Expert-Reviewed Nutritional Guidance for Adults with Spinal Cord Injury: A Delphi Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participant Selection and Panel Size
2.3. Recruitment
2.4. Generation of Nutrition Statements
2.5. Delphi Procedure and Data Analysis
2.6. Anonymity and Confidentiality
3. Results
Summary of the Nutrition Statements for Adults with Chronic Spinal Cord Injury (SCI) Who Can Consume Food Orally and Live Outside of Clinical or Institutional Settings
- Vitamin A
- Vitamin C
- Zinc
- Iron
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
SCI | Spinal cord injury |
RD | Registered dietitian |
US | The United States |
RMR | Resting metabolic rate |
BMR | Basal metabolic rate |
BF | Body fat |
BMI | Body mass index |
CVD | Cardiovascular disease |
SD | Standard deviation |
TDEE | Total daily energy expenditure |
TEF | Thermic effect of food |
MET | Metabolic equivalent of task |
RDA | Recommended dietary allowance |
IU | International unit |
DGA | Dietary Guidelines for Americans |
References
- National Spinal Cord Injury Statistical Center (NSCISC). Facts and Figures at a Glance. 2021. Available online: https://www.nscisc.uab.edu/ (accessed on 4 February 2023).
- Centers for Disease Control and Prevention. People with Disabilities Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. 2021. Available online: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-disabilities.html (accessed on 4 February 2023).
- Gater, D.R.; Bauman, C.; Cowan, R. A primary care provider’s guide to diet and nutrition after spinal cord injury. Top. Spinal Cord. Inj. Rehabil. 2020, 26, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Farkas, G.J.; Sneij, A.; Gater, D.R. Dietetics After Spinal Cord Injury: Current Evidence and Future Perspectives. Top. Spinal Cord. Inj. Rehabil. 2021, 27, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Gorgey, A.S.; Lester, R.M.; Ghatas, M.P.; Sisturn, S.N.; Lavis, T. Dietary manipulation and testosterone replacement therapy may explain changes in body composition after spinal cord injury: A retrospective case report. World J. Clin. Cases 2019, 7, 2427–2437. [Google Scholar] [CrossRef] [PubMed]
- Monroe, M.B.; Tataranni, P.A.; Pratley, R.; Manore, M.M.; Skinner, J.S.; Ravussin, E. Lower daily energy expenditure as measured by a respiratory chamber in subjects with spinal cord injury compared with control subjects. Am. J. Clin. Nutr. 1998, 68, 1223–1227. [Google Scholar] [CrossRef]
- Bauman, W.A.; Spungen, A.M.; Wang, J.; Pierson, R.N., Jr. The relationship between energy expenditure and lean tissue in monozygotic twins discordant for spinal cord injury. J. Rehabil. Res. Dev. 2004, 41, 1–8. [Google Scholar] [CrossRef]
- Farkas, G.J.; Pitot, M.A.; Berg, A.S.; Gater, D.R. Nutritional status in chronic spinal cord injury: A systematic review and meta-analysis. Spinal Cord. 2019, 57, 3–17. [Google Scholar] [CrossRef]
- Buchholz, A.C.; McGillivray, C.F.; Pencharz, P.B. Physical activity levels are low in free-living adults with chronic paraplegia. Obes. Res. 2003, 11, 563–570. [Google Scholar] [CrossRef]
- Holmes, G.M. Upper gastrointestinal dysmotility after spinal cord injury: Is diminished vagal sensory processing one culprit? Front. Physiol. 2012, 3, 277. [Google Scholar] [CrossRef]
- Keshavarzian, A.; Barnes, W.E.; Bruninga, K.; Nemchausky, B.; Mermall, H.; Bushnell, D. Delayed colonic transit in spinal cord-injured patients measured by indium-111 Amberlite scintigraphy. Am. J. Gastroenterol. 1995, 90, 1295–1300. [Google Scholar]
- Stjernberg, L.; Blumberg, H.; Wallin, B.G. Sympathetic activity in man after spinal cord injury. Outflow to muscle below the lesion. Brain 1986, 109 Pt 4, 695–715. [Google Scholar] [CrossRef]
- Pellicane, A.J.; Millis, S.R.; Zimmerman, S.E.; Roth, E.J. Calorie and protein intake in acute rehabilitation inpatients with traumatic spinal cord injury versus other diagnoses. Top. Spinal Cord. Inj. Rehabil. 2013, 19, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Nash, M.S.; Groah, S.L.; Gater, D.R., Jr.; Dyson-Hudson, T.A.; Lieberman, J.A.; Myers, J.; Sabharwal, S.; Taylor, A.J. Identification and management of cardiometabolic risk after spinal cord injury: Clinical practice guideline for health care providers. Top. Spinal Cord. Inj. Rehabil. 2018, 24, 379. [Google Scholar] [CrossRef] [PubMed]
- Deitary Guidelines Advisory Committee. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services; Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2020. Available online: https://www.dietaryguidelines.gov/2020-advisory-committee-report (accessed on 4 February 2023).
- Rimmer, J.H.; Vanderbom, K.A.; Bandini, L.G.; Drum, C.E.; Luken, K.; Suarez-Balcazar, Y.; Graham, I.D. GRAIDs: A framework for closing the gap in the availability of health promotion programs and interventions for people with disabilities. Implement. Sci. 2014, 9, 100. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.S.; Moore, S.M. Universal design of research: Inclusion of persons with disabilities in mainstream biomedical studies. Sci. Transl. Med. 2011, 3, 82cm12. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.H.; Rohr, F.; Splett, P.L. Bridging evidence and consensus methodology for inherited metabolic disorders: Creating nutrition guidelines. J. Eval. Clin. Pract. 2013, 19, 584–590. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Decision-making for guideline development at WHO. In WHO Handbook for Guideline Development; World Health Organization: Geneva, Switzerland, 2014; pp. 201–214. [Google Scholar]
- Calibrum. St George, UT. 2020. Available online: https://calibrum.com/ (accessed on 4 February 2023).
- Aengenheyster, S.; Cuhls, K.; Gerhold, L.; Heiskanen-Schüttler, M.; Huck, J.; Muszynska, M. Real-Time Delphi in practice—A comparative analysis of existing software-based tools. Technol. Forecast. Soc. Change 2017, 118, 15–27. [Google Scholar] [CrossRef]
- Culley, J.M. Use of a computer-mediated Delphi process to validate a mass casualty conceptual model. Comput. Inf. Nurs. 2011, 29, 272–279. [Google Scholar] [CrossRef]
- Akins, R.B.; Tolson, H.; Cole, B.R. Stability of response characteristics of a Delphi panel: Application of bootstrap data expansion. BMC Med. Res. Methodol. 2005, 5, 37. [Google Scholar] [CrossRef]
- Nasa, P.; Jain, R.; Juneja, D. Delphi methodology in healthcare research: How to decide its appropriateness. World J. Methodol. 2021, 11, 116–129. [Google Scholar] [CrossRef]
- Trevelyan, E.G.; Robinson, P.N. Delphi methodology in health research: How to do it? Eur. J. Integr. Med. 2015, 7, 423–428. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Sandford, B.A. The Delphi technique: Making sense of consensus. Pract. Assess. Res. Eval. 2007, 12, 10. [Google Scholar]
- Sadler, G.R.; Lee, H.C.; Lim, R.S.; Fullerton, J. Recruitment of hard-to-reach population subgroups via adaptations of the snowball sampling strategy. Nurs. Health Sci. 2010, 12, 369–374. [Google Scholar] [CrossRef]
- Chun, S.; Kim, H.; Shin, H. Estimating the Basal metabolic rate from fat free mass in individuals with motor complete spinal cord injury. Spinal Cord. 2017, 55, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Silveira, S.L.; Ledoux, T.A.; Robinson-Whelen, S.; Stough, R.; Nosek, M.A. Methods for classifying obesity in spinal cord injury: A review. Spinal Cord. 2017, 55, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Academy of Nutrition and Dietetics. Spinal Cord Injury (SCI) Guideline. 2009. Available online: https://www.andeal.org/topic.cfm?cat=3485 (accessed on 4 February 2023).
- U.S. National Library of Medicine. Calculating Body Frame Size: National Institutes of Health. Available online: https://medlineplus.gov/ency/imagepages/17182.htm (accessed on 4 February 2023).
- Monier, Z.; Bauer, K.; Bell, S. Determination of Overweight and Obesity in Wheelchair Bound Patients. J. Med.-Clin. Res. Rev. 2019, 3, 1–3. [Google Scholar] [CrossRef]
- Vorvick, L.J. Calculating Body Frame Size. Available online: https://sales-demo.adam.com/content.aspx?productid=140&pid=2&gid=17182 (accessed on 27 April 2023).
- Metropolitan Life Insurance Company. Metropolitan Height and Weight Tables for Men and Women. 1999. Available online: https://sci.washington.edu/info/forums/reports/MetroLifeWeightTables.pdf (accessed on 4 February 2023).
- Yahiro, A.M.; Wingo, B.C.; Kunwor, S.; Parton, J.; Ellis, A.C. Classification of obesity, cardiometabolic risk, and metabolic syndrome in adults with spinal cord injury. J. Spinal Cord. Med. 2020, 43, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Brochetti, A.M.; Brose, S.W.; Kuemmel, A.M.; Dang, D.J.; Bourbeau, D.J. Interdisciplinary bodyweight management program for persons with SCI. J. Spinal Cord. Med. 2020, 43, 24–30. [Google Scholar] [CrossRef]
- Shah, B.; Sucher, K.; Hollenbeck, C.B. Comparison of ideal body weight equations and published height-weight tables with body mass index tables for healthy adults in the United States. Nutr. Clin. Pract. 2006, 21, 312–319. [Google Scholar] [CrossRef]
- MediCalculator. Ideal Body Weight (Hamwi method) Equation Page: ScyMed. 2019. Available online: http://www.scymed.com/en/smnxpn/pndfc237.htm (accessed on 4 February 2023).
- Laughton, G.E.; Buchholz, A.C.; Martin Ginis, K.A.; Goy, R.E. Lowering body mass index cutoffs better identifies obese persons with spinal cord injury. Spinal Cord. 2009, 47, 757–762. [Google Scholar] [CrossRef]
- De Groot, S.; Post, M.W.; Postma, K.; Sluis, T.A.; Van Der Woude, L.H. Prospective analysis of body mass index during and up to 5 years after discharge from inpatient spinal cord injury rehabilitation. J. Rehabil. Med. 2010, 42, 922. [Google Scholar] [CrossRef]
- Buchholz, A.; Bugaresti, J. A review of body mass index and waist circumference as markers of obesity and coronary heart disease risk in persons with chronic spinal cord injury. Spinal Cord. 2005, 43, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Nash, M.S.; Bilzon, J.L.J. Guideline Approaches for Cardioendocrine Disease Surveillance and Treatment Following Spinal Cord Injury. Curr. Phys. Med. Rehabil. Rep. 2018, 6, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, M.; Fedullo, A.L.; Bernardi, E.; Munzi, D.; Peluso, I.; Myers, J.; Lista, F.R.; Sciarra, T. Diet in neurogenic bowel management: A viewpoint on spinal cord injury. World J. Gastroenterol. 2020, 26, 2479. [Google Scholar] [CrossRef] [PubMed]
- Pencina, M.J.; D’Agostino Sr, R.B.; Larson, M.G.; Massaro, J.M.; Vasan, R.S. Predicting the 30-year risk of cardiovascular disease: The Framingham Heart Study. Circulation 2009, 119, 3078–3084. [Google Scholar] [CrossRef]
- Ravensbergen, H.R.; Lear, S.A.; Claydon, V.E. Waist circumference is the best index for obesity-related cardiovascular disease risk in individuals with spinal cord injury. J. Neurotrauma 2014, 31, 292–300. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, Z.; Heshka, S.; Heo, M.; Faith, M.S.; Heymsfield, S.B. Waist circumference and obesity-associated risk factors among whites in the third National Health and Nutrition Examination Survey: Clinical action thresholds. Am. J. Clin. Nutr. 2002, 76, 743. [Google Scholar] [CrossRef]
- Dalton, M.; Cameron, A.J.; Zimmet, P.Z.; Shaw, J.E.; Jolley, D.; Dunstan, D.W.; Welborn, T.A.; AusDiab Steering Committee. Waist circumference, waist–hip ratio and body mass index and their correlation with cardiovascular disease risk factors in Australian adults. J. Intern. Med. 2003, 254, 555–563. [Google Scholar] [CrossRef]
- Han, T.; Van Leer, E.; Seidell, J.; Lean, M. Waist circumference action levels in the identification of cardiovascular risk factors: Prevalence study in a random sample. BMJ 1995, 311, 1401–1405. [Google Scholar] [CrossRef]
- Lear, S.A.; Humphries, K.H.; Kohli, S.; Frohlich, J.J.; Birmingham, C.L.; Mancini, G.J. Visceral adipose tissue, a potential risk factor for carotid atherosclerosis: Results of the Multicultural Community Health Assessment Trial (M-CHAT). Stroke 2007, 38, 2422–2429. [Google Scholar] [CrossRef]
- Lemieux, S.; Prud’homme, D.; Bouchard, C.; Tremblay, A.; Després, J.-P. A single threshold value of waist girth identifies normal-weight and overweight subjects with excess visceral adipose tissue. Am. J. Clin. Nutr. 1996, 64, 685–693. [Google Scholar] [CrossRef]
- Ross, R.; Leger, L.; Morris, D.; de Guise, J.; Guardo, R. Quantification of adipose tissue by MRI: Relationship with anthropometric variables. J. Appl. Physiol. 1992, 72, 787–795. [Google Scholar] [CrossRef]
- Demirel, Ş.; Demirel, G.; Tükek, T.; Erk, O.; Yilmaz, H. Risk factors for coronary heart disease in patients with spinal cord injury in Turkey. Spinal Cord. 2001, 39, 134–138. [Google Scholar] [CrossRef]
- Emmons, R.R.; Garber, C.E.; Cirnigliaro, C.M.; Kirshblum, S.C.; Spungen, A.M.; Bauman, W.A. Assessment of measures for abdominal adiposity in persons with spinal cord injury. Ultrasound Med. Biol. 2011, 37, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Eriks-Hoogland, I.; Hilfiker, R.; Baumberger, M.; Balk, S.; Stucki, G.; Perret, C. Clinical assessment of obesity in persons with spinal cord injury: Validity of waist circumference, body mass index, and anthropometric index. J. Spinal Cord. Med. 2011, 34, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Edwards, L.A.; Bugaresti, J.M.; Buchholz, A.C. Visceral adipose tissue and the ratio of visceral to subcutaneous adipose tissue are greater in adults with than in those without spinal cord injury, despite matching waist circumferences. Am. J. Clin. Nutr. 2008, 87, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Sumrell, R.M.; Nightingale, T.E.; McCauley, L.S.; Gorgey, A.S. Anthropometric cutoffs and associations with visceral adiposity and metabolic biomarkers after spinal cord injury. PLoS ONE 2018, 13, e0203049. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Ennasr, A.N.; Farkas, G.J.; Gater, D.R., Jr. Anthropometric Prediction of Visceral Adiposity in Persons With Spinal Cord Injury. Top. Spinal Cord. Inj. Rehabil. 2021, 27, 23–35. [Google Scholar] [CrossRef]
- Gill, S.; Sumrell, R.M.; Sima, A.; Cifu, D.X.; Gorgey, A.S. Waist circumference cutoff identifying risks of obesity, metabolic syndrome, and cardiovascular disease in men with spinal cord injury. PLoS ONE 2020, 15, e0236752. [Google Scholar] [CrossRef]
- Gorgey, A.; Gill, S. Proposed Waist Circumference Cut-off to Identify Risks of Obesity, Metabolic Syndrome, and Cardiovascular Disease After Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2020, 101, e27. [Google Scholar] [CrossRef]
- Nevin, A.; Steenson, J.; Vivanti, A.; Hickman, I. Investigation of measured and predicted resting energy needs in adults after spinal cord injury: A systematic review. Spinal Cord. 2016, 54, 248–253. [Google Scholar] [CrossRef]
- Farkas, G.J.; Sneij, A.; Gater, D.R., Jr. Energy Expenditure Following Spinal Cord Injury: A Delicate Balance. Top. Spinal Cord. Inj. Rehabil. 2021, 27, 92–99. [Google Scholar] [CrossRef]
- Farkas, G.J.; Pitot, M.A.; Gater, D.R., Jr. A Systematic Review of the Accuracy of Estimated and Measured Resting Metabolic Rate in Chronic Spinal Cord Injury. Int. J. Sport. Nutr. Exerc. Metab. 2019, 29, 548–558. [Google Scholar] [CrossRef]
- Zusman, O.; Kagan, I.; Bendavid, I.; Theilla, M.; Cohen, J.; Singer, P. Predictive equations versus measured energy expenditure by indirect calorimetry: A retrospective validation. Clin. Nutr. 2019, 38, 1206–1210. [Google Scholar] [CrossRef]
- da Silva Gomes, A.I.; dos Santos Vigário, P.; Mainenti, M.R.M.; de Figueiredo Ferreira, M.; Ribeiro, B.G.; de Abreu Soares, E. Basal and resting metabolic rates of physically disabled adult subjects: A systematic review of controlled cross-sectional studies. Ann. Nutr. Metab. 2014, 65, 243–252. [Google Scholar] [CrossRef]
- Farkas, G.J.; Sneij, A.; McMillan, D.W.; Tiozzo, E.; Nash, M.S.; Gater, D.R. Energy expenditure and nutrient intake after spinal cord injury: A comprehensive review and practical recommendations. Br. J. Nutr. 2022, 128, 863–887. [Google Scholar] [CrossRef]
- Nightingale, T.E.; Gorgey, A.S. Predicting Basal Metabolic Rate in Men with Motor Complete Spinal Cord Injury. Med. Sci. Sports Exerc. 2018, 50, 1305–1312. [Google Scholar] [CrossRef]
- Harris, J.A.; Benedict, F.G. A Biometric Study of Basal Metabolism in Man; Carnegie Institution of Washington: Washington, DC, USA, 1919. [Google Scholar]
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39, 5–41. [Google Scholar]
- Gorgey, A.S.; Dolbow, D.R.; Gater, D.R., Jr. A model of prediction and cross-validation of fat-free mass in men with motor complete spinal cord injury. Arch. Phys. Med. Rehabil. 2012, 93, 1240–1245. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.; Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Broad, E.M.; Newsome, L.J.; Dew, D.A.; Barfield, J.P. Measured and predicted resting energy expenditure in wheelchair rugby athletes. J. Spinal Cord. Med. 2020, 43, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, J.J. A reanalysis of the factors influencing basal metabolic rate in normal adults. Am. J. Clin. Nutr. 1980, 33, 2372–2374. [Google Scholar] [CrossRef]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Owen, O.E.; Holup, J.L.; D’Alessio, D.A.; Craig, E.S.; Polansky, M.; Smalley, K.J.; Kavle, E.C.; Bushman, M.C.; Owen, L.R.; Mozzoli, M.A.; et al. A reappraisal of the caloric requirements of men. Am. J. Clin. Nutr. 1987, 46, 875–885. [Google Scholar] [CrossRef]
- Pelly, F.E.; Broad, E.M.; Stuart, N.; Holmes, M.A. Resting energy expenditure in male athletes with a spinal cord injury. J. Spinal Cord. Med. 2018, 41, 208–215. [Google Scholar] [CrossRef]
- Frankenfield, D.; Roth-Yousey, L.; Compher, C.; Group, E.A.W. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: A systematic review. J. Am. Diet. Assoc. 2005, 105, 775–789. [Google Scholar] [CrossRef] [PubMed]
- Thom, G.; Gerasimidis, K.; Rizou, E.; Alfheeaid, H.; Barwell, N.; Manthou, E.; Fatima, S.; Gill, J.M.R.; Lean, M.E.J.; Malkova, D. Validity of predictive equations to estimate RMR in females with varying BMI. J. Nutr. Sci. 2020, 9, e17. [Google Scholar] [CrossRef] [PubMed]
- Weijs, P.J.; Kruizenga, H.M.; van Dijk, A.E.; van der Meij, B.S.; Langius, J.A.; Knol, D.L.; van Schijndel, R.J.M.S.; van Bokhorst-de van der Schueren, M.A.E. Validation of predictive equations for resting energy expenditure in adult outpatients and inpatients. Clin. Nutr. 2008, 27, 150–157. [Google Scholar] [CrossRef]
- Frankenfield, D.C. Bias and accuracy of resting metabolic rate equations in non-obese and obese adults. Clin. Nutr. 2013, 32, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Dobratz, J.R.; Sibley, S.D.; Beckman, T.R.; Valentine, B.J.; Kellogg, T.A.; Ikramuddin, S.; Earthman, C.P. Predicting energy expenditure in extremely obese women. JPEN J. Parenter. Enter. Nutr. 2007, 31, 217–227. [Google Scholar] [CrossRef]
- Harris, J.A.; Benedict, F.G. A biometric study of human basal metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef]
- Buchholz, A.C.; McGillivray, C.F.; Pencharz, P.B. Differences in resting metabolic rate between paraplegic and able-bodied subjects are explained by differences in body composition. Am. J. Clin. Nutr. 2003, 77, 371–378. [Google Scholar] [CrossRef]
- Farkas, G.J.; Gorgey, A.S.; Dolbow, D.R.; Berg, A.S.; Gater, D.R. Caloric Intake Relative to Total Daily Energy Expenditure Using a Spinal Cord Injury–Specific Correction Factor: An Analysis by Level of Injury. Am. J. Phys. Med. Rehabil. 2019, 98, 947–952. [Google Scholar] [CrossRef]
- Nash, M.S.; Gater, D.R., Jr. Cardiometabolic disease and dysfunction following spinal cord injury: Origins and guideline-based countermeasures. Phys. Med. Rehabil. Clin. N. Am. 2020, 31, 415–436. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, R.; King, R.; Holmfield, J.; Siwek, R.; Baker, M.; Wales, J. Thermic effect of feeding carbohydrate, fat, protein and mixed meal in lean and obese subjects. Am. J. Clin. Nutr. 1985, 42, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Barco, K.T.; Smith, R.A.; Peerless, J.R.; Plaisier, B.R.; Chima, C.S. Energy expenditure assessment and validation after acute spinal cord injury. Nutr. Clin. Pract. 2002, 17, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, D.J.; Benzel, E.C.; Clevenger, F.W. The metabolic response to spinal cord injury. Spinal Cord. 1997, 35, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, D.J.; Clevenger, F.W.; Osler, T.M.; Demarest, G.B.; Fry, D.E. Obligatory negative nitrogen balance following spinal cord injury. J. Parenter. Enter. Nutr. 1991, 15, 319–322. [Google Scholar] [CrossRef]
- Collins, E.G.; Gater, D.; Kiratli, J.; Butler, J.; Hanson, K.; Langbein, W.E. Energy cost of physical activities in persons with spinal cord injury. Med. Sci. Sports Exerc. 2010, 42, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.Y.; Steadward, R.D.; Wheeler, G.D.; Bell, G.; McCargar, L.; Harber, V. Intact sympathetic nervous system is required for leptin effects on resting metabolic rate in people with spinal cord injury. J. Clin. Endocrinol. Metab. 2003, 88, 402–407. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; 2020. Available online: https://www.dietaryguidelines.gov/resources/2020-2025-dietary-guidelines-online-materials (accessed on 4 February 2023).
- Meyers, L.D.; Hellwig, J.P.; Otten, J.J. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- National Health and Medical Research Council. Australian Dietary Guidelines Summary; National Health and Medical Research Council: Canberra, Australia, 2013.
- Silveira, S.L.; Winter, L.L.; Clark, R.; Ledoux, T.; Robinson-Whelen, S. Baseline Dietary Intake of Individuals with Spinal Cord Injury Who Are Overweight or Obese. J. Acad. Nutr. Diet. 2019, 119, 301–309. [Google Scholar] [CrossRef]
- Khalil, R.E.; Gorgey, A.S.; Janisko, M.; Dolbow, D.R.; Moore, J.R.; Gater, D.R. The role of nutrition in health status after spinal cord injury. Aging Dis. 2013, 4, 14–22. [Google Scholar]
- Gorgey, A.S.; Caudill, C.; Sistrun, S.; Khalil, R.E.; Gill, R.; Castillo, T.; Lavis, T.; Gater, D.R. Frequency of dietary recalls, nutritional assessment, and body composition assessment in men with chronic spinal cord injury. Arch. Phys. Med. Rehabil. 2015, 96, 1646–1653. [Google Scholar] [CrossRef] [PubMed]
- Yarar-Fisher, C.; Kulkarni, A.; Li, J.; Farley, P.; Renfro, C.; Aslam, H.; Bosarge, P.; Wilson, L. Evaluation of a ketogenic diet for improvement of neurological recovery in individuals with acute spinal cord injury: A pilot, randomized safety and feasibility trial. Spinal Cord. Ser. Cases 2018, 4, 88. [Google Scholar] [CrossRef]
- Li, J.; McLain, A.; Morrow, C.; Gower, B.; Yarar, C. Utilizing a Low-Carbohydrate/High-Protein Diet to Improve Metabolic Health in Individuals With Spinal Cord Injury. Curr. Dev. Nutr. 2021, 5 (Suppl. S2), 510. [Google Scholar] [CrossRef]
- Cameron, K.; Nyulasi, I.; Collier, G.; Brown, D.J. Assessment of the effect of increased dietary fibre intake on bowel function in patients with spinal cord injury. Spinal Cord. 1996, 34, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Yeung, H.Y.; Iyer, P.; Pryor, J.; Nicholson, M. Dietary management of neurogenic bowel in adults with spinal cord injury: An integrative review of literature. Disabil. Rehabil. 2021, 43, 1208–1219. [Google Scholar] [CrossRef] [PubMed]
- Badiali, D.; Bracci, F.; Castellano, V.; Corazziari, E.; Fuoco, U.; Habib, F.; Scivoletto, G. Sequential treatment of chronic constipation in paraplegic subjects. Spinal Cord. 1997, 35, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Bigford, G.; Nash, M.S. Nutritional Health Considerations for Persons with Spinal Cord Inury. Top. Spinal Cord. Inj. Rehabil. 2017, 23, 188–206. [Google Scholar] [CrossRef]
- Walters, J.; Buchholz, A.; Martin Ginis, K. Evidence of dietary inadequacy in adults with chronic spinal cord injury. Spinal Cord. 2009, 47, 318–322. [Google Scholar] [CrossRef]
- National Pressure Ulcer Advisory Panel EPUAPaPP, Pressure Injury Alliance. Prevention and Treatment of Pressure Ulcers: Clinical Practice Guideline Osborne Park, Western Australia: Cambridge Media. 2014. Available online: https://www.andeal.org/files/files/WoundCare/NPUAP-EPUAP-PPPIA%20CPG%202014.pdf (accessed on 4 February 2023).
- Consortium for Spinal Cord Medicine Clinical Practice Guidelines. Pressure ulcer prevention and treatment following spinal cord injury: A clinical practice guideline for health-care professionals. J. Spinal Cord Med. 2001, 24 (Suppl. S1), S40–S101. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Mather, K.J.; Cupp, H.R.; Gater, D.R. Effects of resistance training on adiposity and metabolism after spinal cord injury. Med. Sci. Sports Exerc. 2012, 44, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, T.E.; Williams, S.; Thompson, D.; Bilzon, J.L. Energy balance components in persons with paraplegia: Daily variation and appropriate measurement duration. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 132. [Google Scholar] [CrossRef] [PubMed]
- Perret, C.; Stoffel-Kurt, N. Comparison of nutritional intake between individuals with acute and chronic spinal cord injury. J. Spinal Cord. Med. 2011, 34, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Groah, S.L.; Nash, M.S.; Ljungberg, I.H.; Libin, A.; Hamm, L.F.; Ward, E.; Burns, P.A.; Enfield, G. Nutrient intake and body habitus after spinal cord injury: An analysis by sex and level of injury. J. Spinal Cord. Med. 2009, 32, 25–33. [Google Scholar] [CrossRef]
- Iyer, P.; Beck, E.J.; Walton, K.L. Exploring nutrition knowledge and dietary intake of adults with spinal cord injury in specialist rehabilitation. Spinal Cord. 2020, 58, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Sabour, H.; Javidan, A.N.; Vafa, M.R.; Shidfar, F.; Nazari, M.; Saberi, H.; Rahimi, A.; Razavi, H.E. Calorie and macronutrients intake in people with spinal cord injuries: An analysis by sex and injury-related variables. Nutrition 2012, 28, 143–147. [Google Scholar] [CrossRef]
- Sabour, H.; Nazari, M.; Latifi, S.; Soltani, Z.; Shakeri, H.; Larijani, B.; Ghodsi, S.-M.; Razavi, S.-H.E. The relationship between dietary intakes of amino acids and bone mineral density among individuals with spinal cord injury. Oman Med. J. 2016, 31, 22. [Google Scholar] [CrossRef]
- Levine, A.M.; Nash, M.S.; Green, B.A.; Shea, J.D.; Aronica, M.J. An examination of dietary intakes and nutritional status of chronic healthy spinal cord injured individuals. Spinal Cord. 1992, 30, 880–889. [Google Scholar] [CrossRef]
- Doubelt, I.; de Zepetnek, J.T.; MacDonald, M.J.; Atkinson, S.A. Influences of nutrition and adiposity on bone mineral density in individuals with chronic spinal cord injury: A cross-sectional, observational study. Bone Rep. 2015, 2, 26–31. [Google Scholar] [CrossRef]
- Lieberman, J.; Goff, D.; Hammond, F.; Schreiner, P.; Norton, H.J.; Dulin, M.; Zhou, X.; Steffen, L. Dietary intake and adherence to the 2010 Dietary Guidelines for Americans among individuals with chronic spinal cord injury: A pilot study. J. Spinal Cord. Med. 2014, 37, 751–757. [Google Scholar] [CrossRef]
- Tomey, K.M.; Chen, D.M.; Wang, X.; Braunschweig, C.L. Dietary intake and nutritional status of urban community-dwelling men with paraplegia. Arch. Phys. Med. Rehabil. 2005, 86, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Krempien, J.L.; Barr, S.I. Risk of nutrient inadequacies in elite Canadian athletes with spinal cord injury. Int. J. Sport. Nutr. Exerc. Metab. 2011, 21, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Beal, C.; Gorgey, A.; Moore, P.; Wong, N.; Adler, R.A.; Gater, D. Higher dietary intake of vitamin D may influence total cholesterol and carbohydrate profile independent of body composition in men with chronic spinal cord injury. J. Spinal Cord. Med. 2018, 41, 459–470. [Google Scholar] [CrossRef]
- Zeilig, G.; Dolev, M.; Weingarden, H.; Blumen, N.; Shemesh, Y.; Ohry, A. Long-term morbidity and mortality after spinal cord injury: 50 years of follow-up. Spinal Cord 2000, 38, 563–566. [Google Scholar] [CrossRef]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Trans Tasman Dietetic Wound Care Group. Evidence Based Practice Guidelines for the Nutritional Management of Adults with Pressure Injuries. 2010. Available online: www.ttdwcg.org (accessed on 4 February 2023).
- Clark, M.; Schols, J.M.; Benati, G.; Jackson, P.; Engfer, M.; Langer, G.; Kerry, B.; Colin, D. Pressure ulcers and nutrition: A new European guideline. J. Wound Care 2004, 13, 267–272. [Google Scholar] [CrossRef]
- Desneves, K.J.; Todorovic, B.E.; Cassar, A.; Crowe, T.C. Treatment with supplementary arginine, vitamin C and zinc in patients with pressure ulcers: A randomised controlled trial. Clin. Nutr. 2005, 24, 979–987. [Google Scholar] [CrossRef]
- Majumdar, R.; Kothari, S.; Gupta, A. Chalanges in the Management of Pressure Ulcers. Int. J. Pharma Med. Res. 2006, 17, 1–4. [Google Scholar]
- Maggioni, M.; Bertoli, S.; Margonato, V.; Merati, G.; Veicsteinas, A.; Testolin, G. Body composition assessment in spinal cord injury subjects. Acta Diabetol. 2003, 40, s183–s186. [Google Scholar] [CrossRef]
- Aquilani, R.; Boschi, F.; Contardi, A.; Pistarini, C.; Achilli, M.; Fizzotti, G.; Moroni, S.; Catapano, M.; Verri, M.; Pastoris, O. Energy expenditure and nutritional adequacy of rehabilitation paraplegics with asymptomatic bacteriuria and pressure sores. Spinal Cord. 2001, 39, 437–441. [Google Scholar] [CrossRef]
- Moussavi, R.M.; Ribas-Cardus, F.; Rintala, D.H.; Rodriguez, G.P. Dietary and serum lipids in individuals with spinal cord injury living in the community. J. Rehabil. Res. Dev. 2001, 38, 225–234. [Google Scholar]
- Nelson, M.D. Prevalence and Characterization of Metabolic Syndrome in Adolescents and Adults with Spinal Cord Dysfunction; University of California Davis: Davis, CA, USA, 2007. [Google Scholar]
- Brenes, G.; Dearwater, S.; Shapera, R.; LaPorte, R.E.; Collins, E. High density lipoprotein cholesterol concentrations in physically active and sedentary spinal cord injured patients. Arch. Phys. Med. Rehabil. 1986, 67, 445–450. [Google Scholar]
- World Health Organization. Healthy Diet. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 4 February 2023).
- Public Health England. Government Dietary Recommendations. 2016. Available online: https://www.gov.uk/government/publications/the-eatwell-guide (accessed on 4 February 2023).
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J. Am. Coll. Cardiol. 2014, 63 Pt B, 2985–3023. [Google Scholar] [CrossRef]
- Eckel, R.H.; Jakicic, J.M.; Ard, J.D.; de Jesus, J.M.; Houston Miller, N.; Hubbard, V.S.; Lee, I.-M.; Lichtenstein, A.H.; Loria, C.M.; Millen, B.E.; et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63 Pt B, 2960–2984. [Google Scholar] [CrossRef]
- American Heart Association. Saturated Fat. Available online: www.heart.org (accessed on 1 November 2021).
- Nash, M.S.; Cowan, R.E.; Kressler, J. Evidence-based and heuristic approaches for customization of care in cardiometabolic syndrome after spinal cord injury. J. Spinal Cord. Med. 2012, 35, 278–292. [Google Scholar] [CrossRef] [PubMed]
- Kressler, J.; Cowan, R.E.; Bigford, G.E.; Nash, M.S. Reducing cardiometabolic disease in spinal cord injury. Phys. Med. Rehabil. Clin. 2014, 25, 573–604. [Google Scholar] [CrossRef]
- Javidan, A.N.; Sabour, H.; Latifi, S.; Vafa, M.; Shidfar, F.; Khazaeipour, Z.; Shahbazi, F.; Rahimi, A.; Razavi, S.-H.E. Calcium and vitamin D plasma concentration and nutritional intake status in patients with chronic spinal cord injury: A referral center report. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2014, 19, 881. [Google Scholar]
- Chaudhary, D.P.; Sharma, R.; Bansal, D.D. Implications of magnesium deficiency in type 2 diabetes: A review. Biol. Trace Elem. Res. 2010, 134, 119–129. [Google Scholar] [CrossRef]
- Rowe, J.W.; Tobin, J.D.; Rosa, R.M.; Andres, R. Effect of experimental potassium deficiency on glucose and insulin metabolism. Metabolism 1980, 29, 498–502. [Google Scholar] [CrossRef]
- Nielsen, F.H.; Milne, D.B.; Klevay, L.M.; Gallagher, S.; Johnson, L. Dietary magnesium deficiency induces heart rhythm changes, impairs glucose tolerance, and decreases serum cholesterol in post menopausal women. J. Am. Coll. Nutr. 2007, 26, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Khandare, A.L.; Kumar, P.U.; Shankar, N.H.; Kalyanasundaram, S.; Rao, G.S. Effect of calcium deficiency induced by fluoride intoxication on lipid metabolism in rabbits. Fluoride 2007, 40, 184–189. [Google Scholar]
- McRae, M.P. Vitamin C supplementation lowers serum low-density lipoprotein cholesterol and triglycerides: A meta-analysis of 13 randomized controlled trials. J. Chiropr. Med. 2008, 7, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Gorgey, A.S.; Dolbow, D.R.; Dolbow, J.D.; Khalil, R.K.; Castillo, C.; Gater, D.R. Effects of spinal cord injury on body composition and metabolic profile–Part I. J. Spinal Cord. Med. 2014, 37, 693–702. [Google Scholar] [CrossRef]
- Karhapää, P.; Pihlajamäki, J.; Pörsti, I.; Kastarinen, M.; Mustonen, J.; Niemelä, O.; Kuusisto, J. Diverse associations of 25-hydroxyvitamin D and 1, 25-dihydroxy-vitamin D with dyslipidaemias. J. Intern. Med. 2010, 268, 604–610. [Google Scholar] [CrossRef]
- Bauman, W.A.; Spungen, A.M. Invited review carbohydrate and lipid metabolism in chronic spinal cord injury. J. Spinal Cord. Med. 2001, 24, 266–277. [Google Scholar] [CrossRef]
- La Fountaine, M.F.; Cirnigliaro, C.M.; Emmons, R.R.; Kirshblum, S.C.; Galea, M.; Spungen, A.M.; Bauman, W.A. Lipoprotein heterogeneity in persons with Spinal Cord Injury: A model of prolonged sitting and restricted physical activity. Lipids Health Dis. 2015, 14, 1–10. [Google Scholar] [CrossRef]
- Reynolds, T.M.; Mardani, A.; Twomey, P.J.; Wierzbicki, A.S. Targeted versus global approaches to the management of hypercholesterolaemia. J. R. Soc. Promot. Health 2008, 128, 248–254. [Google Scholar] [CrossRef]
- D’Agostino Sr, R.B.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef]
- Belenchia, A.M.; Tosh, A.K.; Hillman, L.S.; Peterson, C.A. Correcting vitamin D insufficiency improves insulin sensitivity in obese adolescents: A randomized controlled trial. Am. J. Clin. Nutr. 2013, 97, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Sung, C.-C.; Liao, M.-T.; Lu, K.-C.; Wu, C.-C. Role of vitamin D in insulin resistance. J. Biomed. Biotechnol. 2012, 2012, 634195. [Google Scholar] [CrossRef]
- Hoseini, S.A.; Ashraf Aminorroaya, B.I.; Amini, M. The effects of oral vitamin D on insulin resistance in pre-diabetic patients. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2013, 18, 47. [Google Scholar]
- Kampmann, U.; Mosekilde, L.; Juhl, C.; Moller, N.; Christensen, B.; Rejnmark, L.; Wamberg, L.; Orskov, L. Effects of 12 weeks high dose vitamin D3 treatment on insulin sensitivity, beta cell function, and metabolic markers in patients with type 2 diabetes and vitamin D insufficiency–a double-blind, randomized, placebo-controlled trial. Metabolism 2014, 63, 1115–1124. [Google Scholar] [CrossRef]
- Khan, H.; Kunutsor, S.; Franco, O.H.; Chowdhury, R. Vitamin D, type 2 diabetes and other metabolic outcomes: A systematic review and meta-analysis of prospective studies. Proc. Nutr. Soc. 2013, 72, 89–97. [Google Scholar] [CrossRef]
- Mitri, J.; Dawson-Hughes, B.; Hu, F.B.; Pittas, A.G. Effects of vitamin D and calcium supplementation on pancreatic β cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: The Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. Am. J. Clin. Nutr. 2011, 94, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.B.; Duran, P.; Lee, M.L.; Friedman, T.C. High-dose vitamin D supplementation in people with prediabetes and hypovitaminosis D. Diabetes Care 2013, 36, 260–266. [Google Scholar] [CrossRef]
- Shab-Bidar, S.; Neyestani, T.R.; Djazayery, A.; Eshraghian, M.-R.; Houshiarrad, A.; Gharavi, A.; Kalayi, A.; Shariatzadeh, N.; Zahedirad, M.; Khalaji, N.; et al. Regular consumption of vitamin D-fortified yogurt drink (Doogh) improved endothelial biomarkers in subjects with type 2 diabetes: A randomized double-blind clinical trial. BMC Med. 2011, 9, 125. [Google Scholar] [CrossRef]
- Peterson, C.A.; Tosh, A.K.; Belenchia, A.M. Vitamin D insufficiency and insulin resistance in obese adolescents. Ther. Adv. Endocrinol. Metab. 2014, 5, 166–189. [Google Scholar] [CrossRef]
- von Hurst, P.R.; Stonehouse, W.; Coad, J. Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient—A randomised, placebo-controlled trial. Br. J. Nutr. 2010, 103, 549–555. [Google Scholar] [CrossRef]
- Chiu, K.C.; Chu, A.; Go, V.L.W.; Saad, M.F. Hypovitaminosis D is associated with insulin resistance and β cell dysfunction. Am. J. Clin. Nutr. 2004, 79, 820–825. [Google Scholar] [CrossRef]
- Karnchanasorn, R.; Ou, H.-Y.; Chiu, K.C. Plasma 25-hydroxyvitamin D levels are favorably associated with β-cell function. Pancreas 2012, 41, 863–868. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Santos, M.; Costa, P.d.F.; Assis Ad Santos, C.d.S.; Santos, D.D. Obesity and vitamin D deficiency: A systematic review and meta-analysis. Obes. Rev. 2015, 16, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Guasch, A.; Bulló, M.; Rabassa, A.; Bonada, A.; Del Castillo, D.; Sabench, F.; Salas-Salvadó, J. Plasma vitamin D and parathormone are associated with obesity and atherogenic dyslipidemia: A cross-sectional study. Cardiovasc. Diabetol. 2012, 11, 149. [Google Scholar] [CrossRef]
- Ning, C.; Liu, L.; Lv, G.; Yang, Y.; Zhang, Y.; Yu, R.; Wang, Y. Lipid metabolism and inflammation modulated by Vitamin D in liver of diabetic rats. Lipids Health Dis. 2015, 14, 31. [Google Scholar] [CrossRef]
- Drincic, A.T.; Armas, L.A.; Van Diest, E.E.; Heaney, R.P. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity 2012, 20, 1444–1448. [Google Scholar] [CrossRef]
- Flueck, J.; Perret, C. Vitamin D deficiency in individuals with a spinal cord injury: A literature review. Spinal Cord. 2017, 55, 428–434. [Google Scholar] [CrossRef]
- Zhou, X.; Vaziri, N.; Segal, J.; Winer, R.; Eltorai, I.; Brunnemann, S. Effects of chronic spinal cord injury and pressure ulcer on 25 (OH)-vitamin D levels. J. Am. Paraplegia Soc. 1993, 16, 9–13. [Google Scholar] [CrossRef]
- Lin, P.-H.; Sermersheim, M.; Li, H.; Lee, P.H.; Steinberg, S.M.; Ma, J. Zinc in wound healing modulation. Nutrients 2017, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Kogan, S.; Sood, A.; Garnick, M. Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications. Wounds A Compend. Clin. Res. Pract. 2017, 29, 102–106. [Google Scholar]
- Cruse, J.; Lewis, R.; Dilioglou, S.; Roe, D.; Wallace, W.; Chen, R. Review of immune function, healing of pressure ulcers, and nutritional status in patients with spinal cord injury. J. Spinal Cord. Med. 2000, 23, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Bird, J.K.; Murphy, R.A.; Ciappio, E.D.; McBurney, M.I. Risk of deficiency in multiple concurrent micronutrients in children and adults in the United States. Nutrients 2017, 9, 655. [Google Scholar] [CrossRef]
- Frisbie, J. Anemia and hypoalbuminemia of chronic spinal cord injury: Prevalence and prognostic significance. Spinal Cord. 2010, 48, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Kruger, E.A.; Pires, M.; Ngann, Y.; Sterling, M.; Rubayi, S. Comprehensive management of pressure ulcers in spinal cord injury: Current concepts and future trends. J. Spinal Cord. Med. 2013, 36, 572–585. [Google Scholar] [CrossRef]
- Frikke-Schmidt, H.; Lykkesfeldt, J. Role of marginal vitamin C deficiency in atherogenesis: In vivo models and clinical studies. Basic. Clin. Pharmacol. Toxicol. 2009, 104, 419–433. [Google Scholar] [CrossRef] [PubMed]
- McMillan, D.W.; Nash, M.S.; Gater, D.R., Jr.; Valderrábano, R.J. Neurogenic obesity and skeletal pathology in spinal cord injury. Top. Spinal Cord. Inj. Rehabil. 2021, 27, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.G.; Santos, V.C.; Levada-Pires, A.C.; Jacintho, T.M.; Gorjão, R.; Pithon-Curi, T.C.; Cury-Boaventura, M.F. Effects of DHA-rich fish oil supplementation on the lipid profile, markers of muscle damage, and neutrophil function in wheelchair basketball athletes before and after acute exercise. Appl. Physiol. Nutr. Metab. 2015, 40, 596–604. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Get the Facts: Drinking Water and Intake. Available online: https://www.cdc.gov/nutrition/data-statistics/plain-water-the-healthier-choice.html (accessed on 3 December 2020).
- Valtin, H. “Drink at least eight glasses of water a day”. Really? Is there scientific evidence for “8 × 8”? Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2002, 283, R993–R1004. [Google Scholar] [CrossRef]
- Emmanuel, A. Neurogenic bowel dysfunction. F1000Res 2019, 8, F1000 Faculty Rev-800. [Google Scholar] [CrossRef]
- Coggrave, M.; Ash, D.; Adcock, C.; Brown, A.; Davies, D.; Dehal-Clark, A. Guidelines for Management of Neurogenic Bowel Dysfunction in Individuals with Central Neurological Conditions; Multidisciplinary Association of Spinal Cord Injured Professionals: Milton Keynes, UK, 2012. [Google Scholar]
- Muckelbauer, R.; Sarganas, G.; Grüneis, A.; Müller-Nordhorn, J. Association between water consumption and body weight outcomes: A systematic review. Am. J. Clin. Nutr. 2013, 98, 282–299. [Google Scholar] [CrossRef]
- Wang, Y.C.; Ludwig, D.S.; Sonneville, K.; Gortmaker, S.L. Impact of Change in Sweetened Caloric Beverage Consumption on Energy Intake Among Children and Adolescents. Arch. Pediatr. Adolesc. Med. 2009, 163, 336–343. [Google Scholar] [CrossRef]
- Tate, D.F.; Turner-McGrievy, G.; Lyons, E.; Stevens, J.; Erickson, K.; Polzien, K.; Diamond, M.; Wang, X.; Popkin, B. Replacing caloric beverages with water or diet beverages for weight loss in adults: Main results of the Choose Healthy Options Consciously Everyday (CHOICE) randomized clinical trial. Am. J. Clin. Nutr. 2012, 95, 555–563. [Google Scholar] [CrossRef]
- Popkin, B.M.; D’Anci, K.E.; Rosenberg, I.H. Water, hydration, and health. Nutr. Rev. 2010, 68, 439–458. [Google Scholar] [CrossRef]
- Manz, F. Hydration and Disease. J. Am. Coll. Nutr. 2007, 26 (Suppl. S5), 535S–541S. [Google Scholar] [CrossRef] [PubMed]
- NSW State Spinal Cord Injury Service. Nutrition for Adults with Spinal Cord Injury; The Agency for Clinical Innovation: St Leonards, Australia, 2019.
- Gater, D.R., Jr.; Farkas, G.J.; Berg, A.S.; Castillo, C. Prevalence of metabolic syndrome in veterans with spinal cord injury. J. Spinal Cord. Med. 2019, 42, 86–93. [Google Scholar] [CrossRef]
- Gater, D.R., Jr.; Farkas, G.J.; Dolbow, D.R.; Berg, A.; Gorgey, A.S. Body composition and metabolic assessment after motor complete spinal cord injury: Development of a clinically relevant equation to estimate body fat. Top. Spinal Cord. Inj. Rehabil. 2021, 27, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Weaver, F.M.; Collins, E.G.; Kurichi, J.; Miskevics, S.; Smith, B.; Rajan, S.; Gater, D. Prevalence of obesity and high blood pressure in veterans with spinal cord injuries and disorders: A retrospective review. Am. J. Phys. Med. Rehabil. 2007, 86, 22–29. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Gater, D.R. Regional and relative adiposity patterns in relation to carbohydrate and lipid metabolism in men with spinal cord injury. Appl. Physiol. Nutr. Metab. 2011, 36, 107–114. [Google Scholar] [CrossRef]
- Knight, K.; Buchholz, A.; Martin Ginis, K.; Goy, R. Leisure-time physical activity and diet quality are not associated in people with chronic spinal cord injury. Spinal Cord. 2011, 49, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Nash, M.; Gater, D., Jr. Exercise to reduce obesity in SCI. Top. Spinal Cord. Inj. Rehabil. 2007, 12, 76–93. [Google Scholar] [CrossRef]
- Banerjea, R.; Sambamoorthi, U.; Weaver, F.; Maney, M.; Pogach, L.M.; Findley, T. Risk of stroke, heart attack, and diabetes complications among veterans with spinal cord injury. Arch. Phys. Med. Rehabil. 2008, 89, 1448–1453. [Google Scholar] [CrossRef]
- Wright, S. Nutrition Fact Sheet Healthy Eating for Adults with Spinal Cord Injury; Agency for Clinical Innovation: St Leonards, Australia, 2014. Available online: https://aci.health.nsw.gov.au/__data/assets/pdf_file/0003/388236/12.-ACI_Eat_for_Health_Nutrition.pdf (accessed on 4 February 2023).
- Lavela, S.L.; Weaver, F.M.; Goldstein, B.; Chen, K.; Miskevics, S.; Rajan, S.; Gater, D.R., Jr. Diabetes mellitus in individuals with spinal cord injury or disorder. J. Spinal Cord. Med. 2006, 29, 387–395. [Google Scholar] [CrossRef]
- Davies, D.S.; McColl, M.A. Lifestyle risks for three disease outcomes in spinal cord injury. Clin. Rehabil. 2002, 16, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, J.R.; Everett, A.S.; Khan, M.A. Alcohol and Drug Abuse in Patients with Physical Disabilities. Am. J. Drug Alcohol. Abus. 1996, 22, 215–231. [Google Scholar] [CrossRef] [PubMed]
- Tate, D.G. Alcohol use among spinal cord-injured patients. Am. J. Phys. Med. Rehabil. 1993, 72, 192–195. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Alcohol & Diabetes. Available online: https://www.diabetes.org/healthy-living/medication-treatments/alcohol-diabetes (accessed on 4 February 2023).
- Franz, M.J.; Bantle, J.P.; Beebe, C.A.; Brunzell, J.D.; Chiasson, J.-L.; Garg, A.; Holzmeister, L.A.; Hoogwerf, B.; Mayer-Davis, E.; Mooradian, A.D.; et al. Evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. Diabetes Care 2002, 25, 148–198. [Google Scholar] [CrossRef]
- Van den Berg, M.; Castellote, J.; Mahillo-Fernandez, I.; de Pedro-Cuesta, J. Incidence of spinal cord injury worldwide: A systematic review. Neuroepidemiology 2010, 34, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Yekutiel, M.; Brooks, M.E.; Ohry, A.; Yarom, J.; Carel, R. The prevalence of hypertension, ischaemic heart disease and diabetes in traumatic spinal cord injured patients and amputees. Spinal Cord. 1989, 27, 58–62. [Google Scholar] [CrossRef]
- Cragg, J.J.; Stone, J.A.; Krassioukov, A.V. Management of Cardiovascular Disease Risk Factors in Individuals with Chronic Spinal Cord Injury: An Evidence-Based Review. J. Neurotrauma 2012, 29, 1999–2012. [Google Scholar] [CrossRef]
- Groah, S.L.; Nash, M.S.; Ward, E.A.; Libin, A.; Mendez, A.J.; Burns, P.; Elrod, M.; Hamm, L.F. Cardiometabolic risk in community-dwelling persons with chronic spinal cord injury. J. Cardiopulm. Rehabil. Prev. 2011, 31, 73–80. [Google Scholar] [CrossRef]
- Imai, K.; Kadowaki, T.; Aizawa, Y. Standardized indices of mortality among persons with spinal cord injury: Accelerated aging process. Ind. Health 2004, 42, 213–218. [Google Scholar] [CrossRef]
- Lieberman, J.A.; Hammond, F.M.; Barringer, T.A.; Goff, D.C.; Norton, H.J.; Bockenek, W.L.; Scelza, W.M. Adherence with the National Cholesterol Education Program guidelines in men with chronic spinal cord injury. J. Spinal Cord. Med. 2011, 34, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J.A.; Hammond, F.M.; Barringer, T.A.; Norton, H.; Goff, D.C., Jr.; Bockenek, W.L.; Scelza, W.M. Comparison of coronary artery calcification scores and National Cholesterol Education program guidelines for coronary heart disease risk assessment and treatment paradigms in individuals with chronic traumatic spinal cord injury. J. Spinal Cord. Med. 2011, 34, 233. [Google Scholar] [CrossRef] [PubMed]
- Middleton, J.W.; Linda Mann, M. Management of spinal cord injury in general practice-part 1. Aust. J. Gen. Pract. 2008, 37, 229. [Google Scholar]
- Myers, J.; Lee, M.; Kiratli, J. Cardiovascular disease in spinal cord injury: An overview of prevalence, risk, evaluation, and management. Am. J. Phys. Med. Rehabil. 2007, 86, 142–152. [Google Scholar] [CrossRef]
- Wahman, K.; Nash, M.S.; Lewis, J.E.; Seiger, A.; Levi, R. Cardiovascular disease risk and the need for prevention after paraplegia determined by conventional multifactorial risk models: The Stockholm spinal cord injury study. J. Rehabil. Med. 2011, 43, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Stiens, S.A.; Johnson, I.I.M.C.; Lyman, P.J. Cardiac rehabilitation in patients with spinal cord injuries. Phys. Med. Rehabil. Clin. North. Am. 1995, 6, 263–296. [Google Scholar] [CrossRef]
- Bigford, G.E.; Mendez, A.J.; Betancourt, L.; Burns-Drecq, P.; Backus, D.; Nash, M.S. A lifestyle intervention program for successfully addressing major cardiometabolic risks in persons with SCI: A three-subject case series. Spinal Cord. Ser. Cases 2017, 3, 17007. [Google Scholar] [CrossRef]
- Galland, L. Diet and inflammation. Nutr. Clin. Pract. 2010, 25, 634–640. [Google Scholar] [CrossRef]
- Gattrell, W.T.; Hungin, A.P.; Price, A.; Winchester, C.C.; Tovey, D.; Hughes, E.L.; van Zuuren, E.J.; Goldman, K.; Logullo, P.; Matheis, R.; et al. ACCORD guideline for reporting consensus-based methods in biomedical research and clinical practice: A study protocol. Res. Integr. Peer Rev. 2022, 7, 3. [Google Scholar] [CrossRef]
- Inayama, T.; Higuchi, Y.; Tsunoda, N.; Uchiyama, H.; Sakuma, H. Associations between abdominal visceral fat and surrogate measures of obesity in Japanese men with spinal cord injury. Spinal Cord 2014, 52, 836–841. [Google Scholar] [CrossRef]
- Sneij, A.; Farkas, G.J.; Carino Mason, M.R.; Gater, D.R. Nutrition education to reduce metabolic dysfunction for spinal cord injury: A module-based nutrition education guide for healthcare providers and consumers. J. Pers. Med. 2022, 12, 2029. [Google Scholar] [CrossRef]
- Chaloupková, E.; Kinkorová, I.; Heller, J. Comparison of basal metabolic rate in individuals with a spinal cord injury and Harris-Benedict equation: A systematic review. Auc Kinanthropologica 2019, 55, 86–99. [Google Scholar] [CrossRef]
- Farkas, G.J.; Berg, A.S.; Sneij, A.; Dolbow, D.R.; Gorgey, A.S.; Gater, D.R. The comparison of total energy and protein intake relative to estimated requirements in chronic spinal cord injury. Br. J. Nutr. 2024, 131, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Dalkey, N.; Helmer, O. An experimental application of the Delphi method to the use of experts. Manag. Sci. 1963, 9, 458–467. [Google Scholar] [CrossRef]
Weight and Body Composition |
1- Persons with paraplegia should weigh 5–10% less than indicated in the Metropolitan Life Height–Weight Tables. Persons with tetraplegia should weigh 10–15% less than indicated in the Metropolitan Life Insurance desirable weight table. |
2- Persons with spinal cord injury (SCI) whose body mass index (BMI) is 22 kg/m2 or greater should be considered obese. |
3- Waist circumference: optimal cutoff should be 86.5 cm in men. |
Energy Expenditure |
4- When applicable, the SCI-specific BMR equation proposed by Chun et al. [28] should be used (Male/Female = 24.5 × FatFreeMass + 244.4). |
5- In the absence of fat-free-mass information, the Mifflin–St Jeor equation should be used to predict the resting metabolic rate (RMR) in persons with chronic SCI. |
6- In the SCI population, the total daily energy expenditure (TDEE) should be estimated by multiplying the RMR with the common activity correction factor of 1.15. TDEE: RMR X 1.15 |
Macronutrient Intake |
7- Carbohydrate intake should be around 45% of total daily energy intake for people with SCI. |
8- Total dietary fiber intake should be 15 to 20 g a day, with adequate fluid intake, for people with SCI. |
9- Individuals with SCI need 0.8 to 1.0 g of protein per kg of body weight, or roughly 10–30% of the daily caloric intake, to maintain protein stores in the absence of pressure injuries or infection. |
10- Protein recommendations for individuals with SCI who have pressure injuries are as follows: Stage II: 1.2 to 1.5 g of protein per kg body weight/per day. Stage III and IV: 1.5 to 2.0 g of protein per kg body weight/per day. |
11- People with SCI should not consume more than 30% of total fat and 5–6% of saturated fat in their daily caloric intake. |
Micronutrient Intake and Supplementation |
12- People with SCI must consume adequate micronutrients based on the Dietary Guidelines for Americans (DGA). |
13- For individuals with SCI who have developed a pressure injury, the dietitian should recommend daily mineral and vitamin supplements within the recommended dietary allowance (RDA) levels. |
14- People with SCI should be prescribed dietary supplements with caution and only if certain deficiencies are detected or to prevent them. |
Fluid and Sodium Intake |
15- Fluid intake should be adjusted based on health condition, age, sex, climate, and physical activity level. |
16- Sodium consumption should be ≤2400 mg/d for people with SCI. |
Alcohol Consumption |
17- Alcoholic beverages should be avoided by individuals with SCI. |
Dietary Patterns |
18- The DASH or the Mediterranean diet can be adopted by individuals with SCI if hypertension or other cardiometabolic risk factors are present. |
Total (n = 15) | RDs (n = 7) | Physicians (n = 2) | Researchers (n = 6) | |
---|---|---|---|---|
Level of education N (%) | ||||
Doctorate or professional degree | 9 (60%) | 1 (14%) | 2 (100%) | 6 (100%) |
Bachelor | 3 (20%) | 3 (42.9%) | ||
Master’s degree | 3 (20%) | 3 (42.9%) | ||
Area of expertise N (%) | ||||
SCI | 12 (80%) | 5 (71.4%) | 2 (100%) | 5 (83.3%) |
Clinical nutrition | 2 (13.3%) | 2 (28.6%) | ||
Public health | 1 (6.7%) | 1 (16.7%) | ||
Years of experience in the field N (%) | ||||
1–5 years | 4 (27.7%) | 3 (42.9%) | 1 (50%) | |
6–10 years | 3 (20%) | 3 (50%) | ||
11–15 years | 5 (33.3%) | 3 (42.9%) | 1 (50%) | 1 (16.7%) |
16–20 years | 1 (6.7%) | 1 (16.7%) | ||
21–30 years | 2 (13.3%) | 1 (14.3%) | 1 (16.7%) | |
Previously involved in a Delphi study N (%) | ||||
Yes | 4 (26.7%) | 4 (66.7%) | ||
No | 11 (73.3%) | 7 (100%) | 2 (100%) | 2 (33.3%) |
Familiarity with the literature (1–10) | ||||
Mean (SD) | 7.26 (1.75) | 7 (1.41) | 5.5 (3.54) | 8.16 (1.17) |
Median (IQR) | 8 (1) | 8 (2) | 5.5 (2.5) | 8 (1.5) |
Men Height | Wrist Circumference | Frame Size | Women Height | Wrist Circumference | Frame Size |
---|---|---|---|---|---|
Under 5′2″ | Less than 5.5″ 5.5″ to 5.75″ Over 5.75″ | Small Medium Large | |||
5′2″ to 5′5″ | Less than 6″ 6″ to 6.25″ Over 6.25″ | Small Medium Large | |||
Over 5′5” | 5.5″ to 6.5″ 6.5″ to 7.5″ Over 7.5″ | Small Medium Large | Over 5′5″ | Less than 6.25″ 6.25″ to 6.5″ Over 6.5″ | Small Medium Large |
Equation Name/Author(s) | Year | Sex | Metabolic Rate Prediction Equation |
---|---|---|---|
Harris–Benedict [67,81] | 1919 | M | BMR = 66.4730 + (13.7516 × wt) + (5.0033 × ht) − (6.7550 × age) |
F | BMR = (1.8496 × ht) + (9.5634 × wt) + 655.0955 − (4.6756 × age) | ||
Cunningham [72] | 1980 | M/F | BMR = 500 + 22 (LBM) |
Schofield [68] | 1985 | M | BMR = 15.057 × wt + 692.2 (age, 18−30 y), 11.472 × wt + 873.1 (age, 30−60 y), 11.711 × wt + 587.7 (age, >60 y) |
F | BMR = 14.818 × wt + 486.6 (age, 18−30 y), 8.126 × wt + 845.6 (age, 30−60 y), 9.082 × wt + 658.5 (age, >60 y) | ||
Owen [74] | 1987 | M | RMR = 290 + 22.3 (LBM) |
F | RMR = 334 + 1.97 (LBM) | ||
Mifflin–St. Jeor [73] | 1990 | M | BMR = (9.99 × wt) + (6.25 × ht) − (4.92 × age) + 5 |
F | BMR = (10 × wt) + (6.25 × ht) − (5 × age) − 161 | ||
SCI-Specific Equations | |||
Buchholz et al. [82] | 2003 | M/F | RMR = 10,682 − 1238 × (age) − 521 × (sex) − 24 × (ht) + 87 × (FFM) |
Chun et al. [28] | 2017 | M/F | BMR= 24.5 × FFM + 244.4 |
Nightingale and Gorgey et al. [66] | 2018 | M | BMR= 23.469 × FFM + 294.330 (FFM alone) |
M | BMR = 23.995 × FFM + 6.189 × SAD + 6.384 × TAD − 6.948 × TC + 275.211 (FFM with circumferences and diameters) | ||
M | BMR = 19.789 × FFM + 5.156 × wt + 8.090 × ht − 15.301 × CC − 860.546 (FFM with anthropometrics) | ||
M | BMR = 13.202 × ht + 11.329 × wt − 16.729 × TAD − 1185.445 (anthropometrics alone) |
Statements | Consensus * | Score | Median (IQR, min–max) | Responses | Stability ** |
---|---|---|---|---|---|
Weight and Body Composition | |||||
1- Persons with paraplegia should weigh 5–10% less than indicated in the Metropolitan Life Height–Weight Tables. Persons with tetraplegia should weigh 10–15% less than indicated in the Metropolitan Life Insurance desirable weight table. | 4 | 4.14 | 5 (3, 1–8) | 14 | 50.93% |
2- Persons with spinal cord injury (SCI) whose body mass index (BMI) is 22 kg/m2 or greater should be considered obese. | 5 | 5.47 | 6 (6, 1–9) | 15 | 48.79% |
3- Waist circumference: optimal cutoff should be 86.5 cm in men. | 5 | 5.20 | 5 (3, 1–9) | 15 | 55.67% |
Energy Expenditure | |||||
4- When applicable, the SCI-specific BMR equation proposed by Chun et al. [28] should be used (Male/Female = 24.5 × FatFreeMass + 244.4). | 5 | 5.07 | 5 (3, 1–8) | 15 | 58.15% |
5- In the absence of fat-free mass information, the Mifflin–St Jeor equation should be used to predict the resting metabolic rate (RMR) in persons with chronic SCI. | 4 | 4.40 | 5 (3, 1–7) | 15 | 56.37% |
6- In the SCI population, the total daily energy expenditure (TDEE) should be estimated by multiplying the RMR with the common activity correction factor of 1.15. TDEE: RMR X 1.15 | 7 | 6.60 | 7 (3, 2–9) | 15 | 69.81% |
Macronutrient Intake | |||||
7- Carbohydrate intake should be around 45% of total daily energy intake for people with SCI. | 6 | 5.73 | 6 (3, 1–8) | 15 | 60.19% |
8- Total dietary fiber intake should be 15 to 20 g a day, with adequate fluid intake, for people with SCI. | 6 | 6.47 | 7 (3, 3–8) | 15 | 76.72% |
9- Individuals with SCI need 0.8 to 1.0 g of protein per kg of body weight, or roughly 10–30% of daily caloric intake, to maintain protein stores in the absence of pressure injuries or infection. | 5 | 5.40 | 6 (4, 1–9) | 15 | 58.71% |
10- Protein recommendations for individuals with SCI who have pressure injuries: Stage II: 1.2 to 1.5 g of protein per kg body weight/per day. Stage III and IV: 1.5 to 2.0 g of protein per kg body weight/per day. | 7 | 6.87 | 8 (4, 1–9) | 15 | 60.74% |
11- People with SCI should not consume more than 30% of total fat and 5–6% of saturated fat in their daily caloric intake. | 6 | 5.93 | 6 (3, 1–8) | 15 | 64.27% |
Micronutrient Intake and Supplementation | |||||
12- People with SCI must consume adequate micronutrients based on the Dietary Guidelines for Americans (DGA). | 7 | 6.67 | 7 (4, 1–9) | 15 | 61.69% |
13- For individuals with SCI who have developed a pressure injury, the dietitian should recommend daily mineral and vitamin supplements within recommended dietary allowance (RDA) levels. | 7 | 7.33 | 8 (3, 5–9) | 15 | 80.26% |
14- People with SCI should be prescribed dietary supplements with caution and only if certain deficiencies are detected or to prevent them. | 8 | 8.13 | 9 (2, 6–9) | 15 | 86.16% |
Fluid and Sodium Intake | |||||
15- Fluid intake should be adjusted based on health condition, age, sex, climate, and physical activity level. | 8 | 7.73 | 8 (2, 6–9) | 15 | 87.57% |
16- Sodium consumption should be ≤2400 mg/d for people with SCI. | 6 | 6.47 | 7 (2, 1–9) | 15 | 62.18% |
Alcohol Consumption | |||||
17- Alcoholic beverages should be avoided by individuals with SCI. | 6 | 5.80 | 6 (3, 1–9) | 15 | 61.89% |
Dietary Patterns | |||||
18- The DASH or the Mediterranean diet can be adopted by individuals with SCI if hypertension or other cardiometabolic risk factors are present. | 7 | 6.93 | 7 (3, 5–9) | 15 | 77.88% |
Statements | Comments from Panelists | Consensus for the Comment | Response from the Panelists |
---|---|---|---|
1- Persons with paraplegia should weigh 5–10% less than indicated in the Metropolitan Life Height–Weight Tables. Persons with tetraplegia should weigh 10–15% less than indicated in the Metropolitan Life Insurance desirable weight table. |
| 7 | 13 |
| 8 | 14 | |
2- Persons with spinal cord injury (SCI) whose body mass index (BMI) is 22 kg/m2 or greater should be considered obese. |
| 7 | 9 |
| 6 | 11 | |
| 6 | 11 | |
| 6 | 11 | |
| 6 | 11 | |
| 5 | 9 | |
3- Waist circumference: optimal cutoff should be 86.5 cm in men. |
| 7 | 11 |
| 8 | 11 | |
| 7 | 9 | |
| 8 | 9 | |
| 7 | 8 | |
4- When applicable, the SCI-specific BMR equation proposed by Chun et al. [28] should be used (Male/Female = 24.5 × FatFreeMass + 244.4). | |||
5- In the absence of fat-free mass information, the Mifflin–St Jeor equation should be used to predict metabolic rate in persons with chronic SCI. |
| 8 | 10 |
6- In the SCI population, the total daily energy expenditure (TDEE) should be estimated by multiplying BMR with the common activity correction factor of 1.15. TDEE: BMR × 1.15 |
| 8 | 12 |
7- Carbohydrate intake should be around 45% of total daily energy intake for people with SCI. |
| 6 | 8 |
| 8 | 7 | |
| 7 | 2 | |
8- Total dietary fiber intake should be 15 to 20 g a day, with adequate fluid intake, for people with SCI. |
| 8 | 11 |
| 8 | 7 | |
| 9 | 1 | |
9- Individuals with SCI need 0.8 to 1.0 g of protein per kg of body weight, or roughly 10–30% of daily caloric intake, to maintain protein stores in the absence of pressure injuries or infection. |
| 6 | 13 |
| 5 | 9 | |
| 7 | 2 | |
10- Protein recommendations for individuals with SCI who have pressure injuries: Stage II: 1.2 to 1.5 g of protein per kg body weight/per day. Stage III and IV: 1.5 to 2.0 g of protein per kg body weight/per day. |
| 7 | 9 |
11- For individuals with SCI who have developed a pressure injury, the dietitian should recommend daily mineral and vitamin supplements within recommended dietary allowance (RDA) levels. |
| 7 | 12 |
12- People with SCI should not consume more than 30% of total fat and 5–6% of saturated fat in their daily caloric intake. |
| 6 | 6 |
13- People with SCI must consume adequate micronutrients based on the Dietary Guidelines for Americans (DGA). |
| 7 | 13 |
| 7 | 9 | |
14- People with SCI should be prescribed dietary supplements with caution and only if certain deficiencies are detected or to prevent them. | |||
15- Fluid intake should be adjusted based on health condition, age, sex, climate, and physical activity level. |
| 7 | 10 |
| 8 | 10 | |
| 8 | 9 | |
16- Sodium consumption should be ≤2400 mg/d for people with SCI. | |||
17- Alcoholic beverages should be avoided by persons with SCI. |
| 8 | 9 |
| 7 | 9 | |
| 6 | 7 | |
18- The DASH or the Mediterranean diet can be adopted by individuals with SCI if hypertension or other cardiometabolic risk factors are present. |
| 7 | 11 |
| 7 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zengul, A.G.; Ferguson, C.C.; Rimmer, J.H.; Cofield, S.S.; Davis, E.N.; Hill, J.O.; Thirumalai, M. Expert-Reviewed Nutritional Guidance for Adults with Spinal Cord Injury: A Delphi Study. Nutrients 2025, 17, 1520. https://doi.org/10.3390/nu17091520
Zengul AG, Ferguson CC, Rimmer JH, Cofield SS, Davis EN, Hill JO, Thirumalai M. Expert-Reviewed Nutritional Guidance for Adults with Spinal Cord Injury: A Delphi Study. Nutrients. 2025; 17(9):1520. https://doi.org/10.3390/nu17091520
Chicago/Turabian StyleZengul, Ayse G., Christine C. Ferguson, James H. Rimmer, Stacey S. Cofield, Elizabeth N. Davis, James O. Hill, and Mohanraj Thirumalai. 2025. "Expert-Reviewed Nutritional Guidance for Adults with Spinal Cord Injury: A Delphi Study" Nutrients 17, no. 9: 1520. https://doi.org/10.3390/nu17091520
APA StyleZengul, A. G., Ferguson, C. C., Rimmer, J. H., Cofield, S. S., Davis, E. N., Hill, J. O., & Thirumalai, M. (2025). Expert-Reviewed Nutritional Guidance for Adults with Spinal Cord Injury: A Delphi Study. Nutrients, 17(9), 1520. https://doi.org/10.3390/nu17091520