Association Between Healthy Dietary Patterns and Chronic Kidney Disease in Patients with Diabetes: Findings from Korean National Health and Nutrition Examination Survey 2019–2021
Highlights
- A healthier dietary pattern, as assessed via the Korean Healthy Eating Index (KHEI), was associated with lower prevalence of chronic kidney disease (CKD) in patients with diabetes mellitus.
- Patients with diabetes and CKD demonstrated lower KHEI, particularly for breakfast consumption, total and fresh fruit intake, and milk and dairy product intake.
- Clinicians should assess diet quality using a culturally tailored dietary index and provide culturally appropriate nutritional education to patients with diabetes who are vulnerable to developing CKD.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting and Population
2.2. Study Outcomes and Ascertainment of CKD
2.3. Assessment of Healthy Dietary Pattern and KHEI
2.4. Data Collection and Measurements
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. The Risk of Prevalent CKD According to the KHEI
3.3. Subgroup Analysis
3.4. Healthy Dietary Patterns According to the Presence of CKD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
aOR | adjusted odds ratio |
CKD | chronic kidney disease |
DM | diabetes mellitus |
eGFR | estimated glomerular filtration rate |
KHEI | Korean Healthy Eating Index |
KNHANES | Korea National Health and Nutrition Examination Survey |
SES | socioeconomic status |
UACR | urine albumin–creatinine ratio |
References
- Ha, K.H.; Kim, D.J. Changes in the Epidemiological Landscape of Diabetes in South Korea: Trends in Prevalence, Incidence, and Healthcare Expenditures. Endocrinol. Metab. 2024, 39, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- de Boer, I.H.; Caramori, M.L.; Chan, J.C.N.; Heerspink, H.J.L.; Hurst, C.; Khunti, K.; Liew, A.; Michos, E.D.; Navaneethan, S.D.; Olowu, W.A.; et al. Executive summary of the 2020 KDIGO Diabetes Management in CKD Guideline: Evidence-based advances in monitoring and treatment. Kidney Int. 2020, 98, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.H.; Seo, M.H.; Jung, J.H.; Han, K.D.; Kim, M.K.; Kim, N.H. 2023 Diabetic Kidney Disease Fact Sheet in Korea. Diabetes Metab. J. 2024, 48, 463–472. [Google Scholar] [CrossRef]
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Couser, W.G.; Remuzzi, G.; Mendis, S.; Tonelli, M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011, 80, 1258–1270. [Google Scholar] [CrossRef]
- Snelson, M.; Clarke, R.E.; Coughlan, M.T. Stirring the Pot: Can Dietary Modification Alleviate the Burden of CKD? Nutrients 2017, 9, 265. [Google Scholar] [CrossRef]
- Iseki, K. Nutrition and quality of life in chronic kidney disease patients: A practical approach for salt restriction. Kidney Res. Clin. Pract. 2022, 41, 657–669. [Google Scholar] [CrossRef]
- Jacobs, D.R., Jr.; Tapsell, L.C. Food, not nutrients, is the fundamental unit in nutrition. Nutr. Rev. 2007, 65, 439–450. [Google Scholar] [CrossRef]
- Guenther, P.M.; Casavale, K.O.; Reedy, J.; Kirkpatrick, S.I.; Hiza, H.A.; Kuczynski, K.J.; Kahle, L.L.; Krebs-Smith, S.M. Update of the Healthy Eating Index: HEI-2010. J. Acad. Nutr. Diet. 2013, 113, 569–580. [Google Scholar] [CrossRef]
- Kennedy, E.T.; Ohls, J.; Carlson, S.; Fleming, K. The Healthy Eating Index: Design and applications. J. Am. Diet. Assoc. 1995, 95, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [PubMed]
- Hu, E.A.; Coresh, J.; Anderson, C.A.M.; Appel, L.J.; Grams, M.E.; Crews, D.C.; Mills, K.T.; He, J.; Scialla, J.; Rahman, M.; et al. Adherence to Healthy Dietary Patterns and Risk of CKD Progression and All-Cause Mortality: Findings From the CRIC (Chronic Renal Insufficiency Cohort) Study. Am. J. Kidney Dis. 2021, 77, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Hu, E.A.; Steffen, L.M.; Grams, M.E.; Crews, D.C.; Coresh, J.; Appel, L.J.; Rebholz, C.M. Dietary patterns and risk of incident chronic kidney disease: The Atherosclerosis Risk in Communities study. Am. J. Clin. Nutr. 2019, 110, 713–721. [Google Scholar] [CrossRef]
- Dunkler, D.; Dehghan, M.; Teo, K.K.; Heinze, G.; Gao, P.; Kohl, M.; Clase, C.M.; Mann, J.F.; Yusuf, S.; Oberbauer, R.; et al. Diet and kidney disease in high-risk individuals with type 2 diabetes mellitus. JAMA Intern. Med. 2013, 173, 1682–1692. [Google Scholar] [CrossRef]
- Dunkler, D.; Kohl, M.; Teo, K.K.; Heinze, G.; Dehghan, M.; Clase, C.M.; Gao, P.; Yusuf, S.; Mann, J.F.; Oberbauer, R. Dietary risk factors for incidence or progression of chronic kidney disease in individuals with type 2 diabetes in the European Union. Nephrol. Dial. Transplant. 2015, 30 (Suppl. S4), iv76–iv85. [Google Scholar] [CrossRef]
- Bennett, G.; Bardon, L.A.; Gibney, E.R. A Comparison of Dietary Patterns and Factors Influencing Food Choice among Ethnic Groups Living in One Locality: A Systematic Review. Nutrients 2022, 14, 941. [Google Scholar] [CrossRef]
- Lee, M.; Chae, S.W.; Cha, Y.S.; Cho, M.S.; Oh, H.Y.; Kim, M.K. Development of a Korean Diet Score (KDS) and its application assessing adherence to Korean healthy diet based on the Korean Food Guide Wheels. Nutr. Res. Pract. 2013, 7, 49–58. [Google Scholar] [CrossRef]
- Yun, S.; Park, S.; Yook, S.-M.; Kim, K.; Shim, J.E.; Hwang, J.-Y.; Oh, K. Development of the Korean Healthy Eating Index for adults, based on the Korea National Health and Nutrition Examination Survey. Nutr. Res. Pract. 2022, 16, 233–247. [Google Scholar] [CrossRef]
- Yook, S.-M.; Park, S.; Moon, H.-K.; Kim, K.; Shim, J.E.; Hwang, J.-Y. Development of Korean Healthy Eating Index for adults using the Korea National Health and Nutrition Examination Survey data. J. Nutr. Health 2015, 48, 419–428. [Google Scholar] [CrossRef]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Kim, S.; Joung, H. Evidence-based approaches for establishing the 2015 Dietary Reference Intakes for Koreans. Nutr. Res. Pract. 2018, 12, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Yu, P.; Zhang, L.; Yao, Q.; Zhou, F.; Li, X.; Li, X. Association between dietary patterns and chronic kidney disease in elderly patients with type 2 diabetes: A community-based cross-sectional study. Nutr. J. 2025, 24, 1. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xu, S.; Wan, T.; Wang, X.; Jiang, S.; Shi, W.; Ma, S.; Wang, H. The Combined Effects of the Most Important Dietary Patterns on the Incidence and Prevalence of Chronic Renal Failure: Results from the US National Health and Nutrition Examination Survey and Mendelian Analyses. Nutrients 2024, 16, 2248. [Google Scholar] [CrossRef]
- Katsaridis, S.; Grammatikopoulou, M.G.; Gkiouras, K.; Tzimos, C.; Papageorgiou, S.T.; Markaki, A.G.; Exiara, T.; Goulis, D.G.; Papamitsou, T. Low Reported Adherence to the 2019 American Diabetes Association Nutrition Recommendations among Patients with Type 2 Diabetes Mellitus, Indicating the Need for Improved Nutrition Education and Diet Care. Nutrients 2020, 12, 3516. [Google Scholar] [CrossRef]
- Ahola, A.J.; Forsblom, C.; Groop, P.H. Adherence to special diets and its association with meeting the nutrient recommendations in individuals with type 1 diabetes. Acta Diabetol. 2018, 55, 843–851. [Google Scholar] [CrossRef]
- Schulze, M.B.; Martinez-Gonzalez, M.A.; Fung, T.T.; Lichtenstein, A.H.; Forouhi, N.G. Food based dietary patterns and chronic disease prevention. BMJ 2018, 361, k2396. [Google Scholar] [CrossRef]
- Kutsuma, A.; Nakajima, K.; Suwa, K. Potential Association between Breakfast Skipping and Concomitant Late-Night-Dinner Eating with Metabolic Syndrome and Proteinuria in the Japanese Population. Scientifica 2014, 2014, 253581. [Google Scholar] [CrossRef]
- Elimam, A.; Marcus, C. Meal timing, fasting and glucocorticoids interplay in serum leptin concentrations and diurnal profile. Eur. J. Endocrinol. 2002, 147, 181–188. [Google Scholar] [CrossRef]
- Farshchi, H.R.; Taylor, M.A.; Macdonald, I.A. Deleterious effects of omitting breakfast on insulin sensitivity and fasting lipid profiles in healthy lean women. Am. J. Clin. Nutr. 2005, 81, 388–396. [Google Scholar] [CrossRef]
- Lee, T.S.; Kim, J.S.; Hwang, Y.J.; Park, Y.C. Habit of Eating Breakfast Is Associated with a Lower Risk of Hypertension. J. Lifestyle Med. 2016, 6, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Gahm, C.; Park, S. The association between skipping breakfast and chronic kidney disease. Int. Urol. Nephrol. 2023, 55, 3209–3215. [Google Scholar] [CrossRef] [PubMed]
- Goraya, N.; Simoni, J.; Jo, C.; Wesson, D.E. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int. 2012, 81, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Rebholz, C.M.; Coresh, J.; Grams, M.E.; Steffen, L.M.; Anderson, C.A.; Appel, L.J.; Crews, D.C. Dietary Acid Load and Incident Chronic Kidney Disease: Results from the ARIC Study. Am. J. Nephrol. 2015, 42, 427–435. [Google Scholar] [CrossRef]
- Kaimori, J.-Y.; Sakaguchi, Y.; Kajimoto, S.; Asahina, Y.; Oka, T.; Hattori, K.; Doi, Y.; Isaka, Y. Diagnosing metabolic acidosis in chronic kidney disease: Importance of blood pH and serum anion gap. Kidney Res. Clin. Pract. 2022, 41, 288–297. [Google Scholar] [CrossRef]
- Goraya, N.; Simoni, J.; Jo, C.H.; Wesson, D.E. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin. J. Am. Soc. Nephrol. 2013, 8, 371–381. [Google Scholar] [CrossRef]
- Goraya, N.; Simoni, J.; Jo, C.H.; Wesson, D.E. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int. 2014, 86, 1031–1038. [Google Scholar] [CrossRef]
- Dhaun, N.; Goddard, J.; Webb, D.J. The endothelin system and its antagonism in chronic kidney disease. J. Am. Soc. Nephrol. 2006, 17, 943–955. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kwon, D.Y.; Shin, D. Namul, the driving force behind health and high vegetable consumption in Korea. J. Ethn. Foods 2020, 7, 15. [Google Scholar] [CrossRef]
- Jhee, J.H.; Kee, Y.K.; Park, J.T.; Chang, T.I.; Kang, E.W.; Yoo, T.H.; Kang, S.W.; Han, S.H. A Diet Rich in Vegetables and Fruit and Incident CKD: A Community-Based Prospective Cohort Study. Am. J. Kidney Dis. 2019, 74, 491–500. [Google Scholar] [CrossRef]
- Eslami, O.; Shidfar, F. Dairy products and chronic kidney disease: Protective or harmful? asystematic review of prospective cohort studies. Nutrition 2018, 55–56, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.W.; Nam, M.S. Bioactive Peptides in Milk and Dairy Products: A Review. Korean J. Food Sci. Anim. Resour. 2015, 35, 831–840. [Google Scholar] [CrossRef]
- Wang, H.; Fox, C.S.; Troy, L.M.; McKeown, N.M.; Jacques, P.F. Longitudinal association of dairy consumption with the changes in blood pressure and the risk of incident hypertension: The Framingham Heart Study. Br. J. Nutr. 2015, 114, 1887–1899. [Google Scholar] [CrossRef] [PubMed]
- Bordoni, A.; Danesi, F.; Dardevet, D.; Dupont, D.; Fernandez, A.S.; Gille, D.; Nunes Dos Santos, C.; Pinto, P.; Re, R.; Remond, D.; et al. Dairy products and inflammation: A review of the clinical evidence. Crit. Rev. Food Sci. Nutr. 2017, 57, 2497–2525. [Google Scholar] [CrossRef]
- Borges, F.M.; Silva, A.; Lima, L.H.O.; Almeida, P.C.; Vieira, N.F.C.; Machado, A.L.G. Health literacy of adults with and without arterial hypertension. Rev. Bras. Enferm. 2019, 72, 646–653. [Google Scholar] [CrossRef]
- Ahmed, S.; Kehyayan, V.; Abdou, M.; Bougmiza, I. Prevalence and determinants of health literacy among the adult population of Qatar. Front. Public. Health 2023, 11, 1278614. [Google Scholar] [CrossRef] [PubMed]
- Baraie, B.; Pashaei, T.; Kakemam, E.; Mahmoodi, H. Health literacy and its predictors among urban and rural adults in Bijar County. J. Educ. Health Promot. 2020, 9, 181. [Google Scholar] [CrossRef]
- Hanratty, R.; Chonchol, M.; Havranek, E.P.; Powers, J.D.; Dickinson, L.M.; Ho, P.M.; Magid, D.J.; Steiner, J.F. Relationship between blood pressure and incident chronic kidney disease in hypertensive patients. Clin. J. Am. Soc. Nephrol. 2011, 6, 2605–2611. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, J.; Tao, S.; Hong, H.G.; Li, Y.; Fu, P. Associations between socioeconomic status and chronic kidney disease: A meta-analysis. J. Epidemiol. Community Health 2018, 72, 270–279. [Google Scholar] [CrossRef]
- Chen, X.; Orom, H.; Hay, J.L.; Waters, E.A.; Schofield, E.; Li, Y.; Kiviniemi, M.T. Differences in Rural and Urban Health Information Access and Use. J. Rural. Health 2019, 35, 405–417. [Google Scholar] [CrossRef]
- Weeks, W.B.; Chang, J.E.; Pagan, J.A.; Lumpkin, J.; Michael, D.; Salcido, S.; Kim, A.; Speyer, P.; Aerts, A.; Weinstein, J.N.; et al. Rural-urban disparities in health outcomes, clinical care, health behaviors, and social determinants of health and an action-oriented, dynamic tool for visualizing them. PLoS Glob. Public. Health 2023, 3, e0002420. [Google Scholar] [CrossRef] [PubMed]
- OECD. Health at a Glance 2015; OECD: Paris, France, 2015. [Google Scholar] [CrossRef]
- Hill, C.M.; Nash, S.H.; Hopkins, S.E.; Boyer, B.B.; DM, O.B.; Bersamin, A. Diet quality is positively associated with intake of traditional foods and does not differ by season in remote Yup’ik communities. Int. J. Circumpolar Health 2023, 82, 2221370. [Google Scholar] [CrossRef] [PubMed]
- Sheehy, T.; Kolahdooz, F.; Roache, C.; Sharma, S. Traditional food consumption is associated with better diet quality and adequacy among Inuit adults in Nunavut, Canada. Int. J. Food Sci. Nutr. 2015, 66, 445–451. [Google Scholar] [CrossRef] [PubMed]
Variable | Korean Healthy Eating Index (KHEI) | p-Value | |
---|---|---|---|
Low (N = 995) | High (N = 996) | ||
Age, years old | 58.4 ± 0.5 | 64.0 ± 0.5 | <0.001 |
Age group | <0.001 | ||
<40 yr | 82 (8.2%) | 27 (2.7%) | |
40–64 yr | 587 (59%) | 468 (47%) | |
≥65 yr | 326 (32.8%) | 501 (50.3%) | |
Sex, men | 584 (58.7%) | 522 (52.4%) | 0.016 |
Education level | 0.11 | ||
≤Elementary school | 272 (27.3%) | 306 (30.7%) | |
Middle school | 133 (13.4%) | 164 (16.5%) | |
High school | 327 (32.9%) | 290 (29.1%) | |
>High school | 263 (26.4%) | 236 (23.7%) | |
Income status, <20% | 219 (22%) | 189 (19%) | 0.48 |
Number of household members, 1-person | 169 (17%) | 164 (16.5%) | 0.019 |
Residence area | 0.34 | ||
Urban | 440 (44.2%) | 415 (41.8%) | |
Rural | 555 (55.8%) | 581 (58.3%) | |
Occupation, yes | 576 (57.9%) | 516 (51.8%) | 0.021 |
Marriage, yes | 910 (91.5%) | 953 (95.7%) | 0.007 |
Smoking | <0.001 | ||
Non-smoker | 461 (46.3%) | 555 (55.7%) | |
Ex-smoker | 282 (28.3%) | 284 (28.6%) | |
Current smoker | 252 (25.4%) | 157 (15.8%) | |
Alcohol | 0.001 | ||
Non | 322 (32.3%) | 400 (40.2%) | |
Mild to moderate | 534 (53.7%) | 514 (51.6%) | |
Heavy | 139 (14%) | 82 (8.2%) | |
Regular physical activity 1 | 321 (32.3%) | 410 (41.2%) | 0.001 |
Past medical history | |||
Hypertension | 549 (55.2%) | 602 (60.4%) | 0.046 |
Dyslipidemia | 461 (46.3%) | 484 (48.6%) | 0.38 |
Cardiovascular disease | 113 (11.4%) | 140 (14.1%) | 0.14 |
BMI, kg/m2 | 26.4 ± 0.2 | 25.2 ± 0.1 | <0.001 |
BMI group | <0.001 | ||
<18.5 | 11 (1.1%) | 9 (0.9%) | |
≥18.5 and <23 | 188 (18.9%) | 248 (24.9%) | |
≥23 and <25 | 201 (20.1%) | 251 (25.2%) | |
≥25 and <30 | 429 (43.1%) | 398 (40%) | |
≥30 | 166 (16.7%) | 90 (9.1%) | |
Waist circumference, cm | 92.2 ± 0.4 | 89.6 ± 0.3 | <0.001 |
Blood pressure, mmHg | |||
Systolic | 125.0 ± 0.6 | 126.1 ± 0.6 | 0.16 |
Diastolic | 77.1 ± 0.3 | 74.7 ± 0.4 | <0.001 |
Laboratory measurements | |||
Fasting glucose, mg/dL | 140.2 ± 1.7 | 133.8 ± 1.5 | 0.005 |
HbA1c, % | 7.3 ± 0.1 | 7.2 ± 0.1 | 0.18 |
Total cholesterol, mg/dL | 180.6 ± 1.7 | 168.8 ± 1.6 | <0.001 |
HDL, mg/dL | 46.2 ± 0.4 | 47.3 ± 0.4 | 0.06 |
Kidney function | |||
eGFR, mL/min/1.73 m2 | 87.8 ± 0.8 | 85.0 ± 0.8 | 0.012 |
eGFR < 60 mL/min/1.73 m2 | 80 (8%) | 83 (8.3%) | 0.82 |
UACR, mg/g | 70.9 ± 9.7 | 43.8 ± 4.5 | 0.013 |
UACR group | 0.040 | ||
<30 mg/g | 759 (76.3%) | 802 (80.5%) | |
30–300 mg/g | 190 (19.2%) | 168 (16.9%) | |
>300 mg/g | 46 (4.6%) | 26 (2.6%) |
Prevalence of CKD *, N (%) | Unadjusted | Age-Sex Adjusted | Model 1 | Model 2 | |||||
---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | ||
KHEI, as binary variable | |||||||||
<Median value | 279 (28.0) | 1 (Reference) | 1 (Reference) | 1 (Reference) | 1 (Reference) | ||||
≥Median value | 246 (24.6) | 0.84 (0.67, 1.04) | 0.12 | 0.68 (0.55, 0.84) | 0.001 | 0.68 (0.54, 0.85) | 0.001 | 0.73 (0.58, 0.93) | 0.009 |
KHEI, as continuous variable | 525 (26.4) | 0.99 (0.98, 1.00) | 0.06 | 0.98 (0.97, 0.99) | <0.001 | 0.98 (0.97, 0.99) | <0.001 | 0.98 (0.97, 0.99) | 0.002 |
Subgroup | KHEI 1 | N | Event (%) | aOR 2 (95% CI) | p * | |
---|---|---|---|---|---|---|
Age | <65 years | Low | 548 | 122 (23%) | 1 (Reference) | 0.12 |
High | 378 | 66 (16%) | 0.64 (0.43, 0.95) | |||
≥65 years | Low | 447 | 167 (37%) | 1 (Reference) | ||
High | 618 | 198 (33%) | 0.84 (0.61, 1.15) | |||
Sex | Men | Low | 520 | 157 (28%) | 1 (Reference) | 0.76 |
High | 480 | 126 (24%) | 0.68 (0.48, 0.96) | |||
Women | Low | 475 | 132 (28%) | 1 (Reference) | ||
High | 516 | 138 (26%) | 0.78 (0.55, 1.11) | |||
Hypertension | No | Low | 413 | 87 (21%) | 1 (Reference) | 0.04 |
High | 357 | 53 (13%) | 0.57 (0.37, 0.87) | |||
Yes | Low | 582 | 202 (34%) | 1 (Reference) | ||
High | 639 | 211 (33%) | 0.80 (0.59, 1.08) | |||
Income status | <20% | Low | 267 | 109 (44%) | 1 (Reference) | 0.83 |
High | 225 | 85 (39%) | 0.75 (0.47, 1.18) | |||
≥20% | Low | 728 | 180 (23%) | 1 (Reference) | ||
High | 771 | 179 (21%) | 0.72 (0.54, 0.95) | |||
Education level | ≤Middle school | Low | 507 | 170 (32%) | 1 (Reference) | 0.04 |
High | 532 | 170 (32%) | 0.98 (0.70, 1.35) | |||
≥High school | Low | 488 | 119 (25%) | 1 (Reference) | ||
High | 464 | 94 (18%) | 0.56 (0.38, 0.81) | |||
Number of households members | 1-person | Low | 211 | 77 (41%) | 1 (Reference) | 0.65 |
High | 186 | 62 (34%) | 0.79 (0.48, 1.32) | |||
≥2-person | Low | 784 | 212 (25%) | 1 (Reference) | ||
High | 810 | 202 (23%) | 0.71 (0.54, 0.94) | |||
Residence area | Urban | Low | 415 | 105 (26%) | 1 (Reference) | 0.17 |
High | 413 | 119 (28%) | 0.92 (0.64, 1.33) | |||
Rural | Low | 580 | 184 (30%) | 1 (Reference) | ||
High | 583 | 145 (23%) | 0.62 (0.46, 0.84) | |||
Occupation | No | Low | 474 | 176 (36%) | 1 (Reference) | 0.95 |
High | 514 | 156 (30%) | 0.74 (0.53, 1.04) | |||
Yes | Low | 521 | 113 (23%) | 1 (Reference) | ||
High | 482 | 108 (20%) | 0.70 (0.49, 1.01) | |||
Marriage | No | Low | 63 | 20 (36%) | 1 (Reference) | 0.36 |
High | 29 | 9 (23%) | 0.48 (0.12, 1.96) | |||
Yes | Low | 932 | 269 (27%) | 1 (Reference) | ||
High | 967 | 255 (25%) | 0.74 (0.58, 0.94) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Koh, J.H.; Cho, J.M.; Cho, S.; Lee, S.; Huh, H.; Kim, S.G.; Jung, S.; Kang, E.; Park, S.; et al. Association Between Healthy Dietary Patterns and Chronic Kidney Disease in Patients with Diabetes: Findings from Korean National Health and Nutrition Examination Survey 2019–2021. Nutrients 2025, 17, 1600. https://doi.org/10.3390/nu17091600
Kim M, Koh JH, Cho JM, Cho S, Lee S, Huh H, Kim SG, Jung S, Kang E, Park S, et al. Association Between Healthy Dietary Patterns and Chronic Kidney Disease in Patients with Diabetes: Findings from Korean National Health and Nutrition Examination Survey 2019–2021. Nutrients. 2025; 17(9):1600. https://doi.org/10.3390/nu17091600
Chicago/Turabian StyleKim, Minsang, Jung Hun Koh, Jeong Min Cho, Semin Cho, Soojin Lee, Hyuk Huh, Seong Geun Kim, Sehyun Jung, Eunjeong Kang, Sehoon Park, and et al. 2025. "Association Between Healthy Dietary Patterns and Chronic Kidney Disease in Patients with Diabetes: Findings from Korean National Health and Nutrition Examination Survey 2019–2021" Nutrients 17, no. 9: 1600. https://doi.org/10.3390/nu17091600
APA StyleKim, M., Koh, J. H., Cho, J. M., Cho, S., Lee, S., Huh, H., Kim, S. G., Jung, S., Kang, E., Park, S., Paek, J. H., Park, W. Y., Jin, K., Han, S., Joo, K. W., Han, K., Kim, D. K., & Kim, Y. (2025). Association Between Healthy Dietary Patterns and Chronic Kidney Disease in Patients with Diabetes: Findings from Korean National Health and Nutrition Examination Survey 2019–2021. Nutrients, 17(9), 1600. https://doi.org/10.3390/nu17091600