Beyond Biochemical Markers: Characterizing Malnutrition in COVID-19
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Statistical Analysis
2.4. Integration of Generative Artificial Intelligence (GenAI)
3. Results
3.1. Changes in Nutritional Parameters During Hospitalization
3.2. Univariate Analysis
3.3. Multivariable Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| COVID-19 | Coronavirus Disease 2019 |
| SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
| LASSO | Least Absolute Shrinkage and Selection Operator |
| AUC | area under the curve |
| ROC | Receiver Operating Characteristic |
| ESPEN | The European Society of Clinical Nutrition and Metabolism |
| GLIM | The Global Leadership Initiative on Malnutrition |
| BIS | bioimpedance spectroscopy |
| RT-PCR | real-time reverse transcriptase-polymerase chain reaction |
| LTM | lean tissue mass |
| ATM | adipose tissue mass |
| OH | overhydration |
| BMI | body mass index |
| eGFR | estimated glomerular filtration rate |
| LTI | lean tissue index |
| FTI | fat tissue index |
| BCM | body cell mass |
| LDL | high-density lipoprotein |
| HDL | low-density lipoprotein |
References
- Guenter, P.; Abdelhadi, R.; Anthony, P.; Blackmer, A.; Malone, A.; Mirtallo, J.M.; Phillips, W.; Resnick, H.E. Malnutrition Diagnoses and Associated Outcomes in Hospitalized Patients: United States, 2018. Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr. 2021, 36, 957–969. [Google Scholar] [CrossRef]
- Allard, J.P.; Keller, H.; Jeejeebhoy, K.N.; Laporte, M.; Duerksen, D.R.; Gramlich, L.; Payette, H.; Bernier, P.; Davidson, B.; Teterina, A.; et al. Decline in Nutritional Status Is Associated with Prolonged Length of Stay in Hospitalized Patients Admitted for 7 Days or More: A Prospective Cohort Study. Clin. Nutr. 2016, 35, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, L.; De Lorenzo, R.; D’Amico, M.; Sofia, V.; Roveri, L.; Mele, R.; Saibene, A.; Rovere-Querini, P.; Conte, C. COVID-19 Is Associated with Clinically Significant Weight Loss and Risk of Malnutrition, Independent of Hospitalisation: A Post-Hoc Analysis of a Prospective Cohort Study. Clin. Nutr. 2021, 40, 2420–2426. [Google Scholar] [CrossRef]
- Chen, P.; Wu, M.; He, Y.; Jiang, B.; He, M.-L. Metabolic Alterations upon SARS-CoV-2 Infection and Potential Therapeutic Targets against Coronavirus Infection. Signal Transduct. Target. Ther. 2023, 8, 237. [Google Scholar] [CrossRef] [PubMed]
- Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef] [PubMed]
- Flatby, H.M.; Ravi, A.; Damås, J.K.; Solligård, E.; Rogne, T. Circulating Levels of Micronutrients and Risk of Infections: A Mendelian Randomization Study. BMC Med. 2023, 21, 84. [Google Scholar] [CrossRef]
- Calder, P.; Carr, A.; Gombart, A.; Eggersdorfer, M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef]
- Spolidoro, G.C.I.; Azzolino, D.; Shamir, R.; Cesari, M.; Agostoni, C. Joint Effort towards Preventing Nutritional Deficiencies at the Extremes of Life during COVID-19. Nutrients 2021, 13, 1616. [Google Scholar] [CrossRef]
- Wierdsma, N.J.; Kruizenga, H.M.; Konings, L.A.; Krebbers, D.; Jorissen, J.R.; Joosten, M.-H.I.; Van Aken, L.H.; Tan, F.M.; Van Bodegraven, A.A.; Soeters, M.R.; et al. Poor Nutritional Status, Risk of Sarcopenia and Nutrition Related Complaints Are Prevalent in COVID-19 Patients during and after Hospital Admission. Clin. Nutr. ESPEN 2021, 43, 369–376. [Google Scholar] [CrossRef]
- Antwi, J.; Appiah, B.; Oluwakuse, B.; Abu, B.A.Z. The Nutrition-COVID-19 Interplay: A Review. Curr. Nutr. Rep. 2021, 10, 364–374. [Google Scholar] [CrossRef]
- Lee, D.J.; Lockwood, J.; Das, P.; Wang, R.; Grinspun, E.; Lee, J.M. Self-Reported Anosmia and Dysgeusia as Key Symptoms of Coronavirus Disease 2019. Can. J. Emerg. Med. 2020, 22, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Bosaeus, I.; Barazzoni, R.; Bauer, J.; Van Gossum, A.; Klek, S.; Muscaritoli, M.; Nyulasi, I.; Ockenga, J.; Schneider, S.M.; et al. Diagnostic Criteria for Malnutrition—An ESPEN Consensus Statement. Clin. Nutr. 2015, 34, 335–340. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM Criteria for the Diagnosis of Malnutrition—A Consensus Report from the Global Clinical Nutrition Community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef]
- Keller, U. Nutritional Laboratory Markers in Malnutrition. J. Clin. Med. 2019, 8, 775. [Google Scholar] [CrossRef]
- Lakenman, P.L.M.; Van Marwijk, I.; Van Der Hoven, B.; Van Bommel, J.; Joosten, K.F.M.; Olieman, J.F. Association between Fat-free Mass and Survival in Critically Ill Patients with COVID-19: A Prospective Cohort Study. J. Parenter. Enter. Nutr. 2024, 48, 192–198. [Google Scholar] [CrossRef]
- Del Giorno, R.; Quarenghi, M.; Stefanelli, K.; Capelli, S.; Giagulli, A.; Quarleri, L.; Stehrenberger, D.; Ossola, N.; Monotti, R.; Gabutti, L. Nutritional Risk Screening and Body Composition in COVID-19 Patients Hospitalized in an Internal Medicine Ward. Int. J. Gen. Med. 2020, 13, 1643–1651. [Google Scholar] [CrossRef]
- Kellnar, A.; Hoppe, J.M.; Brunner, S.; Stremmel, C. Hospitalization for COVID-19 Is Associated with Significant Changes in Body Composition. Clin. Nutr. ESPEN 2021, 45, 499–502. [Google Scholar] [CrossRef]
- Di Filippo, L.; De Lorenzo, R.; Cinel, E.; Falbo, E.; Ferrante, M.; Cilla, M.; Martinenghi, S.; Vitali, G.; Bosi, E.; Giustina, A.; et al. Weight Trajectories and Abdominal Adiposity in COVID-19 Survivors with Overweight/Obesity. Int. J. Obes. 2021, 45, 1986–1994. [Google Scholar] [CrossRef] [PubMed]
- Ashman Kröönström, L.; Lundgren-Nilsson, Å.; Kjellby-Wendt, G.; Stibrant Sunnerhagen, K. Symptoms, Care Consumption, and Healthcare Costs in Hospitalized Patients during the First Wave of the COVID-19 Pandemic. PLoS ONE 2023, 18, e0291548. [Google Scholar] [CrossRef]
- Boaz, M.; Kaufman-Shriqui, V. Systematic Review and Meta-Analysis: Malnutrition and In-Hospital Death in Adults Hospitalized with COVID-19. Nutrients 2023, 15, 1298. [Google Scholar] [CrossRef] [PubMed]
- Abate, S.M.; Chekole, Y.A.; Estifanos, M.B.; Abate, K.H.; Kabthymer, R.H. Prevalence and Outcomes of Malnutrition among Hospitalized COVID-19 Patients: A Systematic Review and Meta-Analysis. Clin. Nutr. ESPEN 2021, 43, 174–183. [Google Scholar] [CrossRef]
- Feng, X.; Liu, Z.; He, X.; Wang, X.; Yuan, C.; Huang, L.; Song, R.; Wu, Y. Risk of Malnutrition in Hospitalized COVID-19 Patients: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 5267. [Google Scholar] [CrossRef]
- Braunschweig, C.; Gomez, S.; Sheean, P.M. Impact of Declines in Nutritional Status on Outcomes in Adult Patients Hospitalized for More Than 7 Days. J. Am. Diet. Assoc. 2000, 100, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Botero, L.; Banks, M.D.; Gordon, E.H.; Bauer, J.; Young, A.M. Incidence and Outcomes of In-Hospital Nutritional Decline: A Prospective Observational Cohort Study in Adult Patients. Clin. Nutr. 2024, 43, 1057–1064. [Google Scholar] [CrossRef]
- Ramos, A.; Joaquin, C.; Ros, M.; Martin, M.; Cachero, M.; Sospedra, M.; Martínez, E.; Sánchez Migallón, J.M.; Sendrós, M.-J.; Soldevila, B.; et al. Impact of COVID-19 on Nutritional Status during the First Wave of the Pandemic. Clin. Nutr. 2022, 41, 3032–3037. [Google Scholar] [CrossRef]
- Pironi, L.; Sasdelli, A.S.; Ravaioli, F.; Baracco, B.; Battaiola, C.; Bocedi, G.; Brodosi, L.; Leoni, L.; Mari, G.A.; Musio, A. Malnutrition and Nutritional Therapy in Patients with SARS-CoV-2 Disease. Clin. Nutr. 2021, 40, 1330–1337. [Google Scholar] [CrossRef]
- Tosato, M.; Calvani, R.; Ciciarello, F.; Galluzzo, V.; Martone, A.M.; Zazzara, M.B.; Pais, C.; Savera, G.; Robles, M.C.; Ramirez, M.; et al. Malnutrition in COVID-19 Survivors: Prevalence and Risk Factors. Aging Clin. Exp. Res. 2023, 35, 2257–2265. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Colón, G.J.; Ratnasiri, K.; Chen, H.; Jiang, S.; Zanley, E.; Rustagi, A.; Verma, R.; Chen, H.; Andrews, J.R.; Mertz, K.D.; et al. SARS-CoV-2 Infection Drives an Inflammatory Response in Human Adipose Tissue through Infection of Adipocytes and Macrophages. Sci. Transl. Med. 2022, 14, eabm9151. [Google Scholar] [CrossRef] [PubMed]
- Ronti, T.; Lupattelli, G.; Mannarino, E. The Endocrine Function of Adipose Tissue: An Update. Clin. Endocrinol. 2006, 64, 355–365. [Google Scholar] [CrossRef]
- Smitka, K.; Marešová, D. Adipose Tissue as an Endocrine Organ: An Update on Pro-Inflammatory and Anti-Inflammatory Microenvironment. Prague Med. Rep. 2015, 116, 87–111. [Google Scholar] [CrossRef]
- Puthucheary, Z.A.; Rawal, J.; McPhail, M.; Connolly, B.; Ratnayake, G.; Chan, P.; Hopkinson, N.S.; Padhke, R.; Dew, T.; Sidhu, P.S.; et al. Acute Skeletal Muscle Wasting in Critical Illness. JAMA 2013, 310, 1591. [Google Scholar] [CrossRef] [PubMed]
- Anghel, L.; Manole, C.; Nechita, A.; Tatu, A.L.; Ștefănescu, B.I.; Nechita, L.; Bușilă, C.; Zainea, P.; Baroiu, L.; Mușat, C.L. Calcium, Phosphorus and Magnesium Abnormalities Associated with COVID-19 Infection, and Beyond. Biomedicines 2023, 11, 2362. [Google Scholar] [CrossRef] [PubMed]

| Parameter | All Patients (N = 66) | Deterioration of Nutritional Status (Weight Loss of >3%) (N = 20) | No Deterioration (N = 46) | p-Value |
|---|---|---|---|---|
| Demographic and Anthropometric Parameters | ||||
| Male sex, n (%) | 40 (61%) | 17 (85%) | 23 (50%) | 0.016 |
| Age [years] | 58 ± 13 | 59.0 ± 14.1 | 56.8 ± 12.4 | 0.55 |
| Height [cm] | 172.5 ± 9.5 | 175.2 ± 8.5 | 172.2 ± 9.9 | 0.22 |
| Weight baseline [kg] | 85 ± 19 | 85.3 ± 15.8 | 87.4 ± 20.4 | 0.65 |
| BMI baseline [kg/m2] | 27.6 (25.2–31.6) | 27.1 (25.3–30.4) | 27.8 (25.2–32.3) | 0.494 |
| Comorbidities | ||||
| Hypertension, n (%) | 25 (38%) | 8 (40%) | 17 (37%) | 0.815 |
| Coronary artery disease, n (%) | 7 (11%) | 2 (10%) | 5 (11%) | 0.742 |
| Diabetes, n (%) | 8 (12%) | 1 (5%) | 7 (15%) | 0.448 |
| Respiratory system diseases, n (%) | 8 (12%) | 3 (15%) | 5 (11%) | 0.950 |
| Neoplasm, n (%) | 5 (8%) | 2 (10%) | 3 (7%) | 0.988 |
| Baseline Biochemical Parameters | ||||
| Hemoglobin [g/dL] | 13.9 ± 1.8 | 13.8 ± 1.4 | 13.9 ± 1.9 | 0.759 |
| Creatinine [mg/dL] | 0.9 (0.7–1.1) | 0.9 (0.8–1.1) | 0.9 (0.7–1.1) | 0.743 |
| Urea [mg/dL] | 30 (22–36) | 30.5 (26–36.5) | 30 (21–36) | 0.655 |
| eGFR [mL/min/1.73 m2] | 85 ± 21.6 | 91.8 ± 22.8 | 82 ± 20.6 | 0.900 |
| Serum albumin [g/dL] | 3.6 ± 0.4 | 3.5 ± 0.4 | 3.6 ± 0.3 | 0.131 |
| Phosphorus [mg/dL] | 3.3 ± 0.7 | 3.3 ± 0.7 | 3.3 ± 0.7 | 0.693 |
| Uric acid [mg/dL] | 4.3 ± 1.3 | 4.5 ± 1.2 | 4.2 ± 1.3 | 0.477 |
| Total cholesterol [mg/dL] | 139.6 ± 34.3 | 135.5 ± 35.9 | 141.4 ± 33.9 | 0.525 |
| LDL [mg/dL] | 81.5 ± 30.3 | 77.3 ± 29.4 | 83.3 ± 30.7 | 0.456 |
| HDL [mg/dL] | 30.5 (27–40) | 29.5 (27.5–40) | 31.5 (27–39) | 0.867 |
| Triglycerides [mg/dL] | 116 (94–143) | 115 (79.5–131.5) | 116 (97–148) | 0.596 |
| Prealbumin [mg/dL] | 12.3 (9–15.9) | 10.5 (7.6–12.3) | 13.6 (10.3–17.3) | 0.009 |
| Parameter | Baseline | End | Change (∆) | p-Value |
|---|---|---|---|---|
| Biochemical Parameters | ||||
| Hemoglobin [g/dL] | 13.9 ± 1.8 | 13.2 ± 1.5 | −0.7 ± 1.3 | <0.001 |
| Creatinine [mg/dL] | 0.9 (0.7–1.1) | 0.8 (0.7–0.9) | −0.1 (−0.2–0) | <0.001 |
| Urea [mg/dL] | 30 (22–36) | 29 (23–37) | 2 (−7–7) | 0.965 |
| eGFR [mL/min/1.73 m2] | 83 (73–101) | 95 (83–110) | 12 (0–25) | <0.001 |
| Serum albumin [g/dL] | 3.6 ± 0.4 | 3.6 ± 0.4 | 0.03 ± 0.39 | 0.583 |
| Total protein [g/dL] | 6.2 ± 0.6 | 6.2 ± 0.6 | −0.04 ± 0.67 | 0.639 |
| Phosphorus [mg/dL] | 3.3 ± 0.7 | 3.5 ± 0.5 | 0.2 ± 0.8 | 0.034 |
| Uric acid [mg/dL] | 4.2 (3.4–5.2) | 4.6 (3.8–5.4) | 0.6 (−0.7–1.5) | 0.058 |
| Total cholesterol [mg/dL] | 139.6 ± 34.3 | 164.6 ± 36.8 | 25.0 ± 34.8 | <0.001 |
| LDL [mg/dL] | 80.5 ± 30.9 | 99.9 ± 30.6 | 19.4 ± 28.2 | <0.001 |
| HDL [mg/dL] | 34.3 ± 10.4 | 37.8 ± 9.4 | 3.5 ± 9.8 | 0.008 |
| Triglycerides [mg/dL] | 116 (95.5–143.5) | 169.5 (124.5–135.5) | 52.0 (16.5–91) | <0.001 |
| Prealbumin [mg/dL] | 12.2 ± 4.8 | 27.8 ± 8.2 | 15.5 ± 8.8 | <0.001 |
| Body Composition Parameters | ||||
| Weight [kg] | 85.0 (73.0–98.8) | 84.5 (71.8–97.3) | −0.95 (−2.8–0.2) | <0.001 |
| BMI [kg/m2] | 27.6 (25.2–31.6) | 26.6 (24.8–31.3) | −0.3 (−1–0) | <0.001 |
| LTM [kg] | 37 (29–46) | 37.7 (28.6–46.5) | −0.3 (−2.7–2.7) | 0.784 |
| Percentage of lean tissue [%] | 45.0 (37.0–53.6) | 47.9 (35.8–53.6) | 0.2 (−2.9–4.4) | 0.342 |
| Lean tissue index (LTI) [kg/m2] | 12.6 (10.5–14.2) | 12.7 (10.4–14.5) | −0.1 (−1.0–0.9) | 0.825 |
| LTI difference to reference [kg/m2] | −0.7 (−1.6–1.0) | −0.9 (−1.7–0.9) | −0.1 (−1.0–0.9) | 0.846 |
| ATM [kg] | 45.6 (37.6–55.4) | 42.9 (34.2–55.9) | −0.6 (−4.0–1.6) | 0.028 |
| Fat tissue index (FTI) [kg/m2] | 15.2 (12.0–18.2) | 14.7 (11.3–17.2) | −0.2 (−1.5–0.5) | 0.04 |
| FTI difference to reference [kg/m2] | 9.2 (6.7–12.3) | 9.4 (5.4–12.6) | −0.2 (−1.5–0.5) | 0.038 |
| BCM [kg] | 19.6 (14.8–25.5) | 20.5 (14.5–25.8) | −0.6 (−1.9–2.2) | 0.824 |
| OH [L] | 0.45 (−0.6–1.3) | 0.45 (−0.7–1.5) | 0.2 (−0.9–1.0) | 0.527 |
| Parameter | OR (95% CI) | p-Value |
|---|---|---|
| Male sex | 5.67 (1.46–22.01) | 0.012 |
| Age | 1.01 (0.97–1.06) | 0.520 |
| Symptoms duration [days] | 0.88 (0.76–1.02) | 0.087 |
| COVID unit stay [days] | 1.13 (1.00–1.28) | 0.055 |
| ∆ LTM | 1.00 (0.90–1.11) | 0.988 |
| ∆ ATM | 0.84 (0.74–0.95) | 0.006 |
| ∆ Urea | 1.01 (0.96–1.06) | 0.675 |
| ∆ Phosphorus | 0.46 (0.22–0.97) | 0.041 |
| ∆ Serum Albumin | 0.68 (0.18–2.60) | 0.568 |
| ∆ Uric acid | 0.72 (0.48–1.07) | 0.105 |
| ∆ Total Cholesterol | 1.00 (0.99–1.02) | 0.878 |
| ∆ LDL | 1.00 (0.98–1.02) | 0.997 |
| ∆ HDL | 1.00 (0.94–1.06) | 0.971 |
| ∆ Triglycerides | 1.001 (0.995–1.007) | 0.726 |
| ∆ Prealbumin | 1.01 (0.95–1.09) | 0.681 |
| Variable | Coefficient ± SE | OR (95% CI) | p-Value |
|---|---|---|---|
| Male sex | 2.07 ± 0.93 | 7.94 (1.28–49.08) | 0.026 |
| COVID unit stay (days) | 0.27 ± 0.10 | 1.30 (1.08–1.57) | 0.005 |
| Δ ATM | −0.22 ± 0.08 | 0.80 (0.69–0.94) | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Plewka-Barcik, K.; Różańska-Trzepla, M.; Kłos, K.; Krawczyk, M.; Chciałowski, A.; Niemczyk, S.; Matyjek, A. Beyond Biochemical Markers: Characterizing Malnutrition in COVID-19. Nutrients 2026, 18, 75. https://doi.org/10.3390/nu18010075
Plewka-Barcik K, Różańska-Trzepla M, Kłos K, Krawczyk M, Chciałowski A, Niemczyk S, Matyjek A. Beyond Biochemical Markers: Characterizing Malnutrition in COVID-19. Nutrients. 2026; 18(1):75. https://doi.org/10.3390/nu18010075
Chicago/Turabian StylePlewka-Barcik, Katarzyna, Maria Różańska-Trzepla, Krzysztof Kłos, Marta Krawczyk, Andrzej Chciałowski, Stanisław Niemczyk, and Anna Matyjek. 2026. "Beyond Biochemical Markers: Characterizing Malnutrition in COVID-19" Nutrients 18, no. 1: 75. https://doi.org/10.3390/nu18010075
APA StylePlewka-Barcik, K., Różańska-Trzepla, M., Kłos, K., Krawczyk, M., Chciałowski, A., Niemczyk, S., & Matyjek, A. (2026). Beyond Biochemical Markers: Characterizing Malnutrition in COVID-19. Nutrients, 18(1), 75. https://doi.org/10.3390/nu18010075

