Nutrition and Physical Activity in Optimizing Weight Loss and Lean Mass Preservation in the Incretin-Based Medications Era: A Narrative Review
Abstract
1. Introduction
2. Methods
3. Results
3.1. Evidence from Clinical Trials on GLP-1 RAs and Tirzepatide in Obesity: Effects on Weight Reduction and the Amelioration of Obesity-Related Organ Damage
3.2. Change in Body Tissue Composition with Incretin-Based Medications
3.3. Evidence of Nutritional Interventions, Supplementation, and PA in Obese People Treated with BS
3.4. Evidence of Nutritional Interventions or Supplementation in Obese People Treated with Incretin-Based Medications
3.5. PA in Obese People Treated with Incretin-Based Medications
| Authors | Sample | Intervention Modalities | Result |
|---|---|---|---|
| Sofi F et al. [71] | N: 118; Mean age: 51.1 yrs Mean BMI = 30.6 ± 4.9 (kg/m2) | 2 different diets: vegetarian or Mediterranean (randomized, open, crossover dietary trial) Duration: 2 intervention periods, each lasting 3 months. | After 6 months, no differences between the 2 diets in body weight were observed (vegetarian: −1.88 kg, Mediterranean: −1.77 kg). Vegetarian diet reduced more LDL (9.10 mg/dL, p = 0.00); Mediterranean triglycerides (12.70 mg/dL, p < 0.01). Vegetarian diet was associated with vitamin B12 reduction (32.32 pg/m, p < 0.01) |
| Sacks F et al. [73] | N: 811 Mean age: 51 ± 9 yrs Mean BMI = 33 ± 4 (kg/m2) | 4 diets with different percentages of protein, fat, and carbohydrates, respectively: 20, 15, and 65%; 20, 25, and 55%; 40, 15, and 45%; and 40, 25, and 35%. Duration: 2 years | Weight loss:4 kg. It was similar in participants assigned to a diet with 25% protein or 15% protein (3.6 and 3.0 kg, respectively; p = 0.22); the same in those assigned to a diet with 40% or 20% fat (3.3 kg, p = 0.94); there was no effect on weight loss of carbohydrate level through the target range of 35 to 65%. Waist circumference change did not differ sinificantly among the diet groups. |
| Shai I et al. [77] | N: 322 Age: 40–65 yrs BMI ≥ 27 (kg/m2) | 3 different diets: low-fat, restricted-calorie; Mediterranean, restricted-calorie; or low-carbohydrate, non-restricted-calorie. Duration: 2 years | Weight loss:−2.9 kg for the low-fat group, −4.4 kg for the Mediterranean-diet group, and −4.7 kg for the low-carbohydrate group. Changes in fasting plasma glucose and insulin levels were more favorable for Mediterranean than low-fat diet. |
| McManus K et al. [78] | N: 101 Mean age: 44 ± 10 yrs Mean BMI = 33.5 ± 4 (kg/m2) | 2 different diets: moderate-fat diet (35% of energy) or low-fat diet (20% of energy). Duration: 18 months | Moderate-fat diet induced mean reduction in weight of 4.1 kg, in body mass index of 1.6 kg/m2, and in waist circumference of 6.9 cm, whereas low fat diet increased body weight of 2.9 kg, BMI of 1.4 kg/m2 and waist circumference of 2.6 cm, respectively (p < or =0.001). |
| Verreijen AM et al., [80] | N: 100; Mean age: 62.4 ± 5.4 yrs Mean BMI = 32 ± 4 (kg/m2) | 2 different hypocaloric diets, normal or high protein with or without a program of resistance training Duration: 10 weeks | High protein diet and exercise did not significantly affect change in body weight, FFM and fat mass; high protein in combination with exercise significantly increased FFM (+0.6 ± 1.3 kg, p = 0.011). |
| Miketinas, D. C. et al. [81] | N: 345; Mean age: 52.5 ± 8.7 yrs Mean BMI = 32.6 ± 3.9 (kg/m2) | 4 low-calorie diets with different macronutrients and a dietary fiber intake ≥20 g/day Duration: 6 months | Body weight (kg ± SD) decreased by −5.8 ± 5.0, −5.8 ± 4.9, −7.1 ± 4.9, and −10.3 ± 6.3 kg for each type of diet, respectively. |
| Brunani et al. [86] | N: 40; Mean age: 52.55 ± 5.06 yrs Mean BMI = 44.45 ± 6.54 (kg/m2) | Rehabilitation with a low-calorie diet + structured PA. 4 groups: (1) control, (2) protein supplementation, (3) BCAA supplementation, and (4) EAA mixture with tricarboxylic acid cycle intermediates supplementation Duration: 4 weeks | Similar weight loss in all groups; the group with amino acid mixture had an increase in lean mass (≈+2.8 kg), but the BCAA and protein groups showed no significant differences compared to the control group. |
| Kang M. et al. [90] | N: 64; Mean age: 63.17 ± 4.53 yrs Mean BMI = 24.15 ± 2.69 (kg/m2) | Consumption of ONS tests with protein including BCAAs and ONS placebo with the same calories but without protein Duration: 12 weeks | Lean body mass: −0.47% in placebo group and +0.26 in test group. Body fat mass: +0.52% in placebo group and −0.25 in test group. No difference in muscular strength, physical performance, or inflammatory markers. |
| Camajani E. et al. [91] | N: 16; Mean age: 60 yrs Mean BMI = 37.6 ± 4.4 (kg/m2) | LCD (1000 kcal/day) with supplementation of whey protein, L-leucine (4.1 g), and vitamin D vs. control (without supplementation) Duration: 45 days | The supplemented group preserved lean mass significantly more than the control group. Total weight loss was similar between groups (−4.6%). A significant reduction in BMI (37.6 vs. 35.7 kg/m2), and waist circumference (107 vs. 102.4 cm), was observed in all patients. |
| Nederveen J.P. et al. [105] | N: 65; Mean age: 26 ± 1 yrs Mean BMI = 30.5 ± 0.6 (kg/m2) | Multi-ingredient supplement (forskolin, green coffee bean extract, green tea extract, beet root extract, α-lipoic acid, vitamin E, and Coenzyme Q10) vs. placebo Duration: 12 weeks | The intervention group showed a decrease in body weight (Δ = −2.2 ± 2.8 kg) and a reduction in fat mass (Δ = −1.4 ± 2.5 kg). No changes in total fat-free mass were observed in either treatment arms. |
| Bobe G. et al. [106] | N: 81 Mean age: 39 ± 9 yrs Mean BMI = 34.6 ± 6.1 (kg/m2) | 600 mg/d of (R)-α-lipoic acid (R-LA) supplementation vs. placebo Duration: 24 weeks | The R-LA group had a greater BMI reduction than the placebo at 24 weeks (−0.8; p = 0.04). Women and those with obesity (BMI ≥ 35) experienced more significant weight loss (−5.0% and −4.8%; p < 0.001) and body fat reductions (−9.4% and −8.6%; p < 0.005). |
| Rondanelli M. et al. [113] | N: 25; Mean age: 53.68 ± 9.71 yrs Mean BMI = 34.83 ± 3.05 (kg/m2) | Low-calorie diet with the addition of 250 mg of Saccharomyces boulardii and 500 IU of Superoxide Dismutase (in gastro-resistant capsules, twice a day). Duration: 2 months | The intervention group showed a decrease in body weight (Δ = −2.73 kg) and fat mass (Δ = −3.13 kg), especially at the visceral level. Both groups showed no changes in lean mass. |
| Authors | Sample | Intervention Modalities | Result |
|---|---|---|---|
| Rubino M et al. [21] | N: 338; Mean age: 49 ± 13 yrs Mean BMI = 37.5 ± 6.8 (kg/m2) | 3 Groups: (1) Weekly semaglutide injections (2.4 mg, 16-week dosage increase) vs. placebo. (2) Daily liraglutide injections (3.0 mg, 4-week dosage increase) vs. placebo. (3) Placebo groups combined. (1); (2); (3) + counseling for diet and PA. | Semaglutide—15.8% vs. liraglutide—6.4% of weight (p < 0.001). Participants on semaglutide were more likely to lose 10% (70.9% vs. 25.6%), 15% (55.6% vs. 12.0%), or 20% (38.5% vs. 6.0%) of their weight compared to those on liraglutide (all differences being statistically significant, p < 0.001). |
| Lundgren JR et al. [125] | N: 195; Mean age: 42 ± 12 yrs Mean BMI = 37.0 ± 2.9 (kg/m2) | 8 weeks: low-calorie diet. 4 Groups: (1) exercise plus placebo; (2) liraglutide plus usual activity; (3) combination of exercise and liraglutide; (4) placebo plus usual activity. EXE program: 52 weeks (6-week ramp-up). 45 min, twice a week, comprising 30 min of vigorous-intensity indoor cycling followed by 15 min of circuit training. Duration: 1 year | All active treatment groups lost more weight than the placebo group: the exercise group lost 4.1 kg, the liraglutide group lost 6.8 kg, and the combination group lost 9.5 kg. The combination group lost 5.4 kg more than the exercise group and 2.7 kg more than the liraglutide group. The combination strategy also reduced body fat by 3.9%, compared to the exercise group’s (1.7%) and the liraglutide group’s (1.9%) |
| Jensen et al. [126] | N: 109 (among participants in Lundgren’s study); Mean age: 43 ± 12 yrs Mean BMI = 32.6 ± 2.9 (kg/m2) | Follow up observation (one year after Lundgren’s planned intervention) Duration: 1 year | Participants regained an average of 6.0 kg more weight after stopping liraglutide than after stopping supervised exercise, and 2.5 kg more than after combination treatment. Over one year following the cessation of combined exercise and liraglutide, participants had reduced body weight (−5.1 kg; p = 0.040). and body-fat (−2.3%; p = 0.026) compared to after stopping liraglutide alone. |
| Rubino M et al. [128] | N: 902; Mean age: 46 ± 12 yrs Mean BMI = 38.4 ± 6.9 (kg/m2) | Participants received weekly subcutaneous semaglutide during the run-in phase. After 20 weeks, 89% of participants at the 2.4 mg/wk maintenance dose were randomized (2:1) to 48 weeks of continued semaglutide (n = 535) or placebo (n = 268), with both groups receiving lifestyle intervention. Duration: 20 + 48 weeks | Participants continuing with semaglutide lost an average of 7.9% body weight by week 68, while the placebo group gained 6.9%, marking a significant difference of 14.8% (p < 0.001). The semaglutide group also experienced reductions in waist size (9.7 cm), blood pressure (3.9 mm Hg), and improved physical functioning (2.5 points on SF-36) compared to placebo (all p < 0.001). |
| Aronne LJ et al. [129] | N: 783; Mean age: 48 ± 13 yrs Mean BMI = 38.4 ± 6.6 (kg/m2) | Participants received weekly subcutaneous injections of tirzepatide at either 10 or 15 mg for 36 weeks. After that period, 670 participants were randomly assigned to either continue tirzepatide (335 participants) or switch to a placebo (335 participants) for 52 weeks. Participants received lifestyle counseling to encourage adherence to a deficit diet (500 kcal/d) and at least 150 min of PA per week. Duration: 36 + 52 weeks | Participants who completed a 36-week lead-in lost an average of 20.9% of their weight. From weeks 36 to 88, weight change was −5.5% for tirzepatide compared to −14.0% for placebo (difference −19.4%, p < 0.001). By week 88, 89.5% of tirzepatide participants maintained at least 80% of their weight loss, versus 16.6% for placebo (p < 0.001). Overall, the mean weight reduction was 25.3% for tirzepatide and 9.9% for placebo. |
3.6. Brief Overview of Other Incretin-Based Medications on the Way
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AES | Adverse EventS |
| AOMs | Anti-obesity Medications |
| AP | Area Postrema |
| AT | Adipose Tissue |
| BCAAs | Branched-Chain Amino Acids |
| BMD | Bone Mineral Density |
| BS | Bariatric Surgery |
| CPAP | Continuous Positive Airway Pressure |
| CV | Cardiovascular |
| DASH | Dietary Approaches to Stop Hypertension Diet |
| DXA | Dual-energy X-ray Absorptiometry |
| EAAS | Essential Amino Acids |
| EWL | Excess Weight Loss |
| EXE | Exercise |
| FDA | Food And Drug Administration |
| FFM | Fat-free Mass |
| GcgR | Glucagon Receptor |
| GI | Gastrointestinal |
| GIP | Glucose-dependent Insulinotropic Polypeptide |
| GLP-1 RAs | Glucagon-like Peptide-1 Receptor Agonists |
| HFpEF | Heart Failure with preserved Ejection Fraction |
| KCCQ-CSS | Kansas City Cardiomyopathy Questionnaire Clinical Summary Score |
| KD | Ketogenic Diet |
| LM | Lean Mass |
| MASH | Metabolic Dysfunction-associated Steatohepatitis |
| MASLD | Steatotic Liver Diseases |
| MD | Mediterranean Diet |
| NCDs | Noncommunicable Diseases |
| OSA | Obstructive Sleep Apnea |
| PA | Physical Activity |
| P-CTX | C-terminal Telopeptide |
| P-PINP | Procollagen Type I N-terminal Propeptide |
| PYY | Peptide Yy |
| QoL | Quality Of Life |
| RCT | Randomized Controlled Trial |
| RDA | Recommended Dietary Allowance |
| RYGB | Roux-en-Y Gastric Bypass |
| SCALE | Small Changes and Lasting Effects |
Appendix A
| Nutrients | Intake | Suggestions |
|---|---|---|
| CHO | 40–55% of the daily calorie requirement and <130 g/day (simple sugars ≤10 g/day) | Prefer whole cereals rich in fiber and unprocessed food. |
| Lipids | 0.8–1.2 g/kg/day (<8% saturated fat) | Prefer plant-based, both mono- and polyunsaturated fats. Avoid saturated fats and ultra-processed food. |
| Proteins | More than 60g or 1.2 g/kg/day (20–30% of the daily calorie requirement) | Evaluate protein-rich foods or protein supplementation (until ~30 gr/day) to meet these requirements. |
| EAA | 10–15 g/day | They support the maintenance of lean body mass during calorie reduction (especially L-leucine 2–5 g for two or three times a day) |
| Fiber | 25–35 g/day | Reduce fiber intake only if malabsorption or severe GI symptoms occur. |
| Vitamins | Optimal requirements should be personalized according to baseline levels, medical records, and comorbidities, dietary patterns, and PA levels. | Assess vitamin levels before starting therapy, during weight loss, and annually during weight maintenance. Multivitamins can help to reach the optimal need |
| 1000–3000 UI according to baseline levels. | Vitamin D should be regularly assessed to reduce osteoporosis and fracture risk |
| 75–90 mg/day | Insufficient intake is possible in diets low in fruit and vegetables |
| 1.3–1.7 mg/day | Coenzyme for transaminase and decarboxylase enzymes, essential for protein synthesis and neurotransmitter production |
| At least 350–1000 mcg daily according to baseline levels. | B12 deficiency can be exacerbated by a vegan dietary pattern and by drugs like metformin, colchicine, and proton-pump inhibitors |
| 400–800 mcg/day | High levels of folic acid can hide B12 deficiency. |
| Minerals | Optimal requirements should be personalized according to baseline levels, medical records, comorbidities, dietary patterns, and PA levels. | Assess mineral levels before starting therapy, during weight loss, and annually during weight maintenance. Multivitamins and mumultimineral can help to reach the optimal need |
| 1000–1500 mg/day | Calcium levels should be regularly assessed to reduce osteoporosis and fracture risk |
| 250–600 mg/day | The choice of the type of Mg2+ salt based on its bioavailability conditions, its dosage, and the possible side effects, especially as intestinal symptoms of osmotic dysentery |
| 8–22 mg/day | Zinc deficiency can be exacerbated by vegan dietary patterns |
| 200–1000 µg/day of chromium picolinate | Limited studies suggest a slight reduction in fat mass and improvement in body composition in overweight/insulin-resistant individuals |
References
- Wharton, S.; Lau, D.C.W.; Vallis, M.; Sharma, A.M.; Biertho, L.; Campbell-Scherer, D.; Adamo, K.; Alberga, A.; Bell, R.; Boulé, N.; et al. Obesity in Adults: A Clinical Practice Guideline. Can. Med. Assoc. J. 2020, 192, E875–E891. [Google Scholar] [CrossRef]
- Rubino, F.; Cummings, D.E.; Eckel, R.H.; Cohen, R.V.; Wilding, J.P.H.; Brown, W.A.; Stanford, F.C.; Batterham, R.L.; Farooqi, I.S.; Farpour-Lambert, N.J.; et al. Definition and Diagnostic Criteria of Clinical Obesity. Lancet Diabetes Endocrinol. 2025, 13, 221–262. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, M.; Wen, Z.; Lu, Z.; Cui, L.; Fu, C.; Xue, H.; Liu, Y.; Zhang, Y. GLP-1 Receptors Agonists: Beyond Their Pancreatic Effects. Front. Endocrinol. 2021, 23, 721135. [Google Scholar] [CrossRef] [PubMed]
- Richard, J.E.; Anderberg, R.H.; Göteson, A.; Gribble, F.M.; Reimann, F.; Skibicka, K.P. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system. PLoS ONE 2015, 10, e0119034. [Google Scholar] [CrossRef] [PubMed]
- Diz-Chaves, Y.; Herrera-Pérez, S.; González-Matías, L.C.; Lamas, J.A.; Mallo, F. Glucagon-Like Peptide-1 (GLP-1) in the Integration of Neural and Endocrine Responses to Stress. Nutrients 2020, 12, 3304. [Google Scholar] [CrossRef]
- De Fano, M.; Malara, M.; Vermigli, C.; Murdolo, G. Adipose Tissue: A Novel Target of the Incretin Axis? A Paradigm Shift in Obesity-Linked Insulin Resistance. Int. J. Mol. Sci. 2024, 25, 8650. [Google Scholar] [CrossRef]
- Lean, M.E.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K.G.; et al. Primary Care-Led Weight Management for Remission of Type 2 Diabetes (DiRECT): An Open-Label, Cluster-Randomised Trial. Lancet 2018, 391, 541–551. [Google Scholar] [CrossRef]
- Garvey, W.T. New Horizons. A New Paradigm for Treating to Target with Second-Generation Obesity Medications. J. Clin. Endocrinol. Metab. 2022, 107, e1339–e1347. [Google Scholar] [CrossRef]
- Khadra, D.; Itani, L.; Tannir, H.; Kreidieh, D.; Masri, D.E.; Ghoch, M.E. Association between Sarcopenic Obesity and Higher Risk of Type 2 Diabetes in Adults: A Systematic Review and Meta-Analysis. World J. Diabetes 2019, 10, 311–323. [Google Scholar] [CrossRef]
- Xiang, J.; Qin, L.; Zhong, J.; Xia, N.; Liang, Y. GLP-1 RA Liraglutide and Semaglutide Improves Obesity-Induced Muscle Athrophy via SIRT I Pathway. Diabetes Metab. Syndr. Obes. 2023, 16, 2433–2446. [Google Scholar] [CrossRef]
- Deng, F.; Wu, Y.; Fan, X.; Zhong, X.; Wang, N.; Wang, Y.; Pan, T.; Du, Y. Dulaglutide Protects Mice against Diabetic Sarcopenia-Mediated Muscle Injury by Inhibiting Inflammation and Regulating the Differentiation of Myoblasts. Int. J. Endocrinol. 2023, 2023, 9926462. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, M.; Li, T.; Dong, N.; Yi, L.; Zhang, Q.; Mi, M. GLP-1 regulates exercise endurance and skeletal muscle remodeling via GLP-1R/AMPK pathway. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119300. [Google Scholar] [CrossRef] [PubMed]
- Karakis, P.; Patoulias, D.; Fragakis, N.; Mantzoros, C.S. Effect of glucagon-like peptide-1 receptor agonists and co-agonists on body composition: Systematic review and network meta-analysis. Metabolism 2025, 164, 156113. [Google Scholar] [CrossRef] [PubMed]
- Linge, J.; Birkenfeld, A.L.; Neeland, I.J. Muscle Mass and Glucagon-Like Peptide-1 Receptor Agonists: Adaptive or Maladaptive Response to Weight Loss? Circulation 2024, 150, 1288–1298. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 Receptor Agonists in the Treatment of Type 2 Diabetes—State-of-the-Art. Mol. Metab. 2021, 46, 101102. [Google Scholar] [CrossRef] [PubMed]
- Melson, E.; Ashraf, U.; Papamargaritis, D.; Davies, M.J. What Is the Pipeline for Future Medications for Obesity? Int. J. Obes. 2025, 49, 433–451. [Google Scholar] [CrossRef]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Pfeiffer, A.F.H. The Evolving Story of Incretins (GIP and GLP-1) in Metabolic and Cardiovascular Disease: A Pathophysiological Update. Diabetes Obes. Metab. 2021, 23, 5–29. [Google Scholar] [CrossRef]
- Pi-Sunyer, X.; Astrup, A.; Fujioka, K.; Greenway, F.; Halpern, A.; Krempf, M.; Lau, D.C.W.; Le Roux, C.W.; Violante Ortiz, R.; Jensen, C.B.; et al. A Randomized, Controlled Trial of 3.0 Mg of Liraglutide in Weight Management. N. Engl. J. Med. 2015, 373, 11–22. [Google Scholar] [CrossRef]
- Garvey, W.T.; Frias, J.P.; Jastreboff, A.M.; Le Roux, C.W.; Sattar, N.; Aizenberg, D.; Mao, H.; Zhang, S.; Ahmad, N.N.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity in People with Type 2 Diabetes (SURMOUNT-2): A Double-Blind, Randomised, Multicentre, Placebo-Controlled, Phase 3 Trial. Lancet 2023, 402, 613–626. [Google Scholar] [CrossRef]
- Bergmann, N.C.; Davies, M.J.; Lingvay, I.; Knop, F.K. Semaglutide for the Treatment of Overweight and Obesity: A Review. Diabetes Obes. Metab. 2023, 25, 18–35. [Google Scholar] [CrossRef]
- Rubino, D.M.; Greenway, F.L.; Khalid, U.; O’Neil, P.M.; Rosenstock, J.; Sørrig, R.; Wadden, T.A.; Wizert, A.; Garvey, T.W.; STEP 8 Investigators. Effect of Weekly Subcutaneous Semaglutide vs Daily Liraglutide on Body Weight in Adults With Overweight or Obesity Without Diabetes: The STEP 8 Randomized Clinical Trial. JAMA 2022, 327, 138–150. [Google Scholar] [CrossRef] [PubMed]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Aronne, L.J.; Horn, D.B.; Le Roux, C.W.; Ho, W.; Falcon, B.L.; Gomez Valderas, E.; Das, S.; Lee, C.J.; Glass, L.C.; Senyucel, C.; et al. Tirzepatide as Compared with Semaglutide for the Treatment of Obesity. N. Engl. J. Med. 2025, 393, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Lincoff, A.M.; Brown-Frandsen, K.; Coulhoun, H.M.; Deandfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; SELECT Trial Investigators. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N. Engl. J. Med. 2023, 389, 2221–2232. [Google Scholar] [CrossRef]
- Kosiborod, M.N.; Abildstrøm, S.Z.; Bourlag, B.A.; Butler, J.; Rasmussen, S.; Davies, M.; Hovingh, K.; STEP-HFpEF Trial Committes and Investigators. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and Obesity. N. Engl. J. Med. 2023, 389, 1069–1084. [Google Scholar] [CrossRef]
- Bliddal, H.; Bays, H.; Czernichow, S.; Uddén Hemmingsson, J.; Hjelmesæth, J.; Hoffmann Morville, T.; Koroleva, A.; Skov Neergaard, J.; Vélez Sánchez, P.; Wharton, S.; et al. Once-Weekly Semaglutide in Persons with Obesity and Knee Osteoarthritis. N. Engl. J. Med. 2024, 391, 1573–1583. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Newsome, P.N.; Kliers, I.; Østergaard, L.H.; Long, M.T.; Kjær, M.S.; Cali, A.M.G.; Bugianesi, E.; Rinella, M.E.; Roden, M.; et al. Phase 3 Trial of Semaglutide in Metabolic Dysfunction–Associated Steatohepatitis. N. Engl. J. Med. 2025, 392, 2089–2099. [Google Scholar] [CrossRef]
- Available online: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-treatment-serious-liver-disease-known-mash (accessed on 2 October 2025).
- Packer, M.; Zile, M.R.; Kramer, C.M.; Baum, S.J.; Litwin, S.E.; Menon, V.; Ge, J.; Weerakkody, G.J.; Ou, Y.; Bunck, M.C.; et al. Tirzepatide for Heart Failure with Preserved Ejection Fraction and Obesity. N. Engl. J. Med. 2025, 392, 427–437. [Google Scholar] [CrossRef]
- Malhotra, A.; Grunstein, R.R.; Fietze, I.; Weaver, T.E.; Redline, S.; Azarbarzin, A.; Sands, S.A.; Schwab, R.J.; Dunn, J.P.; Chakladar, S.; et al. Tirzepatide for the Treatment of Obstructive Sleep Apnea and Obesity. N. Engl. J. Med. 2024, 391, 1193–1205. [Google Scholar] [CrossRef]
- Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-medication-obstructive-sleep-apnea (accessed on 2 October 2025).
- Loomba, R.; Hartman, M.L.; Lawitz, E.J.; Vuppalanchi, R.; Boursier, J.; Bugianesi, E.; Yoneda, M.; Behling, C.; Cummings, O.W.; Tang, Y.; et al. Tirzepatide for Metabolic Dysfunction–Associated Steatohepatitis with Liver Fibrosis. N. Engl. J. Med. 2024, 391, 299–310. [Google Scholar] [CrossRef]
- Stefanakis, K.; Kokkorakis, M.; Mantzoros, C.S. The Impact of Weight Loss on Fat-Free Mass, Muscle, Bone and Hematopoiesis Health: Implications for Emerging Pharmacotherapies Aiming at Fat Reduction and Lean Mass Preservation. Metabolism 2024, 161, 156057. [Google Scholar] [CrossRef] [PubMed]
- Astrup, A.; Carraro, R.; Finer, N.; Harper, A.; Kunesova, M.; Lean, M.E.J.; Niskanen, L.; Rasmussen, M.F.; Rissanen, A.; Rössner, S.; et al. Safety, Tolerability and Sustained Weight Loss over 2 Years with the Once-Daily Human GLP-1 Analog, Liraglutide. Int. J. Obes. 2012, 36, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, P.H.S.; Pasqualotto, E.; Dos Santos, H.V.; De Souza, L.S.N.; Dos Santos, B.E.; Chavez, M.P.; Ferreira, R.O.M.; Hohl, A.; Ronsoni, M.F.; Van De Sande-Lee, S. Effects of Liraglutide on Body Composition in People Living with Obesity or Overweight: A Systematic Review. Obes. Res. Clin. Pract. 2025, 19, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Van Gaal, L.F.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wharton, S.; Yokote, K.; Zeuthen, N.; et al. Impact of Semaglutide on Body Composition in Adults with Overweight or Obesity: Exploratory Analysis of the STEP 1 Study. J. Endocr. Soc. 2021, 5, A16–A17. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Yang, S.; McCarthy, C.; Brown, J.B.; Martin, C.K.; Redman, L.M.; Ravussin, E.; Shen, W.; Müller, M.J.; Bosy-Westphal, A. Proportion of Caloric Restriction-induced Weight Loss as Skeletal Muscle. Obesity 2024, 32, 32–40. [Google Scholar] [CrossRef]
- Alissou, M.; Demangeat, T.; Folope, V.; Van Elslande, H.; Lelandais, H.; Blanchemaison, J.; Cailleaux, P.E.; Guney, S.; Aupetit, A.; Aubourg, A.; et al. Impact of Semaglutide on fat mass, lean mass and muscle function in patients with obesity: The SEMALEAN study. Diabetes Obes. Metab. 2026, 28, 112–121. [Google Scholar] [CrossRef]
- Chun, E.; Siojo, A.; Rivera, D.; Reyna, K.; Legere, H.; Joseph, R.; Pojednic, R. Weight Loss and Body Composition after Compounded Semaglutide Treatment in a Real World Setting. Diabetes Obes. Metab. 2025, 27, 1536–1543. [Google Scholar] [CrossRef]
- Look, M.; Dunn, J.P.; Kushner, R.F.; Cao, D.; Harris, C.; Gibble, T.H.; Stefanski, A.; Griffin, R. Body Composition Changes during Weight Reduction with Tirzepatide in the SURMOUNT-1 Study of Adults with Obesity or Overweight. Diabetes Obes. Metab. 2025, 27, 2720–2729. [Google Scholar] [CrossRef]
- Herrou, J.; Mabilleau, G.; Lecerf, J.-M.; Thomas, T.; Biver, E.; Paccou, J. Narrative Review of Effects of Glucagon-Like Peptide-1 Receptor Agonists on Bone Health in People Living with Obesity. Calcif. Tissue Int. 2023, 114, 86–97. [Google Scholar] [CrossRef]
- Iepsen, E.W.; Lundgren, J.R.; Hartmann, B.; Pedersen, O.; Hansen, T.; Jørgensen, N.R.; Jensen, J.-E.B.; Holst, J.J.; Madsbad, S.; Torekov, S.S. GLP-1 Receptor Agonist Treatment Increases Bone Formation and Prevents Bone Loss in Weight-Reduced Obese Women. J. Clin. Endocrinol. Metab. 2015, 100, 2909–2917. [Google Scholar] [CrossRef]
- Hansen, M.S.; Wölfel, E.M.; Jeromdesella, S.; Møller, J.-J.K.; Ejersted, C.; Jørgensen, N.R.; Eastell, R.; Hansen, S.G.; Frost, M. Once-Weekly Semaglutide versus Placebo in Adults with Increased Fracture Risk: A Randomised, Double-Blinded, Two-Centre, Phase 2 Trial. EClinicalMedicine 2024, 72, 102624. [Google Scholar] [CrossRef] [PubMed]
- Haghighat, N.; Kazemi, A.; Asbaghi, O.; Jafarian, F.; Moeinvaziri, N.; Hosseini, B.; Amini, M. Long-Term Effect of Bariatric Surgery on Body Composition in Patients with Morbid Obesity: A Systematic Review and Meta-Analysis. Clin. Nutr. 2021, 40, 1755–1766. [Google Scholar] [CrossRef] [PubMed]
- Nuijten, M.A.H.; Eijsvogels, T.M.H.; Monpellier, V.M.; Janssen, I.M.C.; Hazebroek, E.J.; Hopman, M.T.E. The Magnitude and Progress of Lean Body Mass, Fat-free Mass, and Skeletal Muscle Mass Loss Following Bariatric Surgery: A Systematic Review and Meta-analysis. Obes. Rev. 2022, 23, e13370. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.N.; Kim, S.-O.; Jung, C.H.; Lee, W.J.; Kim, M.J.; Cho, Y.K. Preserved Muscle Strength Despite Muscle Mass Loss After Bariatric Metabolic Surgery: A Systematic Review and Meta-Analysis. Obes. Surg. 2023, 33, 3422–3430. [Google Scholar] [CrossRef]
- Ito, M.K.; Gonçalves, V.S.S.; Faria, S.L.C.M.; Moizé, V.; Porporatti, A.L.; Guerra, E.N.S.; De Luca Canto, G.; De Carvalho, K.M.B. Effect of Protein Intake on the Protein Status and Lean Mass of Post-Bariatric Surgery Patients: A Systematic Review. Obes. Surg. 2017, 27, 502–512. [Google Scholar] [CrossRef]
- Romeijn, M.M.; Holthuijsen, D.D.B.; Kolen, A.M.; Janssen, L.; Schep, G.; Van Dielen, F.M.H.; Leclercq, W.K.G. The Effect of Additional Protein on Lean Body Mass Preservation in Post-Bariatric Surgery Patients: A Systematic Review. Nutr. J. 2021, 20, 27. [Google Scholar] [CrossRef]
- Abiri, B.; Valizadeh, M.; Seifi, Z.; Amini, S.; Haidari, F. The Role of Nutritional Factors in Fat-Free Mass Preservation and Body Composition Changes after Bariatric Surgery: A Systematic Review of the Available Evidence. Eat. Weight. Disord. 2025, 30, 51. [Google Scholar] [CrossRef]
- Cossec, M.; Atger, F.; Blanchard, C.; Jacobi, D. Daily Timing of Meals and Weight Loss After Bariatric Surgery: A Systematic Review. Obes. Surg. 2021, 31, 2268–2277. [Google Scholar] [CrossRef]
- Durey, B.J.; Fritche, D.; Martin, D.S.; Best, L.M.J. The Effect of Pre-Operative Exercise Intervention on Patient Outcomes Following Bariatric Surgery: A Systematic Review and Meta-Analysis. Obes. Surg. 2022, 32, 160–169. [Google Scholar] [CrossRef]
- Tabesh, M.R.; Eghtesadi, M.; Abolhasani, M.; Maleklou, F.; Ejtehadi, F.; Alizadeh, Z. Nutrition, Physical Activity, and Prescription of Supplements in Pre- and Post-Bariatric Surgery Patients: An Updated Comprehensive Practical Guideline. Obes. Surg. 2023, 33, 2557–2572. [Google Scholar] [CrossRef]
- Morales-Marroquin, E.; Kohl, H.W.; Knell, G.; De La Cruz-Muñoz, N.; Messiah, S.E. Resistance Training in Post-Metabolic and Bariatric Surgery Patients: A Systematic Review. Obes. Surg. 2020, 30, 4071–4080. [Google Scholar] [CrossRef] [PubMed]
- Bellicha, A.; Van Baak, M.A.; Battista, F.; Beaulieu, K.; Blundell, J.E.; Busetto, L.; Carraça, E.V.; Dicker, D.; Encantado, J.; Ermolao, A.; et al. Effect of Exercise Training on Weight Loss, Body Composition Changes, and Weight Maintenance in Adults with Overweight or Obesity: An Overview of 12 Systematic Reviews and 149 Studies. Obes. Rev. 2021, 22, e13256. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.L.G.; Sardeli, A.V.; André, L.D.; Severin, R.; De Oliveira, C.R.; Hassan, C.; Borghi-Silva, A.; Phillips, S.A. Exercise Training Does Improve Cardiorespiratory Fitness in Post-Bariatric Surgery Patients. Obes. Surg. 2019, 29, 1416–1419. [Google Scholar] [CrossRef] [PubMed]
- Bond, D.S.; Wu, Y.; Baillot, A.; Lillis, J.; Sundgot-Borgen, C.; Papasavas, P.K. The Role of Physical Activity in Minimizing Recurrence of Weight Gain Following Metabolic and Bariatric Surgery: Current Evidence and Suggestions for Advancing Future Research. Curr. Obes. Rep. 2025, 14, 66. [Google Scholar] [CrossRef]
- Boppre, G.; Diniz-Sousa, F.; Veras, L.; Oliveira, J.; Fonseca, H. Can Exercise Promote Additional Benefits on Body Composition in Patients with Obesity after Bariatric Surgery? A Systematic Review and Meta-analysis of Randomized Controlled Trials. Obes. Sci. Pract. 2022, 8, 112–123. [Google Scholar] [CrossRef]
- Driggin, E.; Goyal, P. Malnutrition and Sarcopenia as Reasons for Caution with GLP-1 Receptor Agonist Use in HFpEF. J. Card. Fail. 2024, 30, 610–612. [Google Scholar] [CrossRef]
- Scott Butsch, W.; Sulo, S.; Chang, A.T.; Kim, J.A.; Kerr, K.W.; Williams, D.R.; Hegazi, R.; Panchalingam, T.; Goates, S.; Heymsfield, S.B. Nutritional deficiencies and muscle loss in adults with type 2 diabetes using GLP-1 receptor agonists: A retrospective observational study. Obes. Pillars 2025, 15, 100186. [Google Scholar] [CrossRef]
- Kobylińska, M.; Antosik, K.; Decyk, A.; Kurowska, K. Malnutrition in Obesity: Is It Possible? Obes. Facts 2022, 15, 19–25. [Google Scholar] [CrossRef]
- Carmichael, O.; Martin, C.K.; Considine, R.V.; Kareken, D.A.; Carnell, S.; Dydak, U.; Mattes, R.D.; Scott, D.; Svaldi, D.O.; Nishiyama, H.; et al. 263-OR: Effects of Tirzepatide on Central Reward and Appetite Circuits in the Brain. Diabetes 2024, 73, 263-OR. [Google Scholar] [CrossRef]
- Wadden, T.A.; Chao, A.M.; Moore, M.; Tronieri, J.S.; Gilden, A.; Amaro, A.; Leonard, S.; Jakicic, J.M. The Role of Lifestyle Modification with Second-Generation Anti-Obesity Medications: Comparisons, Questions, and Clinical Opportunities. Curr. Obes. Rep. 2023, 12, 453–473. [Google Scholar] [CrossRef]
- Ağagündüz, D.; Acar-Tek, N.; Bozkurt, O. Effect of Intermittent Fasting (18/6) on Energy Expenditure, Nutritional Status, and Body Composition in Healthy Adults. Evid.-Based Complement. Altern. Med. 2021, 2021, 7809611. [Google Scholar] [CrossRef] [PubMed]
- Reiss, A.B.; Gulkarov, S.; Lau, R.; Klek, S.P.; Srivastava, A.; Renna, H.A.; De Leon, J. Weight Reduction with GLP-1 Agonists and Paths for Discontinuation While Maintaining Weight Loss. Biomolecules 2025, 15, 408. [Google Scholar] [CrossRef] [PubMed]
- Al-Najim, W.; Raposo, A.; BinMowyna, M.N.; le Roux, C.W. Unintended Consequences of Obesity Pharmacotherapy: A Nutritional Approach to Ensuring Better Patient Outcomes. Nutrients 2025, 17, 1934. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.; Milstead, M.; Thomas, O.; McGlasson, T.; Green, L.; Kreider, R.; Jones, R. Investigating nutrient intake during use of glucagon-like peptide-1 receptor agonist: A cross-sectional study. Front. Nutr. 2025, 12, 1566498. [Google Scholar] [CrossRef]
- Fitch, A.; Gigliotti, L.; Bays, H.E. Application of nutrition interventions with GLP-1 based therapies: A narrative review of the challenges and solutions. Obes. Pillars 2025, 16, 100205. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Agarwal, M.; Aggarwal, M.; Alexander, L.; Apovian, C.M.; Bindlish, S.; Bonnet, J.; Butsch, W.S.; Christensen, S.; Gianos, E.; et al. Nutritional Priorities to Support GLP-1 Therapy for Obesity: A Joint Advisory from the American College of Lifestyle Medicine, the American Society for Nutrition, the Obesity Medicine Association, and The Obesity Society. Obesity 2025, 33, 1475–1503. [Google Scholar] [CrossRef]
- Pallazola, V.A.; Davis, D.M.; Whelton, S.P.; Cardoso, R.; Latina, J.M.; Michos, E.D.; Sarkar, S.; Blumenthal, R.S.; Arnett, D.K.; Stone, N.J.; et al. A Clinician’s Guide to Healthy Eating for Cardiovascular Disease Prevention. Mayo Clin. Proc. Innov. Qual. Outcomes 2019, 3, 251–267. [Google Scholar] [CrossRef]
- Kwok, C.S.; Umar, S.; Myint, P.K.; Mamas, M.A.; Loke, Y.K. Vegetarian Diet, Seventh Day Adventists and Risk of Cardiovascular Mortality: A Systematic Review and Meta-Analysis. Int. J. Cardiol. 2014, 176, 680–686. [Google Scholar] [CrossRef]
- Sofi, F.; Dinu, M.; Pagliai, G.; Cesari, F.; Gori, A.M.; Sereni, A.; Becatti, M.; Fiorillo, C.; Marcucci, R.; Casini, A. Low-Calorie Vegetarian Versus Mediterranean Diets for Reducing Body Weight and Improving Cardiovascular Risk Profile: CARDIVEG Study (Cardiovascular Prevention With Vegetarian Diet). Circulation 2018, 137, 1103–1113. [Google Scholar] [CrossRef]
- Neufingerl, N.; Eilander, A. Nutrient Intake and Status in Adults Consuming Plant-Based Diets Compared to Meat-Eaters: A Systematic Review. Nutrients 2022, 14, 29. [Google Scholar] [CrossRef]
- Sacks, F.M.; Bray, G.A.; Carey, V.J.; Smith, S.R.; Ryan, D.H.; Anton, S.D.; McManus, K.; Champagne, C.M.; Bishop, L.M.; Laranjo, N.; et al. Comparison of Weight-Loss Diets with Different Compositions of Fat, Protein, and Carbohydrates. N. Engl. J. Med. 2009, 360, 859–873. [Google Scholar] [CrossRef] [PubMed]
- Almandoz, J.P.; Wadden, T.A.; Tewksbury, C.; Apovian, C.M.; Fitch, A.; Ard, J.D.; Li, Z.; Richards, J.; Butsch, W.S.; Jouravskaya, I.; et al. Nutritional Considerations with Antiobesity Medications. Obesity 2024, 32, 1613–1631. [Google Scholar] [CrossRef] [PubMed]
- Geisler, C.E.; Antonellis, M.P.; Trumbauer, W.; Martin, J.A.; Coskun, T.; Samms, R.J.; Hayes, M.R. Tirzepatide Suppresses Palatable Food Intake by Selectively Reducing Preference for Fat in Rodents. Diabetes Obes. Metab. 2023, 25, 56–67. [Google Scholar] [CrossRef] [PubMed]
- The Diabetes and Nutrition Study Group (DNSG) of the European Association for the Study of Diabetes (EASD); Aas, A.-M.; Axelsen, M.; Churuangsuk, C.; Hermansen, K.; Kendall, C.W.C.; Kahleova, H.; Khan, T.; Lean, M.E.J.; Mann, J.I.; et al. Evidence-Based European Recommendations for the Dietary Management of Diabetes. Diabetologia 2023, 66, 965–985. [Google Scholar] [CrossRef]
- Shai, I.; Schwarzfuchs, D.; Henkin, Y.; Shahar, D.R.; Witkow, S.; Greenberg, I.; Golan, R.; Fraser, D.; Bolotin, A.; Vardi, H.; et al. Weight Loss with a Low-Carbohydrate, Mediterranean, or Low-Fat Diet. N. Engl. J. Med. 2008, 359, 229–241. [Google Scholar] [CrossRef]
- McManus, K.; Antinoro, L.; Sacks, F. A Randomized Controlled Trial of a Moderate-Fat, Low-Energy Diet Compared with a Low Fat, Low-Energy Diet for Weight Loss in Overweight Adults. Int. J. Obes. 2001, 25, 1503–1511. [Google Scholar] [CrossRef]
- De Lorgeril, M.; Salen, P.; Martin, J.-L.; Monjaud, I.; Delaye, J.; Mamelle, N. Mediterranean Diet, Traditional Risk Factors, and the Rate of Cardiovascular Complications After Myocardial Infarction: Final Report of the Lyon Diet Heart Study. Circulation 1999, 99, 779–785. [Google Scholar] [CrossRef]
- Verreijen, A.M.; Engberink, M.F.; Memelink, R.G.; van der Plas, S.E.; Visser, M.; Weijs, P.J. Effect of a high protein diet and/or resistance exercise on the preservation of fat free mass during weight loss in overweight and obese older adults: A randomized controlled trial. Nutr. J. 2017, 16, 10. [Google Scholar] [CrossRef]
- Miketinas, D.C.; Bray, G.A.; Beyl, R.A.; Ryan, D.H.; Sacks, F.M.; Champagne, C.M. Fiber Intake Predicts Weight Loss and Dietary Adherence in Adults Consuming Calorie-Restricted Diets: The POUNDS Lost (Preventing Overweight Using Novel Dietary Strategies) Study. J. Nutr. 2019, 149, 1742–1748. [Google Scholar] [CrossRef]
- Mechanick, J.I.; Butsch, W.S.; Christensen, S.M.; Hamdy, O.; Li, Z.; Prado, C.M.; Heymsfield, S.B. Strategies for Minimizing Muscle Loss during Use of Incretin-mimetic Drugs for Treatment of Obesity. Obes. Rev. 2025, 26, e13841. [Google Scholar] [CrossRef]
- Leidy, H.J.; Clifton, P.M.; Astrup, A.; Wycherley, T.P.; Westerterp-Plantenga, M.S.; Luscombe-Marsh, N.D.; Woods, S.C.; Mattes, R.D. The Role of Protein in Weight Loss and Maintenance. Am. J. Clin. Nutr. 2015, 101, 1320S–1329S. [Google Scholar] [CrossRef] [PubMed]
- Cava, E.; Yeat, N.C.; Mittendorfer, B. Preserving Healthy Muscle during Weight Loss. Adv. Nutr. 2017, 8, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Dash, S. Opportunities to Optimize Lifestyle Interventions in Combination with GLUCAGON-LIKE PEPTIDE -1-based Therapy. Diabetes Obes. Metab. 2024, 26, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Brunani, A.; Cancello, R.; Gobbi, M.; Lucchetti, E.; Di Guglielmo, G.; Maestrini, S.; Cattaldo, S.; Piterà, P.; Ruocco, C.; Milesi, A.; et al. Comparison of Protein- or Amino Acid-Based Supplements in the Rehabilitation of Men with Severe Obesity: A Randomized Controlled Pilot Study. J. Clin. Med. 2023, 12, 4257. [Google Scholar] [CrossRef]
- Gwin, J.A.; Church, D.D.; Allen, J.T.; Wilson, M.A.; Carrigan, C.T.; Murphy, N.E.; Varanoske, A.N.; Margolis, L.M.; Wolfe, R.R.; Ferrando, A.A.; et al. Consuming Whey Protein with Added Essential Amino Acids, Not Carbohydrate, Maintains Postexercise Anabolism While Underfed. Med. Sci. Sports Exerc. 2025, 57, 70–80. [Google Scholar] [CrossRef]
- Nichele, S.; Phillips, S.M.; Boaventura, B.C.B. Plant-Based Food Patterns to Stimulate Muscle Protein Synthesis and Support Muscle Mass in Humans: A Narrative Review. Appl. Physiol. Nutr. Metab. 2022, 47, 700–710. [Google Scholar] [CrossRef]
- Dekker, I.M.; Van Rijssen, N.M.; Verreijen, A.; Weijs, P.J.; De Boer, W.E.; Terpstra, D.; Kruizenga, H.M. Calculation of Protein Requirements; a Comparison of Calculations Based on Bodyweight and Fat Free Mass. Clin. Nutr. ESPEN 2022, 48, 378–385. [Google Scholar] [CrossRef]
- Kang, M.; Rho, H.; Kim, M.; Lee, M.; Lim, Y.; Chon, J.; Lim, H. Effectiveness of Protein-Enriched Oral Nutritional Supplements on Muscle Function in Middle-Aged and Elderly Women: A Randomized Controlled Trial. J. Nutr. Health Aging 2025, 29, 100508. [Google Scholar] [CrossRef]
- Camajani, E.; Persichetti, A.; Watanabe, M.; Contini, S.; Vari, M.; Di Bernardo, S.; Faro, M.; Lubrano, C.; Gnessi, L.; Caprio, M.; et al. Whey Protein, L-Leucine and Vitamin D Supplementation for Preserving Lean Mass during a Low-Calorie Diet in Sarcopenic Obese Women. Nutrients 2022, 14, 1884. [Google Scholar] [CrossRef]
- Stokic, E.; Romani, A.; Ilincic, B.; Kupusinac, A.; Stosic, Z.; Isenovic, E.R. Chronic Latent Magnesium Deficiency in Obesity Decreases Positive Effects of Vitamin D on Cardiometabolic Risk Indicators. Curr. Vasc. Pharmacol. 2018, 16, 610–617. [Google Scholar] [CrossRef]
- Bjørklund, G.; Peana, M.; Pivina, L.; Dosa, A.; Aaseth, J.; Semenova, Y.; Chirumbolo, S.; Medici, S.; Dadar, M.; Costea, D.-O. Iron Deficiency in Obesity and after Bariatric Surgery. Biomolecules 2021, 11, 613. [Google Scholar] [CrossRef] [PubMed]
- González-Domínguez, Á.; Visiedo-García, F.M.; Domínguez-Riscart, J.; González-Domínguez, R.; Mateos, R.M.; Lechuga-Sancho, A.M. Iron Metabolism in Obesity and Metabolic Syndrome. Int. J. Mol. Sci. 2020, 21, 5529. [Google Scholar] [CrossRef]
- Franco, C.; Canzoniero, L.M.T. Zinc homeostasis and redox alterations in obesity. Front. Endocrinol. 2024, 14, 1273177. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Liu, X.; Pan, Z. Zinc deficiency and cellular oxidative stress: Prognostic implications in cardiovascular diseases. Acta Pharmacol. Sin. 2018, 39, 1120–1132. [Google Scholar] [CrossRef] [PubMed]
- Cimini, F.A.; Sentinelli, F.; Oldani, A.; Barchetta, I.; Cavallo, M.G. Adipose Tissue Dysfunction and Metabolic Diseases: The Role of Vitamin D/Vitamin D Receptor Axis. Int. J. Mol. Sci. 2025, 26, 10256. [Google Scholar] [CrossRef]
- Davis, T.M.E. Severe Hypomagnesemia and Hypocalcemia Linked to Semaglutide in Type 2 Diabetes: A Case Report. Am. J. Case Rep. 2025, 26, e946539. [Google Scholar] [CrossRef]
- Argyrakopoulou, G.; Konstantinidou, S.K.; Dalamaga, M.; Kokkinos, A. Nutritional Deficiencies Before and After Bariatric Surgery: Prevention and Treatment. Curr. Nutr. Rep. 2022, 11, 95–101. [Google Scholar] [CrossRef]
- Montenegro, K.R.; Cruzat, V.; Carlessi, R.; Newsholme, P. Mechanisms of vitamin D action in skeletal muscle. Nutr. Res. Rev. 2019, 32, 192–204. [Google Scholar] [CrossRef]
- Bonetti, G.; Herbst, K.L.; Donato, K.; Dhuli, K.; Kiani, A.K.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Bertelli, M. Dietary Supplements for Obesity. J. Prev. Med. Hyg. 2022, 63, E160. [Google Scholar]
- Orsso, C.E.; Montes-Ibarra, M.; Findlay, M.; Van Der Meij, B.S.; De Van Der Schueren, M.A.E.; Landi, F.; Laviano, A.; Prado, C.M. Mapping Ongoing Nutrition Intervention Trials in Muscle, Sarcopenia, and Cachexia: A Scoping Review of Future Research. J. Cachexia Sarcopenia Muscle 2022, 13, 1442–1459. [Google Scholar] [CrossRef]
- Zheng, J.; Xiao, H.; Duan, Y.; Song, B.; Zheng, C.; Guo, Q.; Li, F.; Li, T. Roles of Amino Acid Derivatives in the Regulation of Obesity. Food Funct. 2021, 12, 6214–6225. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, D.; Hewlings, S.; Kalman, D. Body Composition Changes in Weight Loss: Strategies and Supplementation for Maintaining Lean Body Mass, a Brief Review. Nutrients 2018, 10, 1876. [Google Scholar] [CrossRef] [PubMed]
- Nederveen, J.P.; Mastrolonardo, A.J.; Xhuti, D.; Di Carlo, A.; Manta, K.; Fuda, M.R.; Tarnopolsky, M.A. Novel Multi-Ingredient Supplement Facilitates Weight Loss and Improves Body Composition in Overweight and Obese Individuals: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2023, 15, 3693. [Google Scholar] [CrossRef]
- Bobe, G.; Michels, A.J.; Zhang, W.J.; Purnell, J.Q.; Woffendin, C.; Pereira, C.; Vita, J.A.; O Thomas, N.; Traber, M.G.; Frei, B.; et al. A Randomized Controlled Trial of Long-Term (R)-α-Lipoic Acid Supplementation Promotes Weight Loss in Overweight or Obese Adults without Altering Baseline Elevated Plasma Triglyceride Concentrations. J. Nutr. 2020, 150, 2336–2345. [Google Scholar] [CrossRef] [PubMed]
- Juszczak, A.; Morris, D.; Grossman, A. Cushing’s Syndrome. In Endotext; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hamilton, E., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2024. [Google Scholar]
- Wu, W.; Chen, Z.; Han, J.; Qian, L.; Wang, W.; Lei, J.; Wang, H. Endocrine, Genetic, and Microbiome Nexus of Obesity and Potential Role of Postbiotics: A Narrative Review. Eat. Weight. Disord. 2023, 28, 84. [Google Scholar] [CrossRef]
- Angelini, G.; Russo, S.; Mingrone, G. Incretin Hormones, Obesity and Gut Microbiota. Peptides 2024, 178, 171216. [Google Scholar] [CrossRef]
- Gofron, K.K.; Wasilewski, A.; Małgorzewicz, S. Effects of GLP-1 Analogues and Agonists on the Gut Microbiota: A Systematic Review. Nutrients 2025, 17, 1303. [Google Scholar] [CrossRef]
- Baek, K.-R.; Singh, S.; Hwang, H.-S.; Seo, S.-O. Using Gut Microbiota Modulation as a Precision Strategy Against Obesity. Int. J. Mol. Sci. 2025, 26, 6282. [Google Scholar] [CrossRef]
- Huber, H.; Schieren, A.; Holst, J.J.; Simon, M.-C. Dietary Impact on Fasting and Stimulated GLP-1 Secretion in Different Metabolic Conditions—A Narrative Review. Am. J. Clin. Nutr. 2024, 119, 599–627. [Google Scholar] [CrossRef]
- Rondanelli, M.; Miraglia, N.; Putignano, P.; Castagliuolo, I.; Brun, P.; Dall’Acqua, S.; Peroni, G.; Faliva, M.A.; Naso, M.; Nichetti, M.; et al. Effects of 60-Day Saccharomyces Boulardii and Superoxide Dismutase Supplementation on Body Composition, Hunger Sensation, Pro/Antioxidant Ratio, Inflammation and Hormonal Lipo-Metabolic Biomarkers in Obese Adults: A Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 2512. [Google Scholar] [CrossRef]
- Rabiei, S.; Hedayati, M.; Rashidkhani, B.; Saadat, N.; Shakerhossini, R. The Effects of Synbiotic Supplementation on Body Mass Index, Metabolic and Inflammatory Biomarkers, and Appetite in Patients with Metabolic Syndrome: A Triple-Blind Randomized Controlled Trial. J. Diet. Suppl. 2019, 16, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Jun, L.; Tao, Y.X.; Geetha, T.; Babu, J.R. Mitochondrial Adaptation in Skeletal Muscle: Impact of Obesity, Caloric Restriction, and Dietary Compounds. Curr. Nutr. Rep. 2024, 13, 500–515. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.J. Exercise for Clients Taking an Anti-Obesity Medication. ACSM’s Health Fit. J. 2024, 28, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Physical Activity. Available online: https://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 2 October 2025).
- Donnelly, J.E.; Blair, S.N.; Jakicic, J.M.; Manore, M.M.; Rankin, J.W.; Smith, B.K. Appropriate Physical Activity Intervention Strategies for Weight Loss and Prevention of Weight Regain for Adults. Med. Sci. Sports Exerc. 2009, 41, 459–471. [Google Scholar] [CrossRef]
- Mehrtash, F.; Dushay, J.; Manson, J.E. Integrating Diet and Physical Activity When Prescribing GLP-1s—Lifestyle Factors Remain Crucial. JAMA Intern. Med. 2025, 185, 1151. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Yanovski, S.Z.; Yanovski, J.A. Approach to Obesity Treatment in Primary Care: A Review. JAMA Intern. Med. 2024, 184, 818. [Google Scholar] [CrossRef]
- Chen, A.S.; Batsis, J.A. Treating Sarcopenic Obesity in the Era of Incretin Therapies: Perspectives and Challenges. Diabetes 2025, 74, dbi250004. [Google Scholar] [CrossRef]
- Pippi, R.; Moretti, L.; Carnevali, C.; Tingoli, L.; Settequattrini, A.; Fatone, C.; Perrone, C.; Reginato, E.; De Feo, P.; Fanelli, C.G. Strength Gains in Different Age Groups of Overweight/Obese Adults: A Pilot Uncontrolled Study. Cogent Soc. Sci. 2022, 8, 2106645. [Google Scholar] [CrossRef]
- Ryan, D.H. New Drugs for the Treatment of Obesity: Do We Need Approaches to Preserve Muscle Mass? Rev. Endocr. Metab. Disord. 2025, 26, 805–813. [Google Scholar] [CrossRef]
- Lundgren, J.R.; Janus, C.; Jensen, S.B.K.; Juhl, C.R.; Olsen, L.M.; Christensen, R.M.; Svane, M.S.; Bandholm, T.; Bojsen-Møller, K.N.; Blond, M.B.; et al. Healthy Weight Loss Maintenance with Exercise, Liraglutide, or Both Combined. N. Engl. J. Med. 2021, 384, 1719–1730. [Google Scholar] [CrossRef] [PubMed]
- Jensen, S.B.K.; Blond, M.B.; Sandsdal, R.M.; Olsen, L.M.; Juhl, C.R.; Lundgren, J.R.; Janus, C.; Stallknecht, B.M.; Holst, J.J.; Madsbad, S.; et al. Healthy Weight Loss Maintenance with Exercise, GLP-1 Receptor Agonist, or Both Combined Followed by One Year without Treatment: A Post-Treatment Analysis of a Randomised Placebo-Controlled Trial. EClinicalMedicine 2024, 69, 102475. [Google Scholar] [CrossRef] [PubMed]
- Caro, R.; Samsel, D.; Savel, P. Is There Sustained Weight Loss after Discontinuation of GLP-1 Agonist for Obesity Treatment? Evid.-Based Pract. 2023, 26, 7–8. [Google Scholar] [CrossRef]
- Rubino, D.; Abrahamsson, N.; Davies, M.; Hesse, D.; Greenway, F.L.; Jensen, C.; Lingvay, I.; Mosenzon, O.; Rosenstock, J.; Rubio, M.A.; et al. Effect of Continued Weekly Subcutaneous Semaglutide vs Placebo on Weight Loss Maintenance in Adults With Overweight or Obesity: The STEP 4 Randomized Clinical Trial. JAMA 2021, 325, 1414. [Google Scholar] [CrossRef]
- Aronne, L.J.; Sattar, N.; Horn, D.B.; Bays, H.E.; Wharton, S.; Lin, W.-Y.; Ahmad, N.N.; Zhang, S.; Liao, R.; Bunck, M.C.; et al. Continued Treatment With Tirzepatide for Maintenance of Weight Reduction in Adults With Obesity: The SURMOUNT-4 Randomized Clinical Trial. JAMA 2024, 331, 38. [Google Scholar] [CrossRef]
- Duncan, I.; Kerr, D.; Aggarwal, R.; Huynh, N. New Drugs for Obesity, Is the Excitement Affordable? Popul. Health Manag. 2023, 26, 356–357. [Google Scholar] [CrossRef]
- Cavallo, M.; Morgana, G.; Dozzani, I.; Gatti, A.; Vandoni, M.; Pippi, R.; Pucci, G.; Vaudo, G.; Fanelli, C.G. Unraveling Barriers to a Healthy Lifestyle: Understanding Barriers to Diet and Physical Activity in Patients with Chronic Non-Communicable Diseases. Nutrients 2023, 15, 3473. [Google Scholar] [CrossRef]
- Binsaeed, B.; Aljohani, F.G.; Alsobiai, F.F.; Alraddadi, M.; Alrehaili, A.A.; Alnahdi, B.S.; Almotairi, F.S.; Jumah, M.A.; Alrehaili, A.T. Barriers and Motivators to Weight Loss in People With Obesity. Cureus 2023, 15, e49040. [Google Scholar] [CrossRef]
- Åkerström, T.; Stolpe, M.N.; Widmer, R.; Dejgaard, T.F.; Højberg, J.M.; Møller, K.; Hansen, J.S.; Trinh, B.; Holst, J.J.; Thomsen, C.; et al. Endurance Training Improves GLP-1 Sensitivity and Glucose Tolerance in Overweight Women. J. Endocr. Soc. 2022, 6, bvac111. [Google Scholar] [CrossRef]
- Knudsen, S.H.; Karstoft, K.; Winding, K.; Holst, J.J.; Pedersen, B.K.; Solomon, T.P.J. Effects of Acute Exercise on Pancreatic Endocrine Function in Subjects with Type 2 Diabetes. Diabetes Obes. Metab. 2015, 17, 207–210. [Google Scholar] [CrossRef]
- Mehrtash, F.; Dushay, J.; Manson, J.E. I Am Taking a GLP-1 Weight-Loss Medication—What Should I Know? JAMA Intern. Med. 2025, 185, 1180. [Google Scholar] [CrossRef] [PubMed]
- Fitness for People Taking GLP-1 Agonists: A Comprehensive Guide. Available online: https://www.massgeneral.org/news/article/fitness-for-people-taking-glp-1-agonists#:~:text=Strength%20Training:%20Two%20days%20a,Monitor%20Blood%20Glucose%20Levels (accessed on 2 October 2025).
- Jakicic, J.M.; Rogers, R.J.; Church, T.S. Physical Activity in the New Era of Antiobesity Medications. Obesity 2024, 32, 234–236. [Google Scholar] [CrossRef] [PubMed]
- Fadini, G.P.; Bonora, B.M.; Ghiani, M.; Anichini, R.; Melchionda, E.; Fattor, B.; Fazion, S.; Meregalli, G.; Giaccari, A.; Avogaro, A.; et al. Oral or Injectable Semaglutide for the Management of Type 2 Diabetes in Routine Care: A Multicentre Observational Study Comparing Matched Cohorts. Diabetes Obes. Metab. 2024, 26, 2390–2400. [Google Scholar] [CrossRef] [PubMed]
- Knop, F.K.; Aroda, V.R.; Do Vale, R.D.; Holst-Hansen, T.; Laursen, P.N.; Rosenstock, J.; Rubino, D.M.; Garvey, W.T. Oral Semaglutide 50 Mg Taken Once per Day in Adults with Overweight or Obesity (OASIS 1): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet 2023, 402, 705–719. [Google Scholar] [CrossRef]
- Aroda, V.R.; Aberle, J.; Bardtrum, L.; Christiansen, E.; Knop, F.K.; Gabery, S.; Pedersen, S.D.; Buse, J.B. Efficacy and Safety of Once-Daily Oral Semaglutide 25 Mg and 50 Mg Compared with 14 Mg in Adults with Type 2 Diabetes (PIONEER PLUS): A Multicentre, Randomised, Phase 3b Trial. Lancet 2023, 402, 693–704. [Google Scholar] [CrossRef]
- Wharton, S.; Lingvay, I.; Bogdanski, P.; Duque Do Vale, R.; Jacob, S.; Karlsson, T.; Shaji, C.; Rubino, D.; Garvey, W.T. Oral Semaglutide at a Dose of 25 Mg in Adults with Overweight or Obesity. N. Engl. J. Med. 2025, 393, 1077–1087. [Google Scholar] [CrossRef]
- Wharton, S.; Aronne, L.J.; Stefanski, A.; Alfaris, N.F.; Ciudin, A.; Yokote, K.; Halpern, B.; Shukla, A.P.; Zhou, C.; Macpherson, L.; et al. Orforglipron, an Oral Small-Molecule GLP-1 Receptor Agonist for Obesity Treatment. N. Engl. J. Med. 2025, 393, NEJMoa2511774. [Google Scholar] [CrossRef]
- Rosenstock, J.; Hsia, S.; Nevarez Ruiz, L.; Eyde, S.; Cox, D.; Wu, W.-S.; Liu, R.; Li, J.; Fernández Landó, L.; Denning, M.; et al. Orforglipron, an Oral Small-Molecule GLP-1 Receptor Agonist, in Early Type 2 Diabetes. N. Engl. J. Med. 2025, 393, 1065–1076. [Google Scholar] [CrossRef]
- Garvey, W.T.; Blüher, M.; Osorto Contreras, C.K.; Davies, M.J.; Winning Lehmann, E.; Pietiläinen, K.H.; Rubino, D.; Sbraccia, P.; Wadden, T.; Zeuthen, N.; et al. Coadministered Cagrilintide and Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2025, 393, 635–647. [Google Scholar] [CrossRef]
- Davies, M.J.; Bajaj, H.S.; Broholm, C.; Eliasen, A.; Garvey, W.T.; Le Roux, C.W.; Lingvay, I.; Lyndgaard, C.B.; Rosenstock, J.; Pedersen, S.D. Cagrilintide–Semaglutide in Adults with Overweight or Obesity and Type 2 Diabetes. N. Engl. J. Med. 2025, 393, 648–659. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Ryan, D.H.; Bays, H.E.; Ebeling, P.R.; Mackowski, M.G.; Philipose, N.; Ross, L.; Liu, Y.; Burns, C.E.; Abbasi, S.A.; et al. Once-Monthly Maridebart Cafraglutide for the Treatment of Obesity—A Phase 2 Trial. N. Engl. J. Med. 2025, 393, 843–857. [Google Scholar] [CrossRef]
- De Fano, M.; Malara, M.; Rucco, S.; Manco, M.; Fanelli, C.G.; Bolli, G.B.; Porcellati, F. A New Role for Glucagon: From Secondary Hormone to Key Player. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 104233. [Google Scholar] [CrossRef] [PubMed]
- Jastreboff, A.M.; Kaplan, L.M.; Frías, J.P.; Wu, Q.; Du, Y.; Gurbuz, S.; Coskun, T.; Haupt, A.; Milicevic, Z.; Hartman, M.L. Triple–Hormone-Receptor Agonist Retatrutide for Obesity—A Phase 2 Trial. N. Engl. J. Med. 2023, 389, 514–526. [Google Scholar] [CrossRef] [PubMed]
- Caruso, I.; Di Gioia, L.; Di Molfetta, S.; Caporusso, M.; Cignarelli, A.; Sorice, G.P.; Laviola, L.; Giorgino, F. The Real-World Safety Profile of Tirzepatide: Pharmacovigilance Analysis of the FDA Adverse Event Reporting System (FAERS) Database. J. Endocrinol. Investig. 2024, 47, 2671–2678. [Google Scholar] [CrossRef] [PubMed]
- Borner, T.; Geisler, C.E.; Fortin, S.M.; Cosgrove, R.; Alsina-Fernandez, J.; Dogra, M.; Doebley, S.; Sanchez-Navarro, M.J.; Leon, R.M.; Gaisinsky, J.; et al. GIP Receptor Agonism Attenuates GLP-1 Receptor Agonist–Induced Nausea and Emesis in Preclinical Models. Diabetes 2021, 70, 2545–2553. [Google Scholar] [CrossRef]
- De Fano, M.; Baluganti, S.; Manco, M.; Porcellati, F.; Fanelli, C.G.; Bassotti, G. The Sweet Side of Constipation: Colonic Motor Dysfunction in Diabetes Mellitus. Nutrients 2025, 17, 3038. [Google Scholar] [CrossRef]
- Miller, C.K. Medical Nutrition Therapy: Still Relevant in the Era of Pharmacotherapy for Obesity Care. J. Acad. Nutr. Diet. 2025, 125, 595–599. [Google Scholar] [CrossRef]
- Gigliotti, L.; Warshaw, H.; Evert, A.; Dawkins, C.; Schwartz, J.; Susie, C.; Kushner, R.; Subramanian, S.; Handu, D.; Rozga, M. Incretin-Based Therapies and Lifestyle Interventions: The Evolving Role of Registered Dietitian Nutritionists in Obesity Care. J. Acad. Nutr. Diet. 2025, 125, 408–421. [Google Scholar] [CrossRef]
- Kanbay, M.; Siriopol, D.; Copur, S.; Hasbal, N.B.; Güldan, M.; Kalantar-Zadeh, K.; Garfias-Veitl, T.; Von Haehling, S. Effect of Bimagrumab on Body Composition: A Systematic Review and Meta-Analysis. Aging Clin. Exp. Res. 2024, 36, 185. [Google Scholar] [CrossRef]
- A Randomized, Double-Blind, Placebo-Controlled Multicenter Study of Intravenous Bimagrumab, Alone or in Addition to Open Label Subcutaneous Semaglutide, to Investigate the Efficacy and Safety in Overweight or Obese Men and Women. Clinical Trial.Gov NCT05616013. Available online: https://www.clinicaltrials.gov/study/NCT05616013 (accessed on 17 October 2025).
- Chavez, A.M.; Carrasco Barria, R.; León-Sanz, M. Nutrition Support Whilst on Glucagon-like Peptide-1 Based Therapy. Is It Necessary? Curr. Opin. Clin. Nutr. Metab. Care 2025, 28, 351–357. [Google Scholar] [CrossRef]

| Authors | Sample | Intervention Modalities (Weeks) | Mean Weight at Baseline (kg) | Results |
|---|---|---|---|---|
| Pi-Sunyer X et al. [18] | N: 3731; Mean age: 45.1 ± 12 yrs Mean BMI = 38.3 (kg/m2) | Liraglutide 3.0 mg sc daily vs. Placebo; Duration: 56 weeks | 106.2 | Weight reduction (%): −8 vs. −2.6 |
| Wilding JPH et al. [20] | N = 1961 Mean age: 46 yrs Mean BMI = 37.9 | Semaglutide 2.4 mg sc weekly vs. Placebo; Duration: 68 weeks | 105.3 | Weight reduction (%): −14.9 vs. −2.4 |
| Jastreboff AM et al. [22] | N: 2539; Mean age: 44.9 ± 12.5 yrs Mean BMI = 38 | Tirzepatide 15 mg sc weekly vs. Placebo; Duration: 72 weeks | 104.8 | Weight reduction (%): −20.9 vs. −3.1 |
| Knop FK et al. [139] | N: 709; Mean age:50 ± 13 yrs Mean BMI = 37·5 ± 6·5 | Semaglutide 50 mg os daily vs. Placebo; Duration: 68 weeks | 105.4 | Weight reduction (%): −15.1 vs. 2.4 |
| Wharton S et al. [141] | N: 205; Mean age: 47.5 ± 13 yrs Mean BMI = 36.0 | Semaglutide 25 mg os daily vs. Placebo; Duration: 71 weeks | 105.9 | Weight reduction (%): −13.6 vs. −2.2 |
| Wharton S et al. [142] | N: 3127; Mean age: 45.1 ± 11.9 Mean BMI = 37.0 ± 6.5 | Orforglipron 36 mg os daily vs. Placebo; Duration: 72 weeks | 103.2 | Weight reduction (%): −11.2 vs. −3.1 |
| Garvey TW et al. [144] | N: 3417; Mean age: 47.0 ± 11.8 yrs Mean BMI = 37.9 | CagriSema 2.4 mg + 2.4 mg sc weekly vs. Placebo, Semaglutide 2.4 mg sc, Cargilintide 2.4 mg sc Duration: 68 weeks | 106.9 | Weight reduction (%): −20.4 vs. −3.0 (Placebo) |
| Jastreboff AM et al. [146] | N: 592; Mean age 51.5 ± 11.8 Mean BMI = 37.9 | Maridebart cafraglutide 420 mg sc monthly vs. Placebo; Duration: 52 weeks | 107.4 | Weight reduction (%): −16.2 vs. 2.5 |
| Jastreboff AM et al. [148] | N: 338; Mean age: 48.2 ± 12.7 yrs Mean BMI = 37.3 | Retatrutide 12 mg sc weekly vs. Placebo; Duration: 48 weeks | 107.7 | Weight reduction (%): −24.2 vs. −3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Barana, L.; De Fano, M.; Cavallo, M.; Manco, M.; Prete, D.; Fanelli, C.G.; Porcellati, F.; Pippi, R. Nutrition and Physical Activity in Optimizing Weight Loss and Lean Mass Preservation in the Incretin-Based Medications Era: A Narrative Review. Nutrients 2026, 18, 131. https://doi.org/10.3390/nu18010131
Barana L, De Fano M, Cavallo M, Manco M, Prete D, Fanelli CG, Porcellati F, Pippi R. Nutrition and Physical Activity in Optimizing Weight Loss and Lean Mass Preservation in the Incretin-Based Medications Era: A Narrative Review. Nutrients. 2026; 18(1):131. https://doi.org/10.3390/nu18010131
Chicago/Turabian StyleBarana, Luisa, Michelantonio De Fano, Massimiliano Cavallo, Marcello Manco, Deborah Prete, Carmine Giuseppe Fanelli, Francesca Porcellati, and Roberto Pippi. 2026. "Nutrition and Physical Activity in Optimizing Weight Loss and Lean Mass Preservation in the Incretin-Based Medications Era: A Narrative Review" Nutrients 18, no. 1: 131. https://doi.org/10.3390/nu18010131
APA StyleBarana, L., De Fano, M., Cavallo, M., Manco, M., Prete, D., Fanelli, C. G., Porcellati, F., & Pippi, R. (2026). Nutrition and Physical Activity in Optimizing Weight Loss and Lean Mass Preservation in the Incretin-Based Medications Era: A Narrative Review. Nutrients, 18(1), 131. https://doi.org/10.3390/nu18010131

