Relative Validity and Reproducibility of a Semi-Quantitative Web-Based Food Frequency Questionnaire for Swiss Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Methods of Dietary Assessment
2.2.1. Swiss eFFQ
2.2.2. Four-Day Food Record (Reference Method)
2.3. Sample Size Calculation
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Relative Validity
3.3. Reproducibility
3.4. Usability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
4-d FR | 4-day estimated food record |
BLS | Bundeslebensmittelschlüssel (German Nutrient database) |
BMI | body mass index |
eFFQ | electronic food frequency questionnaire |
FFQ | food frequency questionnaire |
FR | food record |
ICC | intraclass correlation coefficient |
IQR | interquartile range |
Kw | Cohen’s kappa |
LCC | Lin’s concordance correlation coefficient |
MUFA | monounsaturated fatty acid |
SCC | Spearman’s correlation coefficients |
SFDB | Swiss Nutrient database |
References
- World Health Organization (WHO). Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020. Available online: https://iris.who.int/bitstream/handle/10665/94384/9789241506236_eng.pdf?sequence=1 (accessed on 20 February 2024).
- The Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment. Lancet Diabetes Endocrinol. 2014, 2, 634–647. [Google Scholar] [CrossRef] [PubMed]
- Naska, A.; Lagiou, A.; Lagiou, P. Dietary assessment methods in epidemiological research: Current state of the art and future prospects. F1000Research 2017, 6, 926. [Google Scholar] [CrossRef]
- Macdiarmid, J.; Blundell, J. Assessing dietary intake: Who, what and why of under-reporting. Nutr. Res. Rev. 1998, 11, 231–253. [Google Scholar] [CrossRef]
- Brouwer-Brolsma, E.M.; Brennan, L.; Drevon, C.A.; van Kranen, H.; Manach, C.; Dragsted, L.O.; Roche, H.M.; Andres-Lacueva, C.; Bakker, S.J.L.; Bouwman, J.; et al. Combining traditional dietary assessment methods with novel metabolomics techniques: Present efforts by the Food Biomarker Alliance. Proc. Nutr. Soc. 2017, 76, 619–627. [Google Scholar] [CrossRef]
- Willet, W.C. Nutritional Epidemiology, 2nd ed.; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Thompson, F.E.; Subar, A.F. Dietary Assessment Methodology. In Nutrition in the Prevention and Treatment of Disease, 4th ed.; Coulston, A.M., Boushey, C.J., Ferruzzi, M.G., Delahanty, L.M., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 5–48. [Google Scholar]
- Molag, M.L.; de Vries, J.H.; Ocké, M.C.; Dagnelie, P.C.; van den Brandt, P.A.; Jansen, M.C.; van Staveren, W.A.; van’t Veer, P. Design characteristics of food frequency questionnaires in relation to their validity. Am. J. Epidemiol. 2007, 166, 1468–1478. [Google Scholar] [CrossRef] [PubMed]
- Falomir, Z.; Arregui, M.; Madueño, F.; Corella, D.; Coltell, Ó. Automation of Food Questionnaires in Medical Studies: A state-of-the-art review and future prospects. Comput. Biol. Med. 2012, 42, 964–974. [Google Scholar] [CrossRef] [PubMed]
- Nöthlings, U.; Hoffmann, K.; Bergmann, M.M.; Boeing, H. Fitting Portion Sizes in a Self-Administered Food Frequency Questionnaire. J. Nutr. 2007, 137, 2781–2786. [Google Scholar] [CrossRef]
- Cade, J.; Thompson, R.; Burley, V.; Warm, D. Development, validation and utilisation of food-frequency questionnaires—A review. Public Health Nutr. 2002, 5, 567–587. [Google Scholar] [CrossRef]
- Dao, M.C.; Subar, A.F.; Warthon-Medina, M.; Cade, J.E.; Burrows, T.; Golley, R.K.; Forouhi, N.G.; Pearce, M.; Holmes, B.A. Dietary assessment toolkits: An overview. Public Health Nutr. 2019, 22, 404–418. [Google Scholar] [CrossRef]
- Vuckovic, N.; Ritenbaugh, C.; Taren, D.L.; Tobar, M. A qualitative study of participants’ experiences with dietary assessment. J. Am. Diet. Assoc. 2000, 100, 1023–1028. [Google Scholar] [CrossRef]
- Kirkpatrick, S.I.; Baranowski, T.; Subar, A.F.; Tooze, J.A.; Frongillo, E.A. Best Practices for Conducting and Interpreting Studies to Validate Self-Report Dietary Assessment Methods. J. Acad. Nutr. Diet. 2019, 119, 1801–1816. [Google Scholar] [CrossRef]
- Bingham, S.A.; Gill, C.; Welch, A.; Day, K.; Cassidy, A.; Khaw, K.T.; Sneyd, M.J.; Key, T.J.A.; Roe, L.; Day, N.E. Comparison of dietary assessment methods in nutritional epidemiology: Weighed records v. 24 h recalls, food-frequency questionnaires and estimated-diet records. Br. J. Nutr. 1994, 72, 619–643. [Google Scholar] [CrossRef] [PubMed]
- Pestoni, G.; Karavasiloglou, N.; Braun, J.; Krieger, J.P.; Sych, J.M.; Bopp, M.; Faeh, D.; Gruebner, O.; Rohrmann, S. Does diet map with mortality? Ecological association of dietary patterns with chronic disease mortality and its spatial dependence in Switzerland. Br. J. Nutr. 2022, 127, 1037–1049. [Google Scholar] [CrossRef]
- Faeh, D.; Minder, C.; Gutzwiller, F.; Bopp, M. Culture, risk factors and mortality: Can Switzerland add missing pieces to the European puzzle? J. Epidemiol. Community Health 2009, 63, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Chammartin, F.; Probst-Hensch, N.; Utzinger, J.; Vounatsou, P. Mortality atlas of the main causes of death in Switzerland, 2008–2012. Swiss Med. Wkly. 2016, 146, w14280. [Google Scholar] [CrossRef] [PubMed]
- Krieger, J.P.; Cabaset, S.; Pestoni, G.; Rohrmann, S.; Faeh, D. Dietary Patterns Are Associated with Cardiovascular and Cancer Mortality among Swiss Adults in a Census-Linked Cohort. Nutrients 2018, 10, 313. [Google Scholar] [CrossRef]
- Pestoni, G.; Krieger, J.P.; Sych, J.M.; Faeh, D.; Rohrmann, S. Cultural differences in diet and determinants of diet quality in Switzerland: Results from the national nutrition survey menuCH. Nutrients 2019, 11, 126. [Google Scholar] [CrossRef]
- Chatelan, A.; Beer-Borst, S.; Randriamiharisoa, A.; Pasquier, J.; Blanco, J.M.; Siegenthaler, S.; Paccaud, F.; Slimani, N.; Nicolas, G.; Camenzind-Frey, E.; et al. Major differences in diet across three linguistic regions of switzerland: Results from the first national nutrition survey menuCH. Nutrients 2017, 9, 1163. [Google Scholar] [CrossRef]
- Marques-Vidal, P.; Ross, A.; Wynn, E.; Rezzi, S.; Paccaud, F.; Decarli, B. Reproducibility and relative validity of a food-frequency questionnaire for French-speaking Swiss adults. Food Nutr. Res. 2011, 55, 5905. [Google Scholar] [CrossRef]
- Steinemann, N.; Grize, L.; Ziesemer, K.; Kauf, P.; Probst-Hensch, N.; Brombach, C. Relative validation of a food frequency questionnaire to estimate food intake in an adult population. Food Nutr Res. 2017, 61, 1305193. [Google Scholar] [CrossRef]
- Morabia, A.; Bernstein, M.; Kumanyika, S.; Sorenson, A.; Mabiala, I.; Prodolliet, B.; Rolfo, I.; Luong, B.L. Development and validation of a semi-quantitative food questionnaire based on a population survey. Soz. Praventivmed. 1994, 39, 345–369. [Google Scholar] [CrossRef]
- Pannen, S.T.; Gassmann, R.; Vorburger, R.; Rohrmann, S.; Sych, J.; Steinemann, N. Development of a Multilingual Web-Based Food Frequency Questionnaire for Adults in Switzerland. Nutrients 2023, 15, 4359. [Google Scholar] [CrossRef] [PubMed]
- Federal Food Safety and Veterinary Office (FSVO). Swiss Food Composition Database. Available online: https://naehrwertdaten.ch/de/ (accessed on 4 June 2024).
- Bundesministerium für Ernährung und Landwirtschaft. Bundeslebensmittelschlüssel. Available online: https://www.blsdb.de/ (accessed on 4 June 2024).
- Camenzind-Frey, E.; Zuberbühler, C. menuCH—Schweizerisches Fotobuch/Livre Photo Suisse/Manuale Fotografico Svizzero; Federal Office of Public Health (FOPH) and Federal Food Safety and Veterinary Office (FSVO): Bern, Switzerland, 2014.
- Lu, M.J.; Zhong, W.H.; Liu, Y.X.; Miao, H.Z.; Li, Y.C.; Ji, M.H. Sample Size for Assessing Agreement between Two Methods of Measurement by Bland-Altman Method. Int. J. Biostat. 2016, 12, 20150039. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Lombard, M.J.; Steyn, N.P.; Charlton, K.E.; Senekal, M. Application and interpretation of multiple statistical tests to evaluate validity of dietary intake assessment methods. Nutr. J. 2015, 14, 40. [Google Scholar] [CrossRef]
- Brouwer-Brolsma, E.M.; Perenboom, C.; Sluik, D.; van de Wiel, A.; Geelen, A.; Feskens, E.J.; de Vries, J.H.M. Development and external validation of the ‘Flower-FFQ’: A FFQ designed for the Lifelines Cohort Study. Public Health Nutr. 2022, 25, 225–236. [Google Scholar] [CrossRef]
- Sluik, D.; Geelen, A.; de Vries, J.H.; Eussen, S.J.; Brants, H.A.; Meijboom, S.; van Dongen, M.C.J.M.; Bueno-de-Mesquita, H.B.; Wijckmans-Duysens, N.E.G.; van ’t Veer, P.; et al. A national FFQ for the Netherlands (the FFQ-NL 1.0): Validation of a comprehensive FFQ for adults. Br. J. Nutr. 2016, 116, 913–923. [Google Scholar] [CrossRef]
- Cui, Q.; Xia, Y.; Liu, Y.; Sun, Y.; Ye, K.; Li, W.; Wu, Q.; Chang, Q.; Zhao, Y. Validity and Reproducibility of a Food Frequency Questionnaire for Assessing Dietary Intake among Residents of Northeast China: Northeast Cohort Study of China. Br. J. Nutr. 2022, 129, 1252–1265. [Google Scholar] [CrossRef]
- Masson, L.F.; McNeill, G.; Tomany, J.O.; Simpson, J.A.; Peace, H.S.; Wei, L.; Grubb, D.A.; Bolton-Smith, C. Statistical approaches for assessing the relative validity of a food-frequency questionnaire: Use of correlation coefficients and the kappa statistic. Public Health Nutr. 2003, 6, 313–321. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Rosner, B.; Willett, W.C. Interval estimates for correlation coefficients corrected for within-person variation: Implications for study design and hypothesis testing. Am. J. Epidemiol. 1988, 127, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Al-Shaar, L.; Yuan, C.; Rosner, B.; Dean, S.B.; Ivey, K.L.; Clowry, C.M.; Sampson, L.A.; Barnett, J.B.; Rood, J.; Harnack, L.J.; et al. Reproducibility and Validity of a Semiquantitative Food Frequency Questionnaire in Men Assessed by Multiple Methods. Am. J. Epidemiol. 2021, 190, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Statistics notes: Measurement error. BMJ 1996, 312, 1654. [Google Scholar] [CrossRef]
- Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- Nelson, M. 8. The validation of dietary assessment. In Design Concepts in Nutritional Epidemiology, 2nd ed.; Margetts, B.M., Nelson, M., Eds.; Oxford University Press: Oxford, UK, 1997; pp. 241–256. [Google Scholar]
- Harris, J.A.; Benedict, F.G. A Biometric Study of Human Basal Metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- IPAQ Research Committee. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)—Short and Long Forms. Available online: https://www.academia.edu/5346814/Guidelines_for_Data_Processing_and_Analysis_of_the_International_Physical_Activity_Questionnaire_IPAQ_Short_and_Long_Forms_Contents (accessed on 4 June 2024).
- Cui, Q.; Xia, Y.; Wu, Q.; Chang, Q.; Niu, K.; Zhao, Y. A meta-analysis of the reproducibility of food frequency questionnaires in nutritional epidemiological studies. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 12. [Google Scholar] [CrossRef]
- Cui, Q.; Xia, Y.; Wu, Q.; Chang, Q.; Niu, K.; Zhao, Y. Validity of the food frequency questionnaire for adults in nutritional epidemiological studies: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2021, 63, 1670–1688. [Google Scholar] [CrossRef]
- Zainuddin, L.R.M.Z.; Taha, C.S.C.; Shahril, M.R. Design and validation of web-based or online food frequency questionnaire for adults: A scoping review. Malays. J. Med. Health Sci. 2021, 17, 320–331. [Google Scholar]
- Fallaize, R.; Forster, H.; Macready, A.L.; Walsh, M.C.; Mathers, J.C.; Brennan, L.; Gibney, E.R.; Gibney, M.J.; Lovegrove, J.A. Online dietary intake estimation: Reproducibility and validity of the Food4Me food frequency questionnaire against a 4-day weighed food record. J. Med. Internet Res. 2014, 16, e190. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, V.K.; Hatch, E.E.; Cueto, H.; Tucker, K.L.; Wise, L.; Christensen, T.; Mikkelsen, E.M. Relative validity of a semi-quantitative, web-based FFQ used in the ‘Snart Forældre’ cohort—A Danish study of diet and fertility. Public Health Nutr. 2016, 19, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Ruelas, É.; Bernal-Orozco, M.F.; Macedo-Ojeda, G.; Márquez-Sandoval, Y.F.; Altamirano-Martínez, M.B.; Vizmanos, B. Validation of semiquantitative FFQ administered to adults: A systematic review. Public Health Nutr. 2021, 24, 3399–3418. [Google Scholar] [CrossRef]
- Zhai, L.; Pan, H.; Cao, H.; Zhao, S.; Yao, P. Reliability and validity of a semi-quantitative food frequency questionnaire: Dietary intake assessment among multi-ethnic populations in Northwest China. J. Health Popul. Nutr. 2023, 42, 111. [Google Scholar] [CrossRef]
- Mirmiran, P.; Bahadoran, Z.; Gaeini, Z. Common Limitations and Challenges of Dietary Clinical Trials for Translation into Clinical Practices. Int. J. Endocrinol. Metab. 2021, 19, e108170. [Google Scholar] [CrossRef]
- Kipnis, V.; Subar, A.F.; Midthune, D.; Freedman, L.S.; Ballard-Barbash, R.; Troiano, R.P.; Bingham, S.; Schoeller, D.A.; Schatzkin, A.; Carroll, R.J. Structure of dietary measurement error: Results of the OPEN biomarker study. Am. J. Epidemiol. 2003, 158, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef]
Characteristics | Overall | German-Speaking (Zurich Area) | French-Speaking (Geneva Area) |
---|---|---|---|
Number of participants (n (Sex female %)) | 177 (53.1) | 99 (52.5) | 78 (53.8) |
Age [years] (median (IQR)) | 48 (31.0, 62.0) | 48 (31.5, 62.5) | 48 (31.0, 60.0) |
Age category (n (%)) | |||
18–37 years | 59 (33.3) | 34 (34.3) | 25 (32.1) |
38–57 years | 58 (32.8) | 30 (30.3) | 28 (35.9) |
58–75 years | 60 (33.9) | 35 (35.4) | 25 (32.1) |
BMI [kg/m2] (median (IQR)) * | 22.8 (21.1, 25.9) | 22.9 (21.5, 26.0) | 22.6 (20.9, 25.8) |
BMI category [kg/m2] (n (%)) | |||
Underweight | 9 (5.1) | 6 (6.1) | 3 (3.8) |
Normal | 112 (63.3) | 62 (62.6) | 50 (64.1) |
Overweight | 38 (21.5) | 18 (18.2) | 20 (25.6) |
Obese | 18 (10.2) | 13 (13.1) | 5 (6.4) |
BMR [kcal/d] (median (IQR)) † | 1493 (1334, 1659) | 1501 (1302, 1693) | 1490 (1338, 1638) |
PAL category (n (%)) ‡ | |||
Low | 12 (6.9) | 9 (9.2) | 3 (3.9) |
Moderate | 61 (34.9) | 36 (36.7) | 25 (32.5) |
High | 102 (58.3) | 53 (54.1) | 49 (63.6) |
Smoking status (n (%)) | |||
Never | 99 (55.9) | 57 (57.6) | 42 (53.8) |
Former | 64 (36.2) | 34 (34.3) | 30 (38.5) |
Current | 14 (7.9) | 8 (8.1) | 6 (7.7) |
Education level (n (%)) | |||
Primary/no degree | 3 (1.7) | 1 (1.0) | 2 (2.6) |
Secondary | 43 (24.3) | 25 (25.3) | 18 (23.1) |
Tertiary | 131 (74.0) | 73 (73.7) | 58 (74.4) |
Health status (n (%)) | |||
Very bad to medium | 12 (6.8) | 8 (8.1) | 4 (5.1) |
Good to very good | 165 (93.2) | 91 (91.9) | 74 (94.9) |
Enjoy cooking (n (%)) § | |||
Do not agree to neutral | 42 (23.7) | 25 (25.3) | 17 (21.8) |
Agree to strongly agree | 135 (76.3) | 74 (74.7) | 61 (78.2) |
In charge of food shopping (n (%)) § | |||
Do not agree to neutral | 33 (18.6) | 16 (16.2) | 17 (21.8) |
Agree to strongly agree | 144 (81.4) | 83 (83.8) | 61 (78.2) |
Follow vegetarian/vegan diet (n (%)) | 21 (11.9) | 18 (18.2) | 3 (3.8) |
Dietary Intake Variable | FFQ1 Median (IQR) | Relative Validity (FFQ1 vs. Mean of 4-d FR) | Reproducibility (FFQ1 vs. FFQ2) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4-d FR Median (IQR) | %Group-Level Bias † | % SQ/SOAQ ‡ | % EQ ‡ | Kw § | FFQ2 Median (IQR) | % Group-Level Bias † | SCC ‖ | LCC | ICC | %SQ/SOAQ ‡ | %EQ ‡ | ||
Energy (kcal/d) | 1638 (1357, 2003) | 2023 (1715, 2349) | −18.6 *** | 31.2/73.3 | 9.1 | 0.18 | 1538 (1286, 1946) | 4.9 *** | 0.70 *** | 0.72 | 0.73 | 57.6/91.8 | 1.8 |
Carbohydrates (g/d) | 155.8 (126.8, 196.1) | 196.9 (164.7, 244.0) | −20.8 *** | 35.2/73.3 | 4.6 | 0.27 | 146.7 (121.3, 183.7) | 6.1 ** | 0.70 *** | 0.77 | 0.78 | 48.8/85.9 | 2.4 |
Carbohydrates (E%/d) | 38.7 (34.3, 42.4) | 40.4 (34.7, 45.1) | −3.5 ** | 39.2/78.4 | 3.4 | 0.35 | 37.5 (34.1, 42.1) | 0.7 | 0.73 *** | 0.76 | 0.77 | 54.7/92.3 | 0.6 |
Dietary fiber (g/d) | 18.0 (14.2, 24.0) | 24.5 (18.3, 30.5) | −24.2 *** | 39.8/84.1 | 4.0 | 0.30 | 16.0 (13.3, 22.2) | 7.6 *** | 0.71 *** | 0.70 | 0.71 | 52.4/90.6 | 1.8 |
Dietary fiber (E%/d) | 2.2 (1.9, 2.6) | 2.3 (1.9, 3.0) | −8.8 *** | 43.8/86.4 | 2.3 | 0.38 | 2.1 (1.8, 2.5) | 2.3 | 0.80 *** | 0.79 | 0.80 | 53.5/93.5 | 0.6 |
Protein (g/d) | 66.2 (53.0, 79.8) | 83.0 (67.8, 100.5) | −21.0 *** | 34.7/72.2 | 9.7 | 0.22 | 61.9 (50.1, 79.4) | 3.5 ** | 0.73 *** | 0.69 | 0.69 | 54.1/91.8 | 1.2 |
Protein (E%/d) | 15.5 (14.2, 17.9) | 16.3 (14.3, 18.1) | −2.5 | 36.9/77.3 | 6.8 | 0.25 | 15.8 (14.0, 17.8) | −0.6 | 0.79 *** | 0.84 | 0.84 | 58.2/95.9 | 0.6 |
Fat (g/d) | 73.6 (58.4, 87.8) | 84.7 (66.4, 103.8) | −14.2 *** | 31.2/72.2 | 10.2 | 0.16 | 67.6 (53.3, 82.2) | 5.6 *** | 0.69 *** | 0.67 | 0.68 | 51.2/91.8 | 1.8 |
Fat (E%/d) | 38.9 (36.0, 42.5) | 37.1 (32.9, 41.3) | 6.0 *** | 39.2/77.3 | 6.2 | 0.22 | 39.1 (35.1, 42.9) | 0.6 | 0.59 *** | 0.64 | 0.64 | 44.7/81.8 | 3.5 |
Fatty acids monounsaturated (g/d) | 28.4 (22.3, 35.0) | 30.9 (23.4, 36.8) | −7.6 * | 30.7/67.0 | 11.4 | 0.09 | 26.3 (20.8, 33.6) | 4.0 * | 0.67 *** | 0.65 | 0.66 | 51.2/87.1 | 2.4 |
Fatty acids polyunsaturated (g/d) | 11.5 (8.9, 14.8) | 12.2 (9.5, 16.1) | −10.9 * | 30.1/71.0 | 4.6 | 0.24 | 11.0 (8.3, 14.0) | 6.0 ** | 0.70 *** | 0.67 | 0.67 | 51.8/89.4 | 1.8 |
Fatty acids saturated (g/d) | 25.6 (20.2, 32.2) | 31.6 (23.8, 40.9) | −20.3 *** | 39.2/73.9 | 5.1 | 0.26 | 23.6 (18.0, 30.6) | 6.7 *** | 0.70 *** | 0.70 | 0.71 | 57.6/91.8 | 1.8 |
Alcohol (g/d) | 5.4 (1.8, 12.4) | 4.0 (0.0, 16.5) | −21.0 | 51.1/92.0 | 1.1 | 0.54 | 5.5 (1.9, 12.9) | −10.5 * | 0.88 *** | 0.81 | 0.82 | 72.3/97.7 | 0.0 |
Alcohol (E%/d) | 2.3 (0.7, 4.7) | 1.5 (0.0, 4.8) | 0.4 * | 45.5/92.6 | 1.1 | 0.52 | 2.4 (0.9, 5.4) | −13.4 *** | 0.86 *** | 0.79 | 0.80 | 65.3/96.5 | 0.0 |
Relative Validity (FFQ1 vs. Mean of 4-d FR) | Reproducibility (FFQ1 vs. FFQ2) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dietary Intake Variable (g/d) | FFQ1 Median (IQR) | 4-d FR Median (IQR) | %Group-Level Bias † | %SQ/SOAQ ‡ | % EQ ‡ | Kw § | FFQ2 Median (IQR) | %Group-Level Bias † | SCC ‖ | LCC | ICC | %SQ/SOAQ ‡ | %EQ ‡ |
Bread and bread products | 54.5 (34.8, 71.8) | 79.0 (43.2, 110.8) | −21.6 *** | 33.3/78.1 | 5.5 | 0.26 | 52.4 (30.8, 73.7) | −1.3 | 0.74 *** | 0.74 | 0.75 | 55.7/87.4 | 3.3 |
Grains and grain products, rice | 93.8 (64.9, 126.5) | 111.5 (64.4, 174.1) | −24.2 *** | 35.5/78.1 | 4.9 | 0.32 | 84.4 (58.1, 122.6) | 5.2 * | 0.66 *** | 0.66 | 0.67 | 45.4/85.2 | 2.7 |
Potatoes and potato products | 32.8 (20.4, 45.6) | 37.5 (0.0, 79.5) | −32.1 ** | 0.16 | 30.2 (19.6, 44.8) | 4.0 | 0.57 *** | 0.55 | 0.56 | 43.2/83.6 | 4.9 | ||
Bakery products, cakes, and pastries | 20.5 (12.6, 34.8) | 25.8 (7.5, 63.1) | −38.3 *** | 42.6/78.1 | 5.5 | 0.29 | 19.0 (11.9, 28.2) | 19.1 *** | 0.53 *** | 0.75 | 0.76 | 43.7/82.0 | 4.9 |
Sweets, sugar, desserts, and ice cream | 27.0 (16.8, 41.9) | 28.1 (13.8, 50.6) | −20.5 | 43.7/80.9 | 4.9 | 0.31 | 24.4 (13.6, 41.2) | −1.6 | 0.70 *** | 0.60 | 0.60 | 44.3/83.6 | 2.7 |
Meat, processed meat, and sausage | 72.3 (37.8, 99.6) | 59.2 (23.8, 110.6) | −5.5 | 43.7/81.4 | 2.7 | 0.41 | 67.7 (38.4, 101.7) | −3.5 | 0.86 *** | 0.77 | 0.77 | 56.8/92.9 | 1.1 |
Tofu and other vegetarian meat replacements | 3.2 (0.0, 19.5) | 0.0 (0.0, 0.0) | −20.7 | 3.2 (0.0, 19.5) | −4.8 | 0.79 *** | 0.73 | 0.73 | |||||
Milk, dairy products, and cheese | 123.9 (55.4, 194.6) | 159.7 (81.1, 252.5) | −25.5 *** | 38.3/80.3 | 2.7 | 0.35 | 102.6 (49.4, 192.7) | 8.7 * | 0.76 *** | 0.51 | 0.51 | 50.3/90.2 | 1.6 |
Vegetarian dairy product replacements | 0.0 (0.0, 9.7) | 0.0 (0.0, 10.0) | −27.0 | 0.0 (0.0, 13.8) | −0.8 | 0.76 *** | 0.82 | 0.82 | |||||
Fish and seafood | 11.8 (9.3, 24.9) | 8.5 (0.0, 37.8) | −33.9 | 11.8 (9.3, 24.9) | −2.8 | 0.79 *** | 0.60 | 0.61 | 56.8/86.9 | 2.7 | |||
Eggs | 11.1 (4.6, 11.1) | 13.0 (0.0, 28.1) | −25.0 | 11.1 (4.6, 11.1) | 18.1 ** | 0.64 *** | 0.61 | 0.61 | 54.6/74.9 | 4.9 | |||
Vegetables | 125.1 (93.5, 173.2) | 188.5 (113.7, 274.1) | −34.4 *** | 34.4/74.3 | 3.8 | 0.21 | 140.3 (91.6, 172.8) | −6.3 | 0.72 *** | 0.60 | 0.61 | 48.1/85.8 | 1.6 |
Legumes | 7.1 (2.9, 17.1) | 0.0 (0.0, 25.0) | −21.0 | 7.1 (2.9, 17.1) | 24.4 ** | 0.74 *** | 0.69 | 0.70 | 56.3/89.6 | 0.6 | |||
Fruits and fruit products | 207.3 (110.8, 325.5) | 188.9 (99.3, 290.5) | 10.8 | 42.1/85.2 | 2.7 | 0.45 | 153.1 (89.7, 260.0) | 23.3 *** | 0.68 *** | 0.57 | 0.59 | 47.0/87.4 | 3.3 |
Nuts and seeds | 3.5 (1.4, 12.7) | 6.0 (0.0, 16.2) | −30.6 * | 0.39 | 3.5 (1.4, 11.6) | 13.5 | 0.66 *** | 0.69 | 0.69 | 50.8/85.8 | 3.8 | ||
Fats, oils, and cream | 18.8 (11.9, 25.2) | 19.2 (10.7, 32.8) | −15.8 * | 26.2/64.5 | 9.8 | 0.04 | 17.4 (10.6, 24.5) | 10.2 * | 0.65 *** | 0.57 | 0.58 | 50.3/83.6 | 3.3 |
Savory sauces | 15.9 (7.6, 21.9) | 12.5 (5.0, 23.8) | −23.2 | 24.0/61.2 | 12.0 | 0.04 | 13.9 (6.5, 19.9) | 7.4 * | 0.65 *** | 0.44 | 0.44 | 44.3/88.0 | 2.7 |
Mixed dishes and soups | 82.8 (54.4, 117.6) | 75.0 (2.2, 150.0) | −3.4 | 0.17 | 61.8 (40.5, 100.3) | 21.8 *** | 0.64 *** | 0.57 | 0.60 | 44.3/85.8 | 2.2 | ||
Salty snacks | 3.1 (1.2, 3.1) | 0.0 (0.0, 10.0) | −46.4 * | 3.1 (1.2, 3.1) | −20.1 | 0.59 *** | 0.33 | 0.33 | |||||
Non-alcoholic beverages | 1961.8 (1407.4, 2267.0) | 1731.6 (1249.1, 2213.9) | 5.6 * | 35.5/77.6 | 7.1 | 0.33 | 1935.7 (1619.0, 2299.0) | −0.3 | 0.74 *** | 0.75 | 0.75 | 55.2/89.1 | 2.2 |
Alcoholic beverages | 75.0 (17.9, 166.4) | 50.0 (0.0, 189.4) | −18.8 | 69.1 (17.9, 182.9) | −12.9 ** | 0.88 *** | 0.79 | 0.79 | 55.2/92.9 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pannen, S.T.; Chevillard, E.; Chatelan, A.; Marques-Vidal, P.; Stringhini, S.; Vorburger, R.; Rohrmann, S.; Steinemann, N.; Sych, J. Relative Validity and Reproducibility of a Semi-Quantitative Web-Based Food Frequency Questionnaire for Swiss Adults. Nutrients 2025, 17, 1555. https://doi.org/10.3390/nu17091555
Pannen ST, Chevillard E, Chatelan A, Marques-Vidal P, Stringhini S, Vorburger R, Rohrmann S, Steinemann N, Sych J. Relative Validity and Reproducibility of a Semi-Quantitative Web-Based Food Frequency Questionnaire for Swiss Adults. Nutrients. 2025; 17(9):1555. https://doi.org/10.3390/nu17091555
Chicago/Turabian StylePannen, Sarah T., Elsa Chevillard, Angeline Chatelan, Pedro Marques-Vidal, Silvia Stringhini, Robert Vorburger, Sabine Rohrmann, Nina Steinemann, and Janice Sych. 2025. "Relative Validity and Reproducibility of a Semi-Quantitative Web-Based Food Frequency Questionnaire for Swiss Adults" Nutrients 17, no. 9: 1555. https://doi.org/10.3390/nu17091555
APA StylePannen, S. T., Chevillard, E., Chatelan, A., Marques-Vidal, P., Stringhini, S., Vorburger, R., Rohrmann, S., Steinemann, N., & Sych, J. (2025). Relative Validity and Reproducibility of a Semi-Quantitative Web-Based Food Frequency Questionnaire for Swiss Adults. Nutrients, 17(9), 1555. https://doi.org/10.3390/nu17091555