. Lipids. 2011, 164, 626–635. [Google Scholar] [CrossRef]
- Calder, P.C. Mechanisms of action of (n-3) fatty acids. J. Nutr. 2012, 142, 592S–599S. [Google Scholar] [CrossRef]
- De Pablo, M.A.; Alvarez de Cienfuegos, G. Modulatory effects of dietary lipids on immune system functions. Immunol. Cell. Biol. 2000, 78, 31–39. [Google Scholar] [CrossRef]
- De Pablo, M.A.; Puertollano, M.A.; Alvarez de Cienfuegos, G. Biological and clinical significance of lipids as modulators of immune system functions. Clin. Diagn. Lab. Immunol. 2002, 9, 945–950. [Google Scholar]
- Fritsche, K. Fatty acids as modulators of the immune response. Annu. Rev. Nutr. 2006, 26, 45–73. [Google Scholar] [CrossRef]
- Wu, D. Modulation of immune and inflammatory responses by dietary lipids. Curr. Opin. Lipidol. 2004, 15, 43–47. [Google Scholar] [CrossRef]
- Hwang, D. Modulation of the expression of cyclooxygenase-2 by fatty acids mediated through Toll-like receptor 4-derived signaling pathways. FASEB J. 2001, 15, 2556–2564. [Google Scholar] [CrossRef]
- Jaso-Friedmann, L.; Leary, J.H., III; Praveen, K.; Waldron, M.; Hoenig, M. The effects of obesity and fatty acids on the feline immune system. Vet. Immunol. Immunopathol. 2008, 122, 146–152. [Google Scholar] [CrossRef]
- Buyse, J.; Swennen, Q.; Vandemaele, F.; Klasing, K.C.; Niewold, T.A.; Baumgartner, M.; Goddeeris, B.M. Dietary beta-hydroxy-beta-methylbutyrate supplementation influences performance differently after immunization in broiler chickens. J. Anim. Physiol. Anim. Nutr. (Berl.) 2009, 93, 512–519. [Google Scholar] [CrossRef]
- Kvale, D.; Brandtzaeg, P. Constitutive and cytokine induced expression of HLA molecules, secretory component, and intercellular adhesion molecule-1 is modulated by butyrate in the colonic epithelial cell line HT-29. Gut 1995, 36, 737–742. [Google Scholar] [CrossRef]
- Leung, C.H.; Lam, W.; Ma, D.L.; Gullen, E.A.; Cheng, Y.C. Butyrate mediates nucleotide-binding and oligomerisation domain (NOD) 2-dependent mucosal immune responses against peptidoglycan. Eur. J. Immunol. 2009, 39, 3529–3537. [Google Scholar] [CrossRef]
- Meijer, K.; de Vos, P.; Priebe, M.G. Butyrate and other short-chain fatty acids as modulators of immunity: What relevance for health? Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 715–721. [Google Scholar] [CrossRef]
- Pratt, V.C.; Tappenden, K.A.; McBurney, M.I.; Field, C.J. Short-chain fatty acid-supplemented total parenteral nutrition improves nonspecific immunity after intestinal resection in rats. JPEN J. Parenter. Enteral. Nutr. 1996, 20, 264–271. [Google Scholar]
- Nilsson, N.E.; Kotarsky, K.; Owman, C.; Olde, B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 2003, 303, 1047–1052. [Google Scholar] [CrossRef]
- Bailon, E.; Cueto-Sola, M.; Utrilla, P.; Rodriguez-Cabezas, M.E.; Garrido-Mesa, N.; Zarzuelo, A.; Xaus, J.; Galvez, J.; Comalada, M. Butyrate in vitro immune-modulatory effects might be mediated through a proliferation-related induction of apoptosis. Immunobiology 2010, 215, 863–873. [Google Scholar] [CrossRef]
- Eftimiadi, C.; Valente, S.; Mangiante, S.; Ferrarini, M. Butyric acid, a metabolic end product of anaerobic bacteria, inhibits B-lymphocyte function. Minerva Stomatol. 1995, 44, 445–447. [Google Scholar]
- Wang, B.; Morinobu, A.; Horiuchi, M.; Liu, J.; Kumagai, S. Butyrate inhibits functional differentiation of human monocyte-derived dendritic cells. Cell. Immunol. 2008, 253, 54–58. [Google Scholar] [CrossRef]
- Tedelind, S.; Westberg, F.; Kjerrulf, M.; Vidal, A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease. World J. Gastroenterol. 2007, 13, 2826–2832. [Google Scholar]
- Zhang, W.H.; Jiang, Y.; Zhu, Q.F.; Gao, F.; Dai, S.F.; Chen, J.; Zhou, G.H. Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens. Br. Poult. Sci. 2011, 52, 292–301. [Google Scholar] [CrossRef]
- De Pablo Martínez, M.A.; Puertollano, M.A.; Puertollano, E. Host Immune Resistance and Dietary Lipids; Humana Press: Totowa, NJ, USA, 2010. [Google Scholar]
- Hendriksen, R.S.; Vieira, A.R.; Karlsmose, S.; Lo Fo Wong, D.M.; Jensen, A.B.; Wegener, H.C.; Aarestrup, F.M. Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: Results of quality assured laboratories from 2001 to 2007. Foodborne Pathog. Dis. 2011, 8, 887–900. [Google Scholar] [CrossRef]
- Korsgaard, H.; Madsen, M.; Feld, N.C.; Mygind, J.; Hald, T. The effects, costs and benefits of Salmonella control in the Danish table-egg sector. Epidemiol. Infect. 2009, 137, 828–836. [Google Scholar] [CrossRef]
- Babu, U.S.; Raybourne, R.B. Impact of dietary components on chicken immune system and Salmonella infection. Expert. Rev. Anti. Infect. Ther. 2008, 6, 121–135. [Google Scholar] [CrossRef]
- Vandeplas, S.; Dubois Dauphin, R.; Beckers, Y.; Thonart, P.; Thewis, A. Salmonella in chicken: Current and developing strategies to reduce contamination at farm level. J. Food. Prot. 2010, 73, 774–785. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Prevention, preliminary foodnet data on the incidence of infection with pathogens transmitted commonly through food—10 States, 2006. MMWR Morb. Mortal. Wkly. Rep. 2007, 56, 336–339.
- Mead, P.S.; Slutsker, L.; Dietz, V.; McCaig, L.F.; Bresee, J.S.; Shapiro, C.; Griffin, P.M.; Tauxe, R.V. Food-related illness and death in the United States. Emerg. Infect. Dis. 1999, 5, 607–625. [Google Scholar] [CrossRef]
- Pires, S.M.; Vigre, H.; Makela, P.; Hald, T. Using outbreak data for source attribution of human salmonellosis and campylobacteriosis in Europe. Foodborne. Pathog. Dis. 2010, 7, 1351–1361. [Google Scholar] [CrossRef]
- Yu, J.H.; Kim, N.Y.; Cho, N.G.; Kim, J.H.; Kang, Y.A.; Lee, H.G. Epidemiology of Campylobacter jejuni Outbreak in a middle school in Incheon, Korea. J. Korean Med. Sci. 2010, 25, 1595–1600. [Google Scholar] [CrossRef]
- Thompson, J.L.; Hinton, M. Antibacterial activity of formic and propionic acids in the diet of hens on Salmonellas in the crop. Br. Poult. Sci. 1997, 38, 59–65. [Google Scholar] [CrossRef]
- Van Immerseel, F.; de Buck, J.; de Smet, I.; Pasmans, F.; Haesebrouck, F.; Ducatelle, R. Interactions of butyric acid- and acetic acid-treated Salmonella with chicken primary cecal epithelial cells in vitro. Avian. Dis. 2004, 48, 384–391. [Google Scholar] [CrossRef]
- Van Immerseel, F.; de Buck, J.; Pasmans, F.; Velge, P.; Bottreau, E.; Fievez, V.; Haesebrouck, F.; Ducatelle, R. Invasion of Salmonella enteritidis in avian intestinal epithelial cells in vitro is influenced by short-chain fatty acids. Int. J. Food. Microbiol. 2003, 85, 237–248. [Google Scholar] [CrossRef]
- Lawhon, S.D.; Maurer, R.; Suyemoto, M.; Altier, C. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol. Microbiol. 2002, 46, 1451–1464. [Google Scholar] [CrossRef]
- Sunkara, L.T.; Achanta, M.; Schreiber, N.B.; Bommineni, Y.R.; Dai, G.; Jiang, W.; Lamont, S.; Lillehoj, H.S.; Beker, A.; Teeter, R.G.; et al. Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression. PLoS One 2011, 6, e27225. [Google Scholar] [CrossRef]
- Sunkara, L.T.; Jiang, W.; Zhang, G. Modulation of antimicrobial host defense peptide gene expression by free fatty acids. PLoS One 2012, 7, e49558. [Google Scholar] [CrossRef]
- Berchieri, A., Jr.; Barrow, P.A. Reduction in incidence of experimental fowl typhoid by incorporation of a commercial formic acid preparation (Bio-Add) into poultry feed. Poult. Sci. 1996, 75, 339–341. [Google Scholar] [CrossRef]
- Al-Tarazi, Y.H.; Alshawabkeh, K. Effect of dietary formic and propionic acids on Salmonella pullorum shedding and mortality in layer chicks after experimental infection. J. Vet. Med. B Infect. Dis. Vet. Public Health 2003, 50, 112–117. [Google Scholar] [CrossRef]
- Fernandez-Rubio, C.; Ordonez, C.; Abad-Gonzalez, J.; Garcia-Gallego, A.; Honrubia, M.P.; Mallo, J.J.; Balana-Fouce, R. Butyric acid-based feed additives help protect broiler chickens from Salmonella Enteritidis infection. Poult. Sci. 2009, 88, 943–948. [Google Scholar] [CrossRef]
- Johny, A.K.; Baskaran, S.A.; Charles, A.S.; Amalaradjou, M.A.; Darre, M.J.; Khan, M.I.; Hoagland, T.A.; Schreiber, D.T.; Donoghue, A.M.; Donoghue, D.J.; et al. Prophylactic supplementation of caprylic acid in feed reduces Salmonella Enteritidis colonization in commercial broiler chicks. J. Food. Prot. 2009, 72, 722–727. [Google Scholar] [CrossRef]
- McHan, F.; Shotts, E.B. Effect of feeding selected short-chain fatty acids on the in vivo attachment of Salmonella typhimurium in chick ceca. Avian. Dis. 1992, 36, 139–142. [Google Scholar] [CrossRef]
- Van Immerseel, F.; Fievez, V.; de Buck, J.; Pasmans, F.; Martel, A.; Haesebrouck, F.; Ducatelle, R. Microencapsulated short-chain fatty acids in feed modify colonization and invasion early after infection with Salmonella Enteritidis in young chickens. Poult. Sci. 2004, 83, 69–74. [Google Scholar]
- Hume, M.E.; Corrier, D.E.; Ambrus, S.; Hinton, A., Jr.; DeLoach, J.R. Effectiveness of dietary propionic acid in controlling Salmonella typhimurium colonization in broiler chicks. Avian. Dis. 1993, 37, 1051–1056. [Google Scholar] [CrossRef]
- Van Immerseel, F.; de Buck, J.; Boyen, F.; Bohez, L.; Pasmans, F.; Volf, J.; Sevcik, M.; Rychlik, I.; Haesebrouck, F.; Ducatelle, R. Medium-chain fatty acids decrease colonization and invasion through hilA suppression shortly after infection of chickens with Salmonella enterica serovar Enteritidis. Appl. Environ. Microbiol. 2004, 70, 3582–3587. [Google Scholar] [CrossRef]
- Van Immerseel, F.; Boyen, F.; Gantois, I.; Timbermont, L.; Bohez, L.; Pasmans, F.; Haesebrouck, F.; Ducatelle, R. Supplementation of coated butyric acid in the feed reduces colonization and shedding of Salmonella in poultry. Poult. Sci. 2005, 84, 1851–1856. [Google Scholar]
- Willamil, J.; Creus, E.; Perez, J.F.; Mateu, E.; Martin-Orue, S.M. Effect of a microencapsulated feed additive of lactic and formic acid on the prevalence of Salmonella in pigs arriving at the abattoir. Arch. Anim. Nutr. 2011, 65, 431–444. [Google Scholar] [CrossRef]
- Boyen, F.; Haesebrouck, F.; Vanparys, A.; Volf, J.; Mahu, M.; van Immerseel, F.; Rychlik, I.; Dewulf, J.; Ducatelle, R.; Pasmans, F. Coated fatty acids alter virulence properties of Salmonella Typhimurium and decrease intestinal colonization of pigs. Vet. Microbiol. 2008, 132, 319–327. [Google Scholar] [CrossRef]
- Galdiero, F.; Carratelli, C.R.; Nuzzo, I.; Bentivoglio, C.; de Martino, L.; Gorga, F.; Folgore, A.; Galdiero, M. Beneficial effects of myristic, stearic or oleic acid as part of liposomes on experimental infection and antitumor effect in a murine model. Life Sci. 1994, 55, 499–509. [Google Scholar] [CrossRef]
- Snel, J.; Born, L.; van der Meer, R. Dietary fish oil impairs induction of gamma-interferon and delayed-type hypersensitivity during a systemic Salmonella enteritidis infection in rats. APMIS 2010, 118, 578–584. [Google Scholar]
- Babu, U.; Wiesenfeld, P.; Gaines, D.; Raybourne, R.B. Effect of long chain fatty acids on Salmonella killing, superoxide and nitric oxide production by chicken macrophages. Int. J. Food. Microbiol. 2009, 132, 67–72. [Google Scholar] [CrossRef]
- Decuypere, J.A.; Dierick, N.A. The combined use of triacylglycerols containing medium-chain fatty acids and exogenous lipolytic enzymes as an alternative to in-feed antibiotics in piglets: Concept, possibilities and limitations. An overview. Nutr. Res. Rev. 2003, 16, 193–210. [Google Scholar] [CrossRef]
- Solis de Los Santos, F.; Donoghue, A.M.; Venkitanarayanan, K.; Dirain, M.L.; Reyes-Herrera, I.; Blore, P.J.; Donoghue, D.J. Caprylic acid supplemented in feed reduces enteric Campylobacter jejuni colonization in ten-day-old broiler chickens. Poult. Sci. 2008, 87, 800–804. [Google Scholar] [CrossRef]
- Metcalf, J.H.; Donoghue, A.M.; Venkitanarayanan, K.; Reyes-Herrera, I.; Aguiar, V.F.; Blore, P.J.; Donoghue, D.J. Water administration of the medium-chain fatty acid caprylic acid produced variable efficacy against enteric Campylobacter colonization in broilers. Poult. Sci. 2011, 90, 494–497. [Google Scholar] [CrossRef]
- Van Deun, K.; Pasmans, F.; van Immerseel, F.; Ducatelle, R.; Haesebrouck, F. Butyrate protects Caco-2 cells from Campylobacter jejuni invasion and translocation. Br. J. Nutr. 2008, 100, 480–484. [Google Scholar] [CrossRef]
- Solis De Los Santos, F.; Donoghue, A.M.; Venkitanarayanan, K.; Metcalf, J.H.; Reyes-Herrera, I.; Dirain, M.L.; Aguiar, V.F.; Blore, P.J.; Donoghue, D.J. The natural feed additive caprylic acid decreases Campylobacter jejuni colonization in market-aged broiler chickens. Poult. Sci. 2009, 88, 61–64. [Google Scholar] [CrossRef]
- Solis De Los Santos, F.; Hume, M.; Venkitanarayanan, K.; Donoghue, A.M.; Hanning, I.; Slavik, M.F.; Aguiar, V.F.; Metcalf, J.H.; Reyes-Herrera, I.; Blore, P.J.; et al. Caprylic acid reduces enteric Campylobacter colonization in market-aged broiler chickens but does not appear to alter cecal microbial populations. J. Food Prot. 2010, 73, 251–257. [Google Scholar]
- Van Deun, K.; Haesebrouck, F.; van Immerseel, F.; Ducatelle, R.; Pasmans, F. Short-chain fatty acids and l-lactate as feed additives to control Campylobacter jejuni infections in broilers. Avian. Pathol. 2008, 37, 379–383. [Google Scholar]
- Hermans, D.; Martel, A.; Van Deun, K.; Verlinden, M.; Van Immerseel, F.; Garmyn, A.; Messens, W.; Heyndrickx, M.; Haesebrouck, F.; Pasmans, F. Intestinal mucus protects Campylobacter jejuni in the ceca of colonized broiler chickens against the bactericidal effects of medium-chain fatty acids. Poult. Sci. 2010, 89, 1144–1155. [Google Scholar] [CrossRef]
- Solis De Los Santos, F.; Donoghue, A.M.; Venkitanarayanan, K.; Reyes-Herrera, I.; Metcalf, J.H.; Dirain, M.L.; Aguiar, V.F.; Blore, P.J.; Donoghue, D.J. Therapeutic supplementation of caprylic acid in feed reduces Campylobacter jejuni colonization in broiler chicks. Appl. Environ. Microbiol. 2008, 74, 4564–4566. [Google Scholar] [CrossRef]
- Thormar, H.; Hilmarsson, H.; Bergsson, G. Stable Concentrated emulsions of the 1-monoglyceride of capric acid (monocaprin) with microbicidal activities against the food-borne bacteria Campylobacter jejuni, Salmonella spp. and Escherichia coli. Appl. Environ. Microbiol. 2006, 72, 522–526. [Google Scholar] [CrossRef]
- Van Gerwe, T.; Bouma, A.; Klinkenberg, D.; Wagenaar, J.A.; Jacobs-Reitsma, W.F.; Stegeman, A. Medium chain fatty acid feed supplementation reduces the probability of Campylobacter jejuni colonization in broilers. Vet. Microbiol. 2010, 143, 314–318. [Google Scholar] [CrossRef]
- Niyogi, S.K. Shigellosis. J. Microbiol. 2005, 43, 133–143. [Google Scholar]
- Bergan, J.; Dyve Lingelem, A.B.; Simm, R.; Skotland, T.; Sandvig, K. Shiga toxins. Toxicon 2012, 60, 1085–1107. [Google Scholar] [CrossRef]
- Tesh, V.L. Activation of cell stress response pathways by Shiga toxins. Cell. Microbiol. 2012, 14, 1–9. [Google Scholar] [CrossRef]
- Hunt, J.M. Shiga toxin-producing Escherichia coli (STEC). Clin. Lab. Med. 2010, 30, 21–45. [Google Scholar] [CrossRef]
- Bavaro, M.F. E. coli O157:H7 and other toxigenic strains: The curse of global food distribution. Curr. Gastroenterol. Rep. 2012, 14, 317–323. [Google Scholar] [CrossRef]
- Orskov, F.; Orskov, I.; Villar, J.A. Cattle as reservoir of verotoxin-producing Escherichia coli O157:H7. Lancet 1987, 2, 276. [Google Scholar]
- Naylor, S.W.; Low, J.C.; Besser, T.E.; Mahajan, A.; Gunn, G.J.; Pearce, M.C.; McKendrick, I.J.; Smith, D.G.; Gally, D.L. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infect. Immun. 2003, 71, 1505–1512. [Google Scholar] [CrossRef]
- Rasmussen, M.A.; Cray, W.C., Jr.; Casey, T.A.; Whipp, S.C. Rumen contents as a reservoir of enterohemorrhagic Escherichia Coli. FEMS Microbiol. Lett. 1993, 114, 79–84. [Google Scholar] [CrossRef]
- McWilliam Leitch, E.C.; Duncan, S.H.; Stanley, K.N.; Stewart, C.S. Dietary effects on the microbiological safety of food. Proc. Nutr. Soc. 2001, 60, 247–255. [Google Scholar] [CrossRef]
- Duncan, S.H.; Flint, H.J.; Stewart, C.S. Inhibitory activity of gut bacteria against Escherichia coli O157 mediated by dietary plant metabolites. FEMS Microbiol. Lett. 1998, 164, 283–288. [Google Scholar] [CrossRef]
- Nakanishi, N.; Tashiro, K.; Kuhara, S.; Hayashi, T.; Sugimoto, N.; Tobe, T. Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli. Microbiology 2009, 155, 521–530. [Google Scholar] [CrossRef]
- Fukuda, S.; Toh, H.; Hase, K.; Oshima, K.; Nakanishi, Y.; Yoshimura, K.; Tobe, T.; Clarke, J.M.; Topping, D.L.; Suzuki, T.; et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011, 469, 543–547. [Google Scholar] [CrossRef]
- Davidson, J.; Kerr, A.; Guy, K.; Rotondo, D. Prostaglandin and fatty acid modulation of Escherichia coli O157 phagocytosis by human monocytic cells. Immunology 1998, 94, 228–234. [Google Scholar] [CrossRef]
- Sasaki, T.K.; Takita, T. Contribution of polyunsaturated fatty acids to Shiga toxin cytotoxicity in human renal tubular epithelium-derived cells. Biochem. Cell. Biol. 2006, 84, 157–166. [Google Scholar] [CrossRef]
- Shin, S.Y.; Bajpai, V.K.; Kim, H.R.; Kang, S.C. Antibacterial activity of bioconverted eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) against foodborne pathogenic bacteria. Int. J. Food. Microbiol. 2007, 113, 233–236. [Google Scholar] [CrossRef]
- Yang, J.; Hou, X.; Mir, P.S.; McAllister, T.A. Anti-Escherichia coli O157:H7 activity of free fatty acids under varying pH. Can. J. Microbiol. 2010, 56, 263–267. [Google Scholar] [CrossRef]
- Bach, S.J.; Selinger, L.J.; Stanford, K.; McAllister, T.A. Effect of supplementing corn- or barley-based feedlot diets with canola oil on faecal shedding of Escherichia coli O157:H7 by steers. J. Appl. Microbiol. 2005, 98, 464–475. [Google Scholar] [CrossRef]
- Hentges, D.J. Influence of pH on the inhibitory activity of formic and acetic acids for Shigella. J. Bacteriol. 1967, 93, 2029–2030. [Google Scholar]
- Rabbani, G.H.; Albert, M.J.; Hamidur Rahman, A.S.; Moyenul Isalm, M.; Nasirul Islam, K.M.; Alam, K. Short-chain fatty acids improve clinical, pathologic, and microbiologic features of experimental shigellosis. J. Infect. Dis. 1999, 179, 390–397. [Google Scholar] [CrossRef]
- Raqib, R.; Sarker, P.; Bergman, P.; Ara, G.; Lindh, M.; Sack, D.A.; Nasirul Islam, K.M.; Gudmundsson, G.H.; Andersson, J.; Agerberth, B. Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proc. Natl. Acad. Sci. USA 2006, 103, 9178–9183. [Google Scholar] [CrossRef]
- Islam, D.; Bandholtz, L.; Nilsson, J.; Wigzell, H.; Christensson, B.; Agerberth, B.; Gudmundsson, G. Downregulation of bactericidal peptides in enteric infections: A novel immune escape mechanism with bacterial DNA as a potential regulator. Nat. Med. 2001, 7, 180–185. [Google Scholar] [CrossRef]
- Varma, J.K.; Samuel, M.C.; Marcus, R.; Hoekstra, R.M.; Medus, C.; Segler, S.; Anderson, B.J.; Jones, T.F.; Shiferaw, B.; Haubert, N.; et al. Listeria monocytogenes infection from foods prepared in a commercial establishment: A case-control study of potential sources of sporadic illness in the United States. Clin. Infect. Dis. 2007, 44, 521–528. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Prevention, multistate outbreak of listeriosis associated with Jensen Farms cantaloupe—United States, August–September 2011. MMWR Morb. Mortal. Wkly. Rep. 2011, 60, 1357–1358.
- Ritz, M.; Jugiau, F.; Federighi, M.; Chapleau, N.; de Lamballerie, M. Effects of high pressure, subzero temperature, and pH on survival of Listeria monocytogenes in buffer and smoked salmon. J. Food Prot. 2008, 71, 1612–1618. [Google Scholar]
- Huang, S.C.; Misfeldt, M.L.; Fritsche, K.L. Dietary fat influences Ia antigen expression and immune cell populations in the murine peritoneum and spleen. J. Nutr. 1992, 122, 1219–1231. [Google Scholar]
- Irons, R.; Anderson, M.J.; Zhang, M.; Fritsche, K.L. Dietary fish oil impairs primary host resistance against Listeria monocytogenes more than the immunological memory response. J. Nutr. 2003, 133, 1163–1169. [Google Scholar]
- Mosquera, J.; Rodriguez-Iturbe, B.; Parra, G. Fish oil dietary supplementation reduces ia expression in rat and mouse peritoneal macrophages. Clin. Immunol. Immunopathol. 1990, 56, 124–129. [Google Scholar] [CrossRef]
- Puertollano, M.A.; de Pablo, M.A.; Alvarez de Cienfuegos, G. Relevance of dietary lipids as modulators of immune functions in cells infected with Listeria monocytogenes. Clin. Diagn. Lab. Immunol. 2002, 9, 352–357. [Google Scholar]
- Sprong, R.C.; Hulstein, M.F.; van der Meer, R. High intake of milk fat inhibits intestinal colonization of Listeria but not of Salmonella in rats. J. Nutr. 1999, 129, 1382–1389. [Google Scholar]
- Puertollano, M.A.; de Pablo, M.A.; Alvarez de Cienfuegos, G. Immunomodulatory effects of dietary lipids alter host natural resistance of mice to Listeria monocytogenes infection. FEMS Immunol. Med. Microbiol. 2001, 32, 47–52. [Google Scholar] [CrossRef]
- Cruz-Chamorro, L.; Puertollano, M.A.; Puertollano, E.; Alvarez de Cienfuegos, G.; de Pablo, M.A. Examination of host immune resistance against Listeria monocytogenes infection in cyclophosphamide-treated mice after dietary lipid administration. Clin. Nutr. 2007, 26, 631–639. [Google Scholar] [CrossRef]
- Puertollano, M.A.; Cruz-Chamorro, L.; Puertollano, E.; Perez-Toscano, M.T.; Alvarez de Cienfuegos, G.; de Pablo, M.A. Assessment of interleukin-12, gamma interferon, and tumor necrosis factor alpha secretion in sera from mice fed with dietary lipids during different stages of Listeria monocytogenes infection. Clin. Diagn. Lab. Immunol. 2005, 12, 1098–1103. [Google Scholar]
- Puertollano, M.A.; Puertollano, E.; Ruiz-Bravo, A.; Jimenez-Valera, M.; de Pablo, M.A.; de Cienfuegos, G.A. Changes in the immune functions and susceptibility to Listeria monocytogenes infection in mice fed dietary lipids. Immunol. Cell. Biol. 2004, 82, 370–376. [Google Scholar] [CrossRef]
- Puertollano, M.A.; Puertollano, E.; Jimenez-Valera, M.; Ruiz-Bravo, A.; de Pablo, M.A.; Cienfuegos, G.A. Lack of apoptosis in Listeria monocytogenes-infected thymocytes from mice fed with dietary lipids. Curr. Microbiol. 2004, 48, 373–378. [Google Scholar]
- Cruz-Chamorro, L.; Puertollano, E.; de Cienfuegos, G.A.; Puertollano, M.A.; de Pablo, M.A. Acquired resistance to Listeria monocytogenes during a secondary infection in a murine model fed dietary lipids. Nutrition 2011, 27, 1053–1060. [Google Scholar] [CrossRef]
- Fritsche, K.; Irons, R.; Pompos, L.; Janes, J.; Zheng, Z.; Brown, C. Omega-3 polyunsaturated fatty acid impairment of early host resistance against Listeria monocytogenes infection is independent of neutrophil infiltration and function. Cell. Immunol. 2005, 235, 65–71. [Google Scholar] [CrossRef]
- Fritsche, K.L.; Shahbazian, L.M.; Feng, C.; Berg, J.N. Dietary fish oil reduces survival and impairs bacterial clearance in C3H/HeN mice challenged with Listeria monocytogenes. Clin. Sci. (Lond.) 1997, 92, 95–101. [Google Scholar]
- Irons, R.; Fritsche, K.L. Omega-3 polyunsaturated fatty acids impair in vivo Interferon-gamma responsiveness via diminished receptor signaling. J. Infect. Dis. 2005, 191, 481–486. [Google Scholar] [CrossRef]
- Turnock, L.; Cook, M.; Steinberg, H.; Czuprynski, C. Dietary supplementation with conjugated linoleic acid does not alter the resistance of mice to Listeria monocytogenes infection. Lipids 2001, 36, 135–138. [Google Scholar]
- Le Loir, Y.; Baron, F.; Gautier, M. Staphylococcus aureus and food poisoning. Genet. Mol. Res. 2003, 2, 63–76. [Google Scholar]
- O'Brien, M.; Hunt, K.; McSweeney, S.; Jordan, K. Occurrence of foodborne pathogens in Irish farmhouse cheese. Food Microbiol. 2009, 26, 910–914. [Google Scholar] [CrossRef]
- Pereira, V.; Lopes, C.; Castro, A.; Silva, J.; Gibbs, P.; Teixeira, P. Characterization for enterotoxin production, virulence factors, and antibiotic susceptibility of Staphylococcus aureus Isolates from various foods in Portugal. Food Microbiol. 2009, 26, 278–282. [Google Scholar] [CrossRef]
- Rhee, C.H.; Woo, G.J. Emergence and characterization of foodborne methicillin-resistant Staphylococcus aureus in Korea. J. Food. Prot. 2010, 73, 2285–2290. [Google Scholar]
- Weese, J.S.; Avery, B.P.; Reid-Smith, R.J. Detection and quantification of methicillin-resistant Staphylococcus aureus (MRSA) clones in retail meat products. Lett. Appl. Microbiol. 2010, 51, 338–342. [Google Scholar] [CrossRef]
- Ho, P.L.; Chuang, S.K.; Choi, Y.F.; Lee, R.A.; Lit, A.C.; Ng, T.K.; Que, T.L.; Shek, K.C.; Tong, H.K.; Tse, C.W.; et al. Community-associated methicillin-resistant and methicillin-sensitive Staphylococcus aureus: Skin and soft tissue infections in Hong Kong. Diagn. Microbiol. Infect. Dis. 2008, 61, 245–250. [Google Scholar] [CrossRef]
- Crago, B.; Ferrato, C.; Drews, S.J.; Svenson, L.W.; Tyrrell, G.; Louie, M. Prevalence of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in food samples associated with foodborne illness in Alberta, Canada from 2007 to 2010. Food Microbiol. 2012, 32, 202–205. [Google Scholar] [CrossRef]
- Tesfaye, G.Y.; Regassa, F.G.; Kelay, B. Milk yield and associated economic losses in quarters with subclinical mastitis due to Staphylococcus aureus in Ethiopian crossbred dairy cows. Trop. Anim. Health. Prod. 2010, 42, 925–931. [Google Scholar] [CrossRef]
- Matheson, E.M.; Mainous, A.G., III; Everett, C.J.; King, D.E. Tea and coffee consumption and MRSA nasal carriage. Ann. Fam. Med. 2011, 9, 299–304. [Google Scholar] [CrossRef]
- Suzuki, I.; Matsumoto, Y.; Adjei, A.A.; Asato, L.; Shinjo, S.; Yamamoto, S. Effect of a glutamine-supplemented diet on response to methicillin-resistant Staphylococcus aureus infection in mice. J. Nutr. Sci. Vitaminol. (Tokyo) 1993, 39, 405–410. [Google Scholar] [CrossRef]
- Strandberg, L.; Verdrengh, M.; Enge, M.; Andersson, N.; Amu, S.; Onnheim, K.; Benrick, A.; Brisslert, M.; Bylund, J.; Bokarewa, M.; et al. Mice chronically fed high-fat diet have increased mortality and disturbed immune response in sepsis. PLoS One 2009, 4, e7605. [Google Scholar] [CrossRef]
- D’Ambola, J.B.; Aeberhard, E.E.; Trang, N.; Gaffar, S.; Barrett, C.T.; Sherman, M.P. Effect of dietary (n-3) and (n-6) fatty acids on in vivo pulmonary bacterial clearance by neonatal rabbits. J. Nutr. 1991, 121, 1262–1269. [Google Scholar]
- Langerhuus, S.N.; Tonnesen, E.K.; Jensen, K.H.; Damgaard, B.M.; Halekoh, U.; Lauridsen, C. Effects of dietary n-3 and n-6 fatty acids on clinical outcome in a porcine model on post-operative infection. Br. J. Nutr. 2012, 107, 735–743. [Google Scholar] [CrossRef]
- Preuss, H.G.; Echard, B.; Dadgar, A.; Talpur, N.; Manohar, V.; Enig, M.; Bagchi, D.; Ingram, C. Effects of essential oils and monolaurin on Staphylococcus aureus: In vitro and in vivo studies. Toxicol. Mech. Methods 2005, 15, 279–285. [Google Scholar] [CrossRef]
- Lloyd-Still, J.D.; Bibus, D.M.; Powers, C.A.; Johnson, S.B.; Holman, R.T. Essential fatty acid deficiency and predisposition to lung disease in cystic fibrosis. Acta Paediatr. 1996, 85, 1426–1432. [Google Scholar]
- Kelsey, J.A.; Bayles, K.W.; Shafii, B.; McGuire, M.A. Fatty acids and monoacylglycerols inhibit growth of Staphylococcus aureus. Lipids 2006, 41, 951–961. [Google Scholar] [CrossRef]
- Kenny, J.G.; Ward, D.; Josefsson, E.; Jonsson, I.M.; Hinds, J.; Rees, H.H.; Lindsay, J.A.; Tarkowski, A.; Horsburgh, M.J. The Staphylococcus aureus response to unsaturated long chain free fatty acids: Survival mechanisms and virulence implications. PLoS One 2009, 4, e4344. [Google Scholar]
- Tangwatcharin, P.; Khopaibool, P. Activity of virgin coconut oil, lauric acid or monolaurin in combination with lactic acid against Staphylococcus aureus. Southeast Asian J. Trop. Med. Public Health 2012, 43, 969–985. [Google Scholar]
- Fischer, C.L.; Drake, D.R.; Dawson, D.V.; Blanchette, D.R.; Brogden, K.A.; Wertz, P.W. Antibacterial activity of sphingoid bases and fatty acids against gram-positive and gram-negative bacteria. Antimicrob. Agents Chemother. 2012, 56, 1157–1161. [Google Scholar] [CrossRef]
- Furukawa, S.; Akiyoshi, Y.; O’Toole, G.A.; Ogihara, H.; Morinaga, Y. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria. Int. J. Food. Microbiol. 2010, 138, 176–180. [Google Scholar] [CrossRef]
- Sado Kamdem, S.; Guerzoni, M.E.; Baranyi, J.; Pin, C. Effect of Capric, Lauric and alpha-linolenic acids on the division time distributions of single cells of Staphylococcus aureus. Int. J. Food. Microbiol. 2008, 128, 122–128. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Harrison, L.M.; Balan, K.V.; Babu, U.S. Dietary Fatty Acids and Immune Response to Food-Borne Bacterial Infections. Nutrients 2013, 5, 1801-1822. https://doi.org/10.3390/nu5051801
Harrison LM, Balan KV, Babu US. Dietary Fatty Acids and Immune Response to Food-Borne Bacterial Infections. Nutrients. 2013; 5(5):1801-1822. https://doi.org/10.3390/nu5051801
Chicago/Turabian StyleHarrison, Lisa M., Kannan V. Balan, and Uma S. Babu. 2013. "Dietary Fatty Acids and Immune Response to Food-Borne Bacterial Infections" Nutrients 5, no. 5: 1801-1822. https://doi.org/10.3390/nu5051801
APA StyleHarrison, L. M., Balan, K. V., & Babu, U. S. (2013). Dietary Fatty Acids and Immune Response to Food-Borne Bacterial Infections. Nutrients, 5(5), 1801-1822. https://doi.org/10.3390/nu5051801