Synergistic Effects of Medium-Chain Triglyceride Supplementation and Resistance Training on Physical Function and Muscle Health in Post-Stroke Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Setting
2.2. Data Collection
2.3. MCT Supplementation
- -
- Malnutrition assessed as MNA-SF ≤ 7;
- -
- Low body weight with BMI < 18.5 kg/m2;
- -
- Low skeletal muscle mass assessed via bioelectrical impedance analysis (BIA) (men: SMI < 7.0 kg/m2, women: SMI < 5.7 kg/m2);
- -
- Dysphagia or swallowing difficulty with FILS ≤ 7;
- -
- Patients for whom weight loss would be a concern under regular nutritional management.
- Ingredients: 150 g soft rice (equivalent to 100 g regular rice), 12 g 100% pure MCT oil, and 1.5 g 100% pure MCT powder (Nisshin OilliO Group, Ltd., Tokyo, Japan).
- The MCT oil and powder were measured, mixed, and combined with the soft rice.
- The formulation was determined through experimentation to optimize taste, texture, appearance, and odor.
- Soft rice was chosen for ease of mixing with the powder and oil.
- One cup of MCT-enhanced rice (exposure of interest in this study) contains:
- -
- 305 kcal of energy;
- -
- 2.5 g of protein;
- -
- 13.4 g of fat, including 11.8 g of MCT.
- In contrast, one cup of regular rice (control in this study) contains:
- -
- 168 kcal of energy;
- -
- 2.5 g of protein;
- -
- 0.3 g of fat.
2.4. Chair-Stand Exercise
2.5. Outcomes
2.6. Sample Size Calculation
2.7. Statistical Analysis
2.8. Ethics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bauer, J.; Morley, J.E.; Schols, A.M.W.J.; Ferrucci, L.; Cruz-Jentoft, A.J.; Dent, E.; Baracos, V.E.; Crawford, J.A.; Doehner, W.; Heymsfield, S.B.; et al. Sarcopenia: A Time for Action. An SCWD Position Paper. J. Cachexia Sarcopenia Muscle 2019, 10, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Dent, E.; Wright, O.R.; Woo, J.; Hoogendijk, E.O. Malnutrition in older adults. Lancet 2023, 401, 951–966. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, A.J.; Amog, K.; Phillips, S.; Parise, G.; McNicholas, P.D.; de Souza, R.J.; Thabane, L.; Raina, P. The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: A systematic review and meta-analyses. Age Ageing 2019, 48, 48–56. [Google Scholar] [CrossRef]
- Chew, S.T.; Nguyen, H.T.T.; Joshi, S.; Kamaruzzaman, S.B.; Landi, F.; Manuel, M.V.; Moral, P.G.; Muangpaisan, W.; Nangia, V.; Setiati, S.; et al. The rising tsunami of poor muscle health and sarcopenia in Asia-Pacific: Time for focused attention and targeted interventions. Arch. Gerontol. Geriatr. 2024, 117, 105275. [Google Scholar] [CrossRef]
- Kirk, B.; Cawthon, P.M.; Arai, H.; Ávila-Funes, J.A.; Barazzoni, R.; Bhasin, S.; Binder, E.F.; Bruyere, O.; Cederholm, T.; Chen, L.-K.; et al. The Conceptual Definition of Sarcopenia: Delphi Consensus from the Global Leadership Initiative in Sarcopenia (GLIS). Age Ageing 2024, 53, afae052. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Yuki, M.; Otsuki, M. Prevalence of stroke-related sarcopenia: A systematic review and meta-analysis. J. Stroke Cerebrovasc. Dis. 2020, 29, 105092. [Google Scholar] [CrossRef]
- Tang, H.; Gong, F.; Guo, H.; Dai, Z.; Wang, J.; Liu, B.; Li, T.; Tang, X.; Dong, J.; Pan, S.; et al. Malnutrition and Risk of Mortality in Ischemic Stroke Patients Treated With Intravenous Thrombolysis. Front. Aging Neurosci. 2022, 14, 834973. [Google Scholar] [CrossRef]
- Yuan, K.; Zhu, S.; Wang, H.; Chen, J.; Zhang, X.; Xu, P.; Xie, Y.; Zhu, X.; Zhu, W.; Sun, W.; et al. Association between malnutrition and long-term mortality in older adults with ischemic stroke. Clin. Nutr. 2021, 40, 2535–2542. [Google Scholar] [CrossRef]
- FOOD Trial Collaboration. Poor nutritional status on admission predicts poor outcomes after stroke: Observational data from the FOOD trial. Stroke 2003, 34, 1450–1456. [Google Scholar] [CrossRef]
- Yoo, S.-H.; Kim, J.S.; Kwon, S.U.; Yun, S.-C.; Koh, J.-Y.; Kang, D.-W. Undernutrition as a Predictor of Poor Clinical Outcomes in Acute Ischemic Stroke Patients. Arch. Neurol. 2008, 65, 39–43. [Google Scholar] [CrossRef]
- Aliasghari, F.; Izadi, A.; Khalili, M.; Farhoudi, M.; Ahmadiyan, S.; Deljavan, R. Impact of Premorbid Malnutrition and Dysphagia on Ischemic Stroke Outcome in Elderly Patients: A Community-Based Study. J. Am. Coll. Nutr. 2019, 38, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Di Vincenzo, O.; Luisi, M.L.E.; Alicante, P.; Ballarin, G.; Biffi, B.; Gheri, C.F.; Scalfi, L. The assessment of the risk of malnutrition (undernutrition) in stroke patients. Nutrients 2023, 15, 683. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.M.; Chen, H.M. Advances in the beneficial effects of nutrition on stroke-related Sarcopenia: A narrative review. Medicine 2023, 102, e34048. [Google Scholar] [CrossRef]
- Frontera, W.R. Rehabilitation of Older Adults with Sarcopenia: From Cell to Functioning. Prog. Rehabil. Med. 2022, 7, 20220044. [Google Scholar] [CrossRef]
- Churilov, I.; Churilov, L.; MacIsaac, R.J.; Ekinci, E.I. Systematic review and meta-analysis of prevalence of sarcopenia in post acute inpatient rehabilitation. Osteoporos. Int. 2018, 29, 805–812. [Google Scholar] [CrossRef]
- Yan, H.; Li, J.; Xian, L.; Li, Y.; Li, S.; Wen, Q. Risk factors of stroke-related sarcopenia: A systematic review and meta-analysis. Front. Aging 2025, 6, 1452708. [Google Scholar] [CrossRef] [PubMed]
- Nozoe, M.; Kubo, H.; Yamamoto, M.; Ikeji, R.; Seike, H.; Majima, K.; Shimada, S. Muscle weakness is more strongly associated with functional outcomes in patients with stroke than sarcopenia or muscle wasting: An observational study. Aging Clin. Exp. Res. 2024, 36, 4. [Google Scholar] [CrossRef]
- Li, W.; Yue, T.; Liu, Y. New understanding of the pathogenesis and treatment of stroke-related sarcopenia. Biomed. Pharmacother. 2020, 131, 110721. [Google Scholar] [CrossRef]
- Azzollini, V.; Dalise, S.; Chisari, C. How Does Stroke Affect Skeletal Muscle? State of the Art and Rehabilitation Perspective. Front. Neurol. 2021, 12, 797559. [Google Scholar] [CrossRef]
- Nagano, F.; Yoshimura, Y.; Bise, T.; Shimazu, S.; Shiraishi, A. Muscle mass gain is positively associated with functional recovery in patients with sarcopenia after stroke. J. Stroke Cerebrovasc. Dis. 2020, 29, 105017. [Google Scholar] [CrossRef]
- Nagano, F.; Yoshimura, Y.; Matsumoto, A.; Bise, T.; Kido, Y.; Shimazu, S.; Shiraishi, A. Muscle Strength Gain is Positively Associated with Functional Recovery in Patients with Sarcopenic Obesity After Stroke. J. Stroke Cerebrovasc. Dis. 2022, 31, 106429. [Google Scholar] [CrossRef] [PubMed]
- Pradines, M.; Ghédira, M.; Bignami, B.; Vielotte, J.; Bayle, N.; Marciniak, C.; Burke, D.; Hutin, E.; Gracies, J.-M. Do muscle changes contribute to the neurological disorder in spastic paresis? Front. Neurol. 2022, 13, 817229. [Google Scholar] [CrossRef] [PubMed]
- Beckwée, D.; Delaere, A.; Aelbrecht, S.; Baert, V.; Beaudart, C.; Bruyere, O.; de Saint-Hubert, M.; Bautmans, I. Exercise interventions for the prevention and treatment of sarcopenia. A systematic umbrella review. J. Nutr. Health aging 2019, 23, 494–502. [Google Scholar] [CrossRef]
- Lee, H.; Lee, I.H.; Heo, J.; Baik, M.; Park, H.; Lee, H.S.; Nam, H.S.; Kim, Y.D. Impact of Sarcopenia on Functional Outcomes Among Patients With Mild Acute Ischemic Stroke and Transient Ischemic Attack: A Retrospective Study. Front. Neurol. 2022, 13, 841945. [Google Scholar] [CrossRef]
- Li, S.; Gonzalez-Buonomo, J.; Ghuman, J.; Huang, X.; Malik, A.; Yozbatiran, N.; Magat, E.; Francisco, G.E.; Wu, H.; Frontera, W.R. Aging after stroke: How to define post-stroke sarcopenia and what are its risk factors? Eur. J. Phys. Rehabil. Med. 2022, 58, 683. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.Y.; Tang, T.K.; Chan, E.S.; Phuah, E.T.; Lai, O.M.; Tan, C.P.; Wang, Y.; Ab Karim, N.A.; Mat Dian, N.H.; Tan, J.S. Medium chain triglyceride and medium-and long chain triglyceride: Metabolism, production, health impacts and its applications—A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 4169–4185. [Google Scholar] [CrossRef]
- Dunn, E.; Zhang, B.; Sahota, V.K.; Augustin, H. Potential benefits of medium chain fatty acids in aging and neurodegenerative disease. Front. Aging Neurosci. 2023, 15, 1230467. [Google Scholar] [CrossRef]
- Nimbkar, S.; Leena, M.M.; Moses, J.A.; Anandharamakrishnan, C. Medium chain triglycerides (MCT): State-of-the-art on chemistry, synthesis, health benefits and applications in food industry. Compr. Rev. Food Sci. Food Saf. 2022, 21, 843–867. [Google Scholar] [CrossRef]
- Greenberger, N.J.; Skillman, T.G. Medium-chain triglycerides. N. Engl. J. Med. 1969, 280, 1045–1058. [Google Scholar] [CrossRef]
- Jadhav, H.B.; Annapure, U.S. Triglycerides of medium-chain fatty acids: A concise review. J. Food Sci. Technol. 2022, 60, 2143–2152. [Google Scholar] [CrossRef]
- Abe, S.; Ezaki, O.; Suzuki, M. Medium-Chain Triglycerides in Combination with Leucine and Vitamin D Increase Muscle Strength and Function in Frail Elderly Adults in a Randomized Controlled Trial. J. Nutr. 2016, 146, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Kojima, K.; Ishikawa, H.; Watanabe, S.; Nosaka, N.; Mutoh, T. A Randomized, Double-Blind, Controlled Trial Assessing If Medium-Chain Triglycerides in Combination with Moderate-Intensity Exercise Increase Muscle Strength in Healthy Middle-Aged and Older Adults. Nutrients 2023, 15, 3275. [Google Scholar] [CrossRef]
- St-Onge, M.P.; Bosarge, A. Weight-loss diet that includes consumption of medium-chain triacylglycerol oil leads to a greater rate of weight and fat mass loss than does olive oil. Am. J. Clin. Nutr. 2008, 87, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Ezaki, O.; Abe, S. Medium-chain triglycerides (8:0 and 10:0) increase muscle mass and function in frail older adults: A combined data analysis of clinical trials. Front. Nutr. 2023, 10, 1284497. [Google Scholar] [CrossRef]
- Shimazu, S.; Yoshimura, Y.; Ueno, I.; Kudo, M.; Shiraishi, A.; Bise, T.; Nagano, F.; Hamada, T. Kumareha Power Rice improves nutritional status and activities of daily living in post-stroke patients. JSPEN 2019, 1, 149–156. [Google Scholar]
- Breen, L.; Phillips, S.M. Interactions between exercise and nutrition to prevent muscle waste during ageing. Br. J. Clin. Pharmacol. 2012, 75, 708–715. [Google Scholar] [CrossRef]
- Mcleod, J.C.; Currier, B.S.; Lowisz, C.V.; Phillips, S.M. The influence of resistance exercise training prescription variables on skeletal muscle mass, strength, and physical function in healthy adults: An umbrella review. J. Sport. Health Sci. 2024, 13, 47–60. [Google Scholar] [CrossRef]
- Izquierdo, M.; Merchant, R.A.; Morley, J.E.; Anker, S.D.; Aprahamian, I.; Arai, H.; Aubertin-Leheudre, M.; Bernabei, R.; Cadore, E.L.; Cesari, M.; et al. International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. J. Nutr. Health Aging. 2021, 25, 824–853. [Google Scholar] [CrossRef]
- Evans, W.J. Exercise training guidelines for the elderly. Med. Sci. Sports Exerc. 1999, 31, 12–17. [Google Scholar] [CrossRef]
- Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. Resistance Training for Older Adults: Position Statement From the National Strength and Conditioning Association. J. Strength Cond. Res. 2019, 33, 2019–2052. [Google Scholar] [CrossRef]
- Khodadad Kashi, S.; Mirzazadeh, Z.S.; Saatchian, V. A Systematic Review and Meta-Analysis of Resistance Training on Quality of Life, Depression, Muscle Strength, and Functional Exercise Capacity in Older Adults Aged 60 Years or More. Biol. Res. Nurs. 2023, 25, 88–106. [Google Scholar] [CrossRef]
- Watanabe, Y.; Madarame, H.; Ogasawara, R.; Nakazato, K.; Ishii, N. Effect of very low-intensity resistance training with slow movement on muscle size and strength in healthy older adults. Clin. Physiol. Funct. Imaging 2013, 34, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.J.; Ye, W.; Korivi, M. Low-to-moderate-intensity resistance exercise effectively improves arterial stiffness in adults: Evidence from systematic review, meta-analysis, and meta-regression analysis. Front. Cardiovasc. Med. 2021, 8, 738489. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Li, Y.; Yang, J.; Li, X.; Zeng, N.; Martin, R.L. The effectiveness of low intensity exercise and blood flow restriction without exercise on exercise induced muscle damage: A systematic review. Phys. Ther. Sport 2020, 46, 77–88. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Bise, T.; Shimazu, S.; Shiraishi, A.; Kido, Y.; Matsumoto, A. Chair-Stand Exercise Improves Sarcopenia in Rehabilitation Patients after Stroke. Nutrients 2022, 14, 461. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Bise, T.; Shimazu, S.; Shiraishi, A. Chair-stand exercise improves post-stroke dysphagia. Geriatr. Gerontol. Int. 2020, 20, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Kido, Y.; Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Bise, T.; Matsumoto, A.; Shimazu, S.; Shiraishi, A.; Yoneda, K.; Hamada, T.; et al. Effect of Chair-stand Exercise on Improving Urinary and Defecation Independence in Post-stroke Rehabilitation Patients with Sarcopenia. Prog. Rehabil. Med. 2024, 9, 20240029. [Google Scholar] [CrossRef]
- Robinson, S.; Denison, H.; Cooper, C.; Aihie Sayer, A. Prevention and optimal management of sarcopenia: A review of combined exercise and nutrition interventions to improve muscle outcomes in older people. CIA 2015, 10, 859–869. [Google Scholar] [CrossRef]
- Shen, Y.; Shi, Q.; Nong, K.; Li, S.; Yue, J.; Huang, J.; Dong, B.; Beauchamp, M.; Hao, Q. Exercise for sarcopenia in older people: A systematic review and network meta-analysis. J. Cachexia Sarcopenia Muscle 2023, 14, 1199–1211. [Google Scholar] [CrossRef]
- Wu, P.Y.; Huang, K.S.; Chen, K.M.; Chou, C.P.; Tu, Y.K. Exercise, Nutrition, and Combined Exercise and Nutrition in Older Adults with Sarcopenia: A Systematic Review and Network Meta-analysis. Maturitas 2021, 145, 38–48. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Matsumoto, A.; Inoue, T.; Okamura, M.; Kuzuya, M. Protein Supplementation Alone or Combined with Exercise for Sarcopenia and Physical Frailty: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Arch. Gerontol. Geriatr. 2025, 131, 105783. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, S.; Abo, M.; Okamoto, T.; Miyamura, K. Transitional and Long-Term Care System in Japan and Current Challenges for Stroke Patient Rehabilitation. Front. Neurol. 2022, 12, 711470. [Google Scholar] [CrossRef] [PubMed]
- Moisey, L.L.; Merriweather, J.L.; Drover, J.W. The role of nutrition rehabilitation in the recovery of survivors of critical illness: Underrecognized and underappreciated. Crit. Care 2022, 26, 1–17. [Google Scholar] [CrossRef]
- Shiraishi, A.; Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Matsumoto, A.; Shimazu, S.; Kido, Y.; Bise, T.; Kuzuhara, A.; Hori, K.; et al. Impaired oral status is associated with sarcopenic obesity in post-stroke patients. Gerodontology 2024, 42, 27–34. [Google Scholar] [CrossRef]
- Matsumoto, A.; Yoshimura, Y.; Nagano, F.; Shimazu, S.; Shiraishi, A.; Kido, Y.; Bise, T. Potentially inappropriate medications are negatively associated with functional recovery in patients with sarcopenia after stroke. Aging Clin. Exp. Res. 2022, 34, 2845–2855. [Google Scholar] [CrossRef]
- Inoue, T.; Takeuchi, I.; Iida, Y.; Takahashi, K.; Nagano, F.; Miyazaki, S.; Shirado, K.; Yoshimura, Y.; Momosaki, R.; Maeda, K.; et al. Disease-specific Nutritional Physical Therapy: A Position Paper by the Japanese Association of Rehabilitation Nutrition (Secondary Publication). JMA J. 2022, 5, 252–262. [Google Scholar]
- Rubenstein, L.Z.; Harker, J.O.; Salvà, A.; Guigoz, Y.; Vellas, B. Screening for undernutrition in geriatric practice: Developing the short-form mini-nutritional assessment (MNA-SF). J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M366–M372. [Google Scholar] [CrossRef] [PubMed]
- Kidd, D.; Stewart, G.; Baldry, J.; Johnson, J.; Rossiter, D.; Petruckevitch, A.; Thompson, A.J. The Functional Independence Measure: A comparative validity and reliability study. Disabil. Rehabil. 1995, 17, 10–14. [Google Scholar] [CrossRef]
- Safaz, I.; Yilmaz, B.; Yaşar, E.; Alaca, R. Brunnstrom recovery stage and motricity index for the evaluation of upper extremity in stroke: Analysis for correlation and responsiveness. Int. J. Rehabil. Res. 2009, 32, 228–231. [Google Scholar] [CrossRef]
- Banks, J.L.; Marotta, C.A. Outcomes validity and reliability of the modified Rankin scale: Implications for stroke clinical trials: A literature review and synthesis. Stroke 2007, 38, 1091–1096. [Google Scholar] [CrossRef]
- Charlson, M.E.; Carrozzino, D.; Guidi, J.; Patierno, C. Charlson Comorbidity Index: A Critical Review of Clinimetric Properties. Psychother. Psychosom. 2022, 91, 8–35. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, M.; Ye, T.; Wang, Z.; Yao, Y. Application of Bioelectrical Impedance Analysis in Nutritional Management of Patients with Chronic Kidney Disease. Nutrients 2023, 15, 3941. [Google Scholar] [CrossRef]
- Ling, C.H.; de Craen, A.J.; Slagboom, P.E.; Gunn, D.A.; Stokkel, M.P.; Westendorp, R.G.; Maier, A.B. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin. Nutr. 2011, 30, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, H. Accuracy of segmental multi-frequency bioelectrical impedance analysis for assessing whole-body and appendicular fat mass and lean soft tissue mass in frail women aged 75 years and older. Eur. J. Clin. Nutr. 2013, 67, 395–400. [Google Scholar] [CrossRef]
- Nakanishi, N.; Okura, K.; Okamura, M.; Nawata, K.; Shinohara, A.; Tanaka, K.; Katayama, S. Measuring and Monitoring Skeletal Muscle Mass after Stroke: A Review of Current Methods and Clinical Applications. J. Stroke Cerebrovasc. Dis. 2021, 30, 105736. [Google Scholar] [CrossRef] [PubMed]
- Lian, R.; Jiang, G.; Liu, Q.; Shi, Q.; Luo, S.; Lu, J.; Yang, M. Validated Tools for Screening Sarcopenia: A Scoping Review. J. Am. Med. Dir. Assoc. 2023, 24, 1645–1654. [Google Scholar] [CrossRef]
- Quattrocchi, A.; Garufi, G.; Gugliandolo, G.; De Marchis, C.; Collufio, D.; Cardali, S.M.; Donato, N. Handgrip Strength in Health Applications: A Review of the Measurement Methodologies and Influencing Factors. Sensors 2024, 24, 5100. [Google Scholar] [CrossRef] [PubMed]
- McClave, S.A.; DiBaise, J.K.; E Mullin, G.; Martindale, R.G. ACG Clinical Guideline: Nutrition Therapy in the Adult Hospitalized Patient. Am. J. Gastroenterol. 2016, 111, 315–334. [Google Scholar] [CrossRef]
- Watanabe, S.; Morita, Y.; Suzuki, S.; Kochi, K.; Ohno, M.; Liu, K.; Iida, Y. Effects of the Intensity and Activity Time of Early Rehabilitation on Activities of Daily Living Dependence in Mechanically Ventilated Patients. Prog. Rehabil. Med. 2021, 6, 20210054. [Google Scholar] [CrossRef]
- Kido, Y.; Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Matsumoto, A.; Bise, T.; Shimazu, S.; Shiraishi, A. Improvement in sarcopenia is positively associated with recovery of independence in urination and defecation in patients undergoing rehabilitation after a stroke. Nutrition 2023, 107, 111944. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Shimazu, S.; Shiraishi, A.; Wakabayashi, H.; Nagano, F.; Matsumoto, A.; Kido, Y.; Bise, T.; Kuzuhara, A.; Hamada, T.; et al. Triad of rehabilitation, nutrition support, and oral management improves activities of daily living and muscle health in hospitalized patients after stroke. Clin. Nutr. ESPEN 2024, 63, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Matsumoto, A.; Shimazu, S.; Shiraishi, A.; Kido, Y.; Bise, T.; Hamada, T.; Yoneda, K. Dual burden of sarcopenia and impaired oral status on activities of daily living, cognition and swallowing outcomes in post-stroke patients. Arch. Gerontol. Geriatr. 2025, 129, 105648. [Google Scholar] [CrossRef] [PubMed]
- Neely, J.G.; Hartman, J.M.; Forsen, J.W.; Wallace, M.S. Tutorials in clinical research: VII. Understanding comparative statistics (contrast)—Part B: Application of T-test, Mann-Whitney U, and chi-square. Laryngoscope 2003, 113, 1719–1725. [Google Scholar] [CrossRef]
- O’Brien, M.W.; Mallery, K.; Rockwood, K.; Theou, O. Impact of Hospitalization on Patients Ability to Perform Basic Activities of Daily Living. Can. Geriatr. J. 2023, 26, 524–529. [Google Scholar] [CrossRef]
- Li, X.; Zheng, T.; Guan, Y.; Li, H.; Zhu, K.; Shen, L.; Yin, Z. ADL recovery trajectory after discharge and its predictors among baseline-independent older inpatients. BMC Geriatr. 2020, 20, 86. [Google Scholar] [CrossRef] [PubMed]
- Uhl, S.; Siddique, S.M.; McKeever, L.; Bloschichak, A.; D’Anci, K.; Leas, B.; Mull, N.K.; Tsou, A.Y. Malnutrition in Hospitalized Adults: A Systematic Review [Internet]. Available online: https://pubmed.ncbi.nlm.nih.gov/34705358/ (accessed on 29 April 2025).
- Bohannon, R.W. Grip Strength: An Indispensable Biomarker For Older Adults. Clin. Interv. Aging 2019, 14, 1681–1691. [Google Scholar] [CrossRef]
- Dugan, B.; Conway, J.; Duggal, N.A. Inflammaging as a target for healthy ageing. Age Ageing 2023, 52, afac328. [Google Scholar] [CrossRef] [PubMed]
- Freedland, K.E.; Reese, R.L.; Steinmeyer, B.C. Multivariable models in biobehavioral research. Psychosom. Med. 2009, 71, 205–216. [Google Scholar] [CrossRef]
- Chung, N. Impact of the ketogenic diet on body fat, muscle mass, and exercise performance: A review. Phys. Act. Nutr. 2023, 27, 1–7. [Google Scholar] [CrossRef]
- Fujikura, Y.; Sugihara, H.; Hatakeyama, M.; Oishi, K.; Yamanouchi, K. Ketogenic diet with medium-chain triglycerides restores skeletal muscle function and pathology in a rat model of Duchenne muscular dystrophy. FASEB J. 2021, 35, e21861. [Google Scholar] [CrossRef]
- Siripoksup, P.; Cao, G.; Cluntun, A.A.; Maschek, J.A.; Pearce, Q.; Brothwell, M.J.; Jeong, M.-Y.; Eshima, H.; Ferrara, P.J.; Opurum, P.C.; et al. Sedentary behavior in mice induces metabolic inflexibility by suppressing skeletal muscle pyruvate metabolism. J. Clin. Investig. 2024, 134, e167371. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Z.; Han, Y.; Xu, J.; Huang, W.; Li, Z. Medium Chain Triglycerides enhances exercise endurance through the increased mitochondrial biogenesis and metabolism. PLoS ONE 2018, 13, e0191182. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Liu, H.W.; Hung, T.M. The Ketogenic Effect of Medium-Chain Triacylglycerides. Front. Nutr. 2021, 8, 747284. [Google Scholar] [CrossRef] [PubMed]
- Grevendonk, L.; Connell, N.J.; McCrum, C.; Fealy, C.E.; Bilet, L.; Bruls, Y.M.H.; Mevenkamp, J.; Schrauwen-Hinderling, V.B.; Jörgensen, J.A.; Moonen-Kornips, E.; et al. Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. Nat. Commun. 2021, 12, 4773. [Google Scholar] [CrossRef]
- St-Pierre, V.; Vandenberghe, C.; Lowry, C.-M.; Fortier, M.; Castellano, C.-A.; Wagner, R.; Cunnane, S.C. Plasma Ketone and Medium Chain Fatty Acid Response in Humans Consuming Different Medium Chain Triglycerides During a Metabolic Study Day. Front. Nutr. 2019, 6, 46. [Google Scholar] [CrossRef]
Variable | Total N = 1080 | Patients Receiving Either MCT 1 or EXERCISE 2, or Both | |||
---|---|---|---|---|---|
MCT+/EXERCISE− N = 126 | MCT−/EXERCISE+ N = 468 | MCT+/EXERCISE+ N = 58 | p-Value # | ||
Age, years | 75.6 (9.3) | 78.9 (11.2) | 69.1 (13.9) | 71.0 (14.0) | <0.001 |
Sex, male | 584 (54.1) | 56 (44.4) | 283 (60.5) | 39 (67.2) | <0.001 |
Stroke type | |||||
Cerebral infarction | 687 (63.6) | 79 (62.7) | 302 (64.5) | 29 (50.0) | 0.109 |
Cerebral hemorrhage | 321 (29.7) | 43 (34.1) | 127 (27.1) | 24 (41.4) | 0.083 |
SAH | 72 (6.7) | 4 (3.2) | 39 (8.3) | 5 (8.6) | 0.210 |
Onset-to-admission time, days | 14 [11, 22] | 17 [12, 24] | 14 [11, 21] | 15 [10, 27] | 0.031 |
BRS, lower extremity | 5 [3, 6] | 4 [2, 5] | 5 [4, 6] | 4 [2, 6] | 0.171 |
Stroke history | 263 (24.4) | 39 (31.0) | 99 (21.2) | 16 (27.6) | 0.045 |
Pre-stroke mRS, score | 0 [0, 2] | 1 [0, 3] | 0 [0, 1] | 0 [0, 1] | 0.201 |
CCI, score | 3 [2, 4] | 3 [3, 4] | 3 [1, 3] | 3 [2, 4] | 0.146 |
FIM, score | |||||
Total | 66 [34, 92] | 29 [22, 45] | 82 [61, 103] | 36 [27, 64] | <0.001 |
Motor | 46 [20, 67] | 15 [13, 28] | 58 [40, 75] | 21 [14, 42] | <0.001 |
Cognition | 21 [12, 27] | 12 [7, 18] | 25 [19, 30] | 17 [10, 23] | <0.001 |
MNA-SF, score | 7 [5, 9] | 5 [3, 6] | 8 [6, 10] | 5 [3, 7] | <0.001 |
HGS, kg | 18.8 [10.0, 27.5] | 8.5 [0.0, 17.7] | 23.5 [16.7, 31.9] | 16.3 [8.3, 22.8] | <0.001 |
BMI, kg/m2 | 22.3 [19.8, 24.7] | 20.1 [18.1, 21.8] | 23.0 [20.7, 25.4] | 21.6 [19.4, 24.1] | <0.001 |
SMI, kg/m2 | 6.3 [5.3, 7.3] | 5.3 [4.4, 6.4] | 6.6 [5.7, 7.5] | 6.3 [5.4, 7.2] | <0.001 |
Nutrition intake | |||||
Energy, kcal/kg/day | 27.3 [23.3, 31.8] | 27.10 [24.10, 32.03] | 26.9 [23.1, 30.7] | 24.7 [22.6, 28.8] | 0.061 |
Protein, g/kg/day | 1.0 [0.9, 1.2] | 1.0 [0.9, 1.2] | 1.0 [0.9, 1.2] | 1.0 [0.8, 1.1] | 0.101 |
Length of hospital stay, days | 86 [53, 128] | 122 [88, 149] | 72 [46, 115] | 138 [84, 154] | <0.001 |
Number of medications, number | 5 [3, 7] | 6 [4, 8] | 5 [3, 7] | 5 [3, 7] | 0.056 |
MCT 1, n (%) | 184 (17.0) | - | - | - | - |
Chair-stand exercise, frequency | 62 [36, 96] | 32 [17, 46] | 97 [78, 124] | 89 [74, 109] | - |
Rehabilitation therapy 3, units | 8.2 [7.5, 8.6] | 8 [6, 8] | 8 [8, 8] | 8 [7, 8] | 0.164 |
FIM-Motor at Discharge | FIM-Motor Gain | |||||
---|---|---|---|---|---|---|
B (95% CI) | b | p-Value | B (95% CI) | b | p-Value | |
MCT 1: Yes EXERCISE 2: No | −1.33 (−4.86, 2.19) | −0.018 | 0.458 | −1.33 (−4.86, 2.19) | −0.028 | 0.458 |
MCT 1: No EXERCISE 2: Yes | 5.37 (2.83, 7.90) | 0.103 | <0.001 | 5.37 (2.83, 7.90) | 0.132 | <0.001 |
MCT 1: Yes EXERCISE 2: Yes | 9.80 (5.09, 14.51) | 0.193 | <0.001 | 9.80 (5.09, 14.52) | 0.197 | <0.001 |
HGS at Discharge | SMI Discharge | |||||
---|---|---|---|---|---|---|
B (95% CI) | b | p-Value | B (95% CI) | b | p-Value | |
MCT 1: Yes EXERCISE 2: No | 0.39 (−1.05, 1.85) | 0.012 | 0.593 | −0.25 (−0.51, 0.05) | −0.063 | 0.147 |
MCT 1: No EXERCISE 2: Yes | 1.30 (0.25, 2.36) | 0.058 | 0.015 | 0.14 (0.03, 0.32) | 0.043 | 0.34 |
MCT 1: Yes EXERCISE 2: Yes | 2.44 (0.48, 4.39) | 0.083 | 0.015 | 0.19 (0.10, 0.41) | 0.084 | 0.039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshimura, Y.; Nagano, F.; Matsumoto, A.; Shimazu, S.; Shiraishi, A.; Kido, Y.; Bise, T.; Hamada, T.; Yoneda, K. Synergistic Effects of Medium-Chain Triglyceride Supplementation and Resistance Training on Physical Function and Muscle Health in Post-Stroke Patients. Nutrients 2025, 17, 1599. https://doi.org/10.3390/nu17091599
Yoshimura Y, Nagano F, Matsumoto A, Shimazu S, Shiraishi A, Kido Y, Bise T, Hamada T, Yoneda K. Synergistic Effects of Medium-Chain Triglyceride Supplementation and Resistance Training on Physical Function and Muscle Health in Post-Stroke Patients. Nutrients. 2025; 17(9):1599. https://doi.org/10.3390/nu17091599
Chicago/Turabian StyleYoshimura, Yoshihiro, Fumihiko Nagano, Ayaka Matsumoto, Sayuri Shimazu, Ai Shiraishi, Yoshifumi Kido, Takahiro Bise, Takenori Hamada, and Kouki Yoneda. 2025. "Synergistic Effects of Medium-Chain Triglyceride Supplementation and Resistance Training on Physical Function and Muscle Health in Post-Stroke Patients" Nutrients 17, no. 9: 1599. https://doi.org/10.3390/nu17091599
APA StyleYoshimura, Y., Nagano, F., Matsumoto, A., Shimazu, S., Shiraishi, A., Kido, Y., Bise, T., Hamada, T., & Yoneda, K. (2025). Synergistic Effects of Medium-Chain Triglyceride Supplementation and Resistance Training on Physical Function and Muscle Health in Post-Stroke Patients. Nutrients, 17(9), 1599. https://doi.org/10.3390/nu17091599