Dietary Patterns and Depressive Symptom Severity in the Hungarian Adult Population: Evidence from a Nationally Representative Survey
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Data Source
2.2. Variables
2.3. Statistical Analysis
2.4. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moreno-Agostino, D.; Wu, Y.-T.; Daskalopoulou, C.; Hasan, M.T.; Huisman, M.; Prina, M. Global trends in the prevalence and incidence of depression: A systematic review and meta-analysis. J. Affect. Disord. 2021, 281, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, F.; Zuo, H.; Zhu, F. Trends in Prevalent Cases and Disability-Adjusted Life-Years of Depressive Disorders Worldwide: Findings from the Global Burden of Disease Study from 1990 to 2021. Depress. Anxiety 2025, 2025, 5553491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.X.; Miller, S.O.; Xu, W.; Yin, A.; Chen, B.Z.; Delios, A.; Dong, R.K.; Chen, R.Z.; McIntyre, R.S.; Wan, X.; et al. Meta-Analytic Evidence of Depression and Anxiety in Eastern Europe during the COVID-19 Pandemic 2021. Eur. J. Psychotraumatology 2022, 13, 2000132. [Google Scholar] [CrossRef]
- Wang, F.; Wang, S.; Zong, Q.-Q.; Zhang, Q.; Ng, C.H.; Ungvari, G.S.; Xiang, Y.-T. Prevalence of comorbid major depressive disorder in Type 2 diabetes: A meta-analysis of comparative and epidemiological studies. Diabet. Med. 2019, 36, 961–969. [Google Scholar] [CrossRef]
- Rihmer, Z.; Gonda, X.; Kapitany, B.; Dome, P. Suicide in Hungary-epidemiological and clinical perspectives. Ann Gen Psychiatry 2013, 12, 21. [Google Scholar] [CrossRef]
- Nicolaou, M.; Colpo, M.; Vermeulen, E.; Elstgeest, L.E.M.; Cabout, M.; Gibson-Smith, D.; Knuppel, A.; Sini, G.; Schoenaker, D.A.J.M.; Mishra, G.D.; et al. Association of a priori dietary patterns with depressive symptoms: A harmonised meta-analysis of observational studies. Psychol. Med. 2020, 50, 1872–1883. [Google Scholar] [CrossRef]
- Li, X.; Chen, M.; Yao, Z.; Zhang, T.; Li, Z. Dietary inflammatory potential and the incidence of depression and anxiety: A meta-analysis. J. Health Popul. Nutr. 2022, 41, 24. [Google Scholar] [CrossRef]
- Selvaraj, R.; Selvamani, T.Y.; Zahra, A.; Malla, J.; Dhanoa, R.K.; Venugopal, S.; Shoukrie, S.I.; Hamouda, R.K.; Hamid, P. Association Between Dietary Habits and Depression: A Systematic Review. Cureus 2022, 14, e32359. [Google Scholar] [CrossRef]
- Erdei, G.; Kovács, V.A.; Bakacs, M.; Martos, É. Országos Táplálkozás és Tápláltsági Állapot Vizsgálat 2014. I. A magyar felnőtt lakosság tápláltsági állapota. Orvosi Hetil. 2017, 158, 533–540. [Google Scholar] [CrossRef]
- Lehoczki, A.; Csípő, T.; Lipécz, Á.; Major, D.; Fazekas-Pongor, V.; Csík, B.; Mózes, N.; Fehér, Á.; Dósa, N.; Árva, D.; et al. Western Diet and Cognitive Decline: A Hungarian Perspective—Implications for the Design of the Semmelweis Study. Nutrients 2025, 17, 2446. [Google Scholar] [CrossRef] [PubMed]
- Klink, U.; Intemann, T.; Bogl, L.H.; Lissner, L.; Gwozdz, W.; De Henauw, S.; Molnár, D.; Mazur, A.; Moreno, L.A.; Pala, V.; et al. Consumer attitudes towards dietary behaviors: A mediator between socioeconomic status and diet quality in European adults. Eur. J. Nutr. 2025, 64, 127. [Google Scholar] [CrossRef]
- European Health Interview Survey—Methodology. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=European_health_interview_survey_-_methodology (accessed on 10 February 2025).
- Kroenke, K.; Strine, T.W.; Spitzer, R.L.; Williams, J.B.W.; Berry, J.T.; Mokdad, A.H. The PHQ-8 as a measure of current depression in the general population. J. Affect. Disord. 2009, 114, 163–173. [Google Scholar] [CrossRef]
- Manea, L.; Gilbody, S.; McMillan, D. Optimal cut-off score for diagnosing depression with the Patient Health Questionnaire (PHQ-9): A meta-analysis. CMAJ 2012, 184, E191–E196. [Google Scholar] [CrossRef]
- Stata Statistical Software; StataCorp LLC: College Station, TX, USA, 2023. (In English)
- Oh, D.H.; Kim, S.A.; Lee, H.Y.; Seo, J.Y.; Choi, B.-Y.; Nam, J.H. Prevalence and Correlates of Depressive Symptoms in Korean Adults: Results of a 2009 Korean Community Health Survey. J. Korean Med. Sci. 2013, 28, 128. [Google Scholar] [CrossRef]
- Akhtar-Danesh, N.; Landeen, J. Relation between depression and sociodemographic factors. Int. J. Ment. Health Syst. 2007, 1, 4. [Google Scholar] [CrossRef]
- Rivera-Matos, L.; Andrews, S.; Eswaran, S. Sociodemographic Risk Factors for Depression in Patients With Chronic Liver Disease. Clin. Liver Dis. 2022, 20, 38–42. [Google Scholar] [CrossRef]
- Freeman, A.; Tyrovolas, S.; Koyanagi, A.; Chatterji, S.; Leonardi, M.; Ayuso-Mateos, J.L.; Tobiasz-Adamczyk, B.; Koskinen, S.; Rummel-Kluge, C.; Haro, J.M. The role of socio-economic status in depression: Results from the COURAGE (aging survey in Europe). BMC Public Health 2016, 16, 1098. [Google Scholar] [CrossRef] [PubMed]
- Zegarra-López, A.C.; Florentino-Santisteban, B.; Flores-Romero, J.; Delgado-Tenorio, A.; Cernades-Ames, A. A Cross-Sectional Study on the Prevalence of Depressive Symptoms and Its Associated Sociodemographic Factors in Peru during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 14240. [Google Scholar] [CrossRef]
- Ulambayar, B.; Ghanem, A.S.; Tóth, Á.; Nagy, A.C. Impact of Physical Activity and Dietary Habits on Mental Well-Being in Patients with Diabetes Mellitus. Nutrients 2025, 17, 1042. [Google Scholar] [CrossRef] [PubMed]
- Grasdalsmoen, M.; Eriksen, H.R.; Lønning, K.J.; Sivertsen, B. Physical exercise, mental health problems, and suicide attempts in university students. BMC Psychiatry 2020, 20, 175. [Google Scholar] [CrossRef]
- Suarez, E.C.; Schramm-Sapyta, N.L.; Vann Hawkins, T.; Erkanli, A. Depression inhibits the anti-inflammatory effects of leisure time physical activity and light to moderate alcohol consumption. Brain Behav. Immun. 2013, 32, 144–152. [Google Scholar] [CrossRef]
- Guan, T.; Zhang, C.; Zou, X.; Chen, C.; Zhou, L.; Wu, X.; Hao, J. The Influence of Alcohol Consumption, Depressive Symptoms and Sleep Duration on Cognition: Results from the China Health and Retirement Longitudinal Study. Int. J. Environ. Res. Public Health 2022, 19, 12574. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Li, M.; Shen, Q.; Li, X.; Zhang, Y.; Peng, J.; Rong, X.; Peng, Y. Effect of alcohol use disorders and alcohol intake on the risk of subsequent depressive symptoms: A systematic review and meta-analysis of cohort studies. Addiction 2020, 115, 1224–1243. [Google Scholar] [CrossRef]
- Ju, S.; Park, Y.K. Low fruit and vegetable intake is associated with depression among Korean adults in data from the 2014 Korea National Health and Nutrition Examination Survey. J. Health Popul. Nutr. 2019, 38, 39. [Google Scholar] [CrossRef]
- Saghafian, F.; Malmir, H.; Saneei, P.; Milajerdi, A.; Larijani, B.; Esmaillzadeh, A. Fruit and vegetable consumption and risk of depression: Accumulative evidence from an updated systematic review and meta-analysis of epidemiological studies. Br. J. Nutr. 2018, 119, 1087–1101. [Google Scholar] [CrossRef]
- Shams-Rad, S.; Bidaki, R.; Nadjarzadeh, A.; Mirzaei, M.; Salehi-Abargouei, A. The Association Between Major Dietary Patterns and Severe Mental Disorders Among a Large Sample of Adults Living in Central Iran: Baseline Data of YaHS-TAMYZ Cohort Study. BMC Public Health 2022, 22, 1121. [Google Scholar] [CrossRef]
- Richard, A.; Rohrmann, S.; Vandeleur, C.L.; Mohler-Kuo, M.; Eichholzer, M. Associations between fruit and vegetable consumption and psychological distress: Results from a population-based study. BMC Psychiatry 2015, 15, 213. [Google Scholar] [CrossRef]
- Milaneschi, Y.; Bandinelli, S.; Penninx, B.W.; Corsi, A.M.; Lauretani, F.; Vazzana, R.; Semba, R.D.; Guralnik, J.M.; Ferrucci, L. The relationship between plasma carotenoids and depressive symptoms in older persons. World J. Biol. Psychiatry 2012, 13, 588–598. [Google Scholar] [CrossRef]
- Kingsbury, M.; Dupuis, G.; Jacka, F.; Roy-Gagnon, M.-H.; McMartin, S.E.; Colman, I. Associations between fruit and vegetable consumption and depressive symptoms: Evidence from a national Canadian longitudinal survey. J. Epidemiol. Community Health 2016, 70, 155–161. [Google Scholar] [CrossRef]
- Nouri-Majd, S.; Salari-Moghaddam, A.; Hassanzadeh Keshteli, A.; Afshar, H.; Esmaillzadeh, A.; Adibi, P. Coffee and caffeine intake in relation to symptoms of psychological disorders among adults. Public Health Nutr. 2022, 25, 3509–3519. [Google Scholar] [CrossRef]
- Wang, L.; Shen, X.; Wu, Y.; Zhang, D. Coffee and caffeine consumption and depression: A meta-analysis of observational studies. Aust. N. Z. J. Psychiatry 2016, 50, 228–242. [Google Scholar] [CrossRef]
- Grosso, G.; Micek, A.; Castellano, S.; Pajak, A.; Galvano, F. Coffee, tea, caffeine and risk of depression: A systematic review and dose–response meta-analysis of observational studies. Mol. Nutr. Food Res. 2016, 60, 223–234. [Google Scholar] [CrossRef]
- Lucas, M. Coffee, Caffeine, and Risk of Depression Among Women. Arch. Intern. Med. 2011, 171, 1571. [Google Scholar] [CrossRef]
- Firth, J.; Gangwisch, J.E.; Borsini, A.; Wootton, R.E.; Mayer, E.A. Food and mood: How do diet and nutrition affect mental wellbeing? BMJ 2020, 369, m2382. [Google Scholar] [CrossRef] [PubMed]
- Marx, W.; Moseley, G.; Berk, M.; Jacka, F. Nutritional psychiatry: The present state of the evidence. Proc. Nutr. Soc. 2017, 76, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Adjibade, M.; Julia, C.; Allès, B.; Touvier, M.; Lemogne, C.; Srour, B.; Hercberg, S.; Galan, P.; Assmann, K.E.; Kesse-Guyot, E. Prospective association between ultra-processed food consumption and incident depressive symptoms in the French NutriNet-Santé cohort. BMC Med. 2019, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Luca, A.; Luca, M.; Kasper, S.; Pecorino, B.; Zohar, J.; Souery, D.; Montgomery, S.; Ferentinos, P.; Rujescu, D.; Messina, A.; et al. Anhedonia is associated with a specific depression profile and poor antidepressant response. Int. J. Neuropsychopharmacol. 2024, 27, pyae055. [Google Scholar] [CrossRef]
| Variable | Category | n | % |
|---|---|---|---|
| Gender | Male | 2572 | 45.9 |
| Female | 3031 | 54.1 | |
| Age group | 15–34 years | 1276 | 22.8 |
| 35–64 years | 2699 | 48.2 | |
| ≥65 years | 1628 | 29.1 | |
| Education level | Primary | 1204 | 21.5 |
| Secondary | 3147 | 56.2 | |
| Higher | 1252 | 22.3 | |
| Household income quintile | First (lowest) | 1153 | 20.6 |
| Second | 1173 | 20.9 | |
| Third | 1139 | 20.3 | |
| Fourth | 1269 | 22.7 | |
| Fifth (highest) | 869 | 15.5 | |
| Physical effort at work/main activity | Mostly walking/light effort | 603 | 10.8 |
| Heavy, strenuous physical work | 345 | 6.2 | |
| Moderate physical exertion | 2331 | 41.6 | |
| Mostly sitting | 2025 | 36.1 | |
| No regular work/activity | 209 | 3.7 | |
| Smoking status | Current smoker | 1478 | 26.4 |
| Former smoker | 1053 | 18.8 | |
| Never smoker | 3005 | 53.6 | |
| Alcohol consumption | High-risk drinking | 284 | 5.1 |
| Low or moderate | 3555 | 63.4 | |
| Non-drinker | 1697 | 30.3 |
| Variables | Categories | Severity of Depression (PHQ-8) | p Value * | ||
|---|---|---|---|---|---|
| No Depression | Mild Depression | Moderate or Severe Depression | |||
| Gender | Male | 2111 (82.1) | 363 (14.1) | 98 (3.8) | <0.001 |
| Female | 2254 (74.4) | 590 (19.4) | 187 (6.2) | ||
| Age group | 15–34 years old | 1022 (80.1) | 199 (15.6) | 55 (4.3) | <0.001 |
| 55–64 years old | 2196 (81.4) | 397 (14.7) | 106 (3.9) | ||
| 65 and older | 1147 (70.5) | 357 (21.9) | 124 (7.6) | ||
| Education levels | Primary | 796 (66.1) | 287 (23.8) | 121 (10.1) | <0.001 |
| Secondary | 2530 (80.4) | 483 (15.4) | 134 (4.2) | ||
| High | 1039 (83.0) | 183 (14.6) | 30 (2.4) | ||
| Quintiles based on net equivalent household income | First (lowest) | 805 (69.8) | 246 (21.3) | 102 (8.9) | <0.001 |
| Second | 910 (77.6) | 197 (16.8) | 66 (5.6) | ||
| Third | 877 (77.0) | 205 (18.0) | 57 (5.0) | ||
| Fourth | 1035 (81.6) | 197 (15.5) | 37 (2.9) | ||
| Fifth (highest) | 738 (84.9) | 108 (12.4) | 23 (2.7) | ||
| Physical effort at work/main activity | Mostly consists of walking/light effort | 493 (81.8) | 93 (15.4) | 17 (2.8) | <0.001 |
| Does mostly heavy, strenuous physical work | 284 (82.3) | 50 (14.5) | 11 (3.9) | ||
| Mostly walks or does moderate physical exertion | 1863 (79.9) | 366 (15.7) | 102 (4.4) | ||
| Mostly sitting | 1525 (75.3) | 385 (19.0) | 115 (5.7) | ||
| Does not perform such activities or work of any kind | 121 (57.9) | 51 (24.4) | 37 (17.7) | ||
| Smoking status | Active smoker | 1141 (77.2) | 253 (17.1) | 84 (5.7) | 0.570 |
| Former smoker | 820 (77.9) | 175 (16.6) | 58 (5.5) | ||
| Never smoker | 2353 (78.3) | 513 (17.1) | 139 (4.6) | ||
| Alcohol consumption | High risk | 211 (74.3) | 58 (20.4) | 15 (5.3) | <0.001 |
| Low or moderate | 2860 (80.5) | 560 (15.7) | 135 (3.8) | ||
| No alcohol use | 1240 (73.1) | 325 (19.2) | 132 (7.8) | ||
| Variables | Categories | Severity of Depression (PHQ-8) | p Value * | ||
|---|---|---|---|---|---|
| No Depression | Mild Depression | Moderate or Severe Depression | |||
| Fruit consumption | Everyday | 2516 (79.4) | 506 (16.0) | 145 (4.6) | <0.001 |
| Once or more a week | 1454 (76.7) | 350 (18.5) | 92 (4.8) | ||
| Less than once a week | 351 (71.3) | 94 (19.1) | 47 (9.6) | ||
| Vegetable consumption | Everyday | 2034 (81.1) | 373 (14.9) | 100 (4.0) | <0.001 |
| Once or more a week | 1931 (75.8) | 478 (18.6) | 140 (5.6) | ||
| Less than once a week | 347 (70.8) | 99 (20.2) | 44 (9.0) | ||
| Fruit juice consumption | Everyday | 385 (86.1) | 44 (9.9) | 18 (4.0) | <0.001 |
| Once or more a week | 1112 (81.3) | 209 (15.3) | 47 (3.4) | ||
| Less than once a week | 2792 (75.4) | 692 (18.7) | 218 (5.9) | ||
| Sugary soft drinks | Everyday | 487 (77.8) | 103 (16.5) | 36 (5.7) | 0.441 |
| Once or more a week | 1017 (79.5) | 202 (15.8) | 60 (4.7) | ||
| Less than once a week | 2804 (77.2) | 642 (17.7) | 188 (5.2) | ||
| Coffee consumption | 3 or more a day | 1052 (76.5) | 249 (18.1) | 74 (5.4) | 0.008 |
| 1–2 times a day | 2818 (79.3) | 585 (16.6) | 147 (4.1) | ||
| Less than once a day | 480 (74.8) | 119 (18.5) | 43 (6.7) | ||
| Sweetener for hot drinks | Natural sweetener | 2436 (78.8) | 502 (16.2) | 153 (5.0) | 0.015 |
| Artificial sweetener | 683 (74.5) | 179 (19.5) | 55 (6.0) | ||
| No sweetener | 721 (79.8) | 150 (16.6) | 32 (3.6) | ||
| Sweets and desserts a day | More than 3 portions | 244 (73.3) | 70 (21.0) | 19 (5.7) | 0.257 |
| 1–2 portions | 1927 (77.8) | 430 (17.3) | 121 (4.9) | ||
| Less than one portion | 2150 (78.4) | 451 (16.4) | 143 (5.2) | ||
| Red meat consumption | 4–7 times a week | 544 (78.8) | 107 (15.5) | 39 (5.7) | 0.134 |
| 1–3 times a week | 2620 (78.6) | 558 (16.7) | 156 (4.7) | ||
| Less than once a week | 1148 (75.7) | 282 (18.6) | 86 (5.7) | ||
| White meat consumption | 4–7 times a week | 1014 (79.0) | 203 (15.8) | 66 (5.2) | 0.213 |
| 1–3 times a week | 3106 (77.7) | 695 (17.4) | 197 (4.9) | ||
| Less than once a week | 207 (74.2) | 51 (18.3) | 21 (7.5) | ||
| Processed meat consumption | 4–7 times a week | 2308 (81.0) | 409 (14.4) | 132 (4.6) | <0.001 |
| 1–3 times a week | 1600 (75.3) | 425 (20.0) | 100 (4.7) | ||
| Less than once a week | 420 (71.6) | 115 (19.6) | 52 (8.8) | ||
| Fish consumption | 4–7 times a week | 92 (80.0) | 19 (16.5) | 4 (3.5) | <0.001 |
| 1–3 times a week | 1157 (83.2) | 184 (13.2) | 49 (3.6) | ||
| Less than once a week | 3063 (75.9) | 744 (18.4) | 228 (5.7) | ||
| Dairy product consumption | 4–7 times a week | 2798 (79.2) | 574 (16.3) | 159 (4.5) | 0.003 |
| 1–3 times a week | 1101 (76.0) | 266 (18.4) | 81 (5.6) | ||
| Less than once a week | 427 (73.5) | 111 (19.1) | 43 (7.4) | ||
| Salt consumption | Low | 3040 (78.4) | 635 (16.8) | 187 (4.8) | 0.362 |
| Moderate | 1056 (76.3) | 250 (18.0) | 79 (5.7) | ||
| High | 221 (78.1) | 44 (15.6) | 18 (6.3) | ||
| Variables | Categories | OR | 95% CI | p-Value |
|---|---|---|---|---|
| Gender | Male (Ref) | |||
| Female | 1.54 | 1.31–1.80 | <0.001 | |
| Age group | 18–34 years old (Ref) | |||
| 35–64 years old | 1.14 | 0.93–1.41 | 0.218 | |
| 65 years and older | 1.86 | 1.47–2.34 | <0.001 | |
| Education | Primary (Ref) | |||
| Secondary | 0.61 | 0.51–0.72 | <0.001 | |
| Higher | 0.54 | 0.41–0.69 | <0.001 | |
| Household income | First quintile (Ref) | |||
| Second quintile | 0.64 | 0.52–0.80 | <0.001 | |
| Third quintile | 0.78 | 0.63–0.98 | 0.029 | |
| Fourth quintile | 0.62 | 0.49–0.78 | <0.001 | |
| Fifth quintile | 0.52 | 0.39–0.70 | <0.001 | |
| Physical effort at work/main activity | Mostly sitting (Ref) | |||
| Mostly consists of walking/light effort | 0.58 | 0.44–0.75 | <0.001 | |
| Mostly walks or does moderate physical exertion | 0.62 | 0.52–0.73 | <0.001 | |
| Does mostly heavy, strenuous physical work | 0.70 | 0.49–0.98 | 0.037 | |
| Does not perform such activities or work of any kind | 1.53 | 1.10–2.13 | 0.011 | |
| Alcohol consumption | High-risk (Ref) | |||
| Moderate alcohol user | 0.59 | 0.43–0.82 | 0.002 | |
| Non-drinker of alcohol | 0.64 | 0.45–0.90 | 0.011 | |
| Fruit consumption | Every day (Ref) | |||
| Once or more a week | 1.10 | 0.92–1.31 | 0.292 | |
| Less than once a week | 1.33 | 1.00–1.76 | 0.047 | |
| Vegetable consumption | Everyday (Ref) | |||
| Once or more a week | 1.27 | 1.08–1.50 | 0.005 | |
| Less than once a week | 1.53 | 1.15–2.02 | 0.003 | |
| Fruit juice consumption | Everyday (Ref) | |||
| Once or more a week | 1.27 | 1.01–1.61 | 0.044 | |
| Less than once a week | 1.30 | 1.01–1.67 | 0.039 | |
| Coffee consumption | 3 or more times a day (Ref) | |||
| 1–2 times a day | 0.76 | 0.65–0.89 | 0.001 | |
| Less than once a day | 0.86 | 0.62–1.18 | 0.353 | |
| Sweetener for hot drinks | Natural sweetener (Ref) | |||
| Artificial sweetener | 1.15 | 0.96–1.38 | 0.127 | |
| No sweetener | 1.00 | 0.82–1.21 | 0.972 | |
| Processed meat consumption | 4–7 times a week (Ref) | |||
| 1–3 times a week | 1.21 | 1.03–1.41 | 0.019 | |
| Less than once a week | 1.53 | 1.21–1.93 | <0.001 | |
| Fish consumption | 4–7 times a week (Ref) | |||
| 1–3 times a week | 0.82 | 0.48–1.42 | 0.486 | |
| Less than once a week | 1.06 | 0.62–1.79 | 0.836 | |
| Dairy product consumption | 4–7 times a week | |||
| 1–3 times a week | 1.05 | 0.88–1.24 | 0.608 | |
| Less than once a week | 1.11 | 0.88–1.41 | 0.376 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ulambayar, B.; Nagy, A.C. Dietary Patterns and Depressive Symptom Severity in the Hungarian Adult Population: Evidence from a Nationally Representative Survey. Nutrients 2026, 18, 159. https://doi.org/10.3390/nu18010159
Ulambayar B, Nagy AC. Dietary Patterns and Depressive Symptom Severity in the Hungarian Adult Population: Evidence from a Nationally Representative Survey. Nutrients. 2026; 18(1):159. https://doi.org/10.3390/nu18010159
Chicago/Turabian StyleUlambayar, Battamir, and Attila Csaba Nagy. 2026. "Dietary Patterns and Depressive Symptom Severity in the Hungarian Adult Population: Evidence from a Nationally Representative Survey" Nutrients 18, no. 1: 159. https://doi.org/10.3390/nu18010159
APA StyleUlambayar, B., & Nagy, A. C. (2026). Dietary Patterns and Depressive Symptom Severity in the Hungarian Adult Population: Evidence from a Nationally Representative Survey. Nutrients, 18(1), 159. https://doi.org/10.3390/nu18010159

