Research Progress of Oral Immune Tolerance Mechanism Induced by Whey Protein
Abstract
:1. Introduction
2. Mechanisms of Oral Immune Tolerance
2.1. Composition and Structural Characteristics of Intestinal Immune System
2.2. Regulatory T Cells and Oral Immune Tolerance
2.2.1. Foxp3+CD4+T Cells
2.2.2. Th3 Regulates Cells
2.2.3. Tr1 Cells
2.3. Relationship Between Dendritic Cells (DCs) and Oral Immune Tolerance
2.4. Relationship Between Gut Microbiota and Oral Immune Tolerance
3. T Cell Epitopes of Whey Protein Induce Immune Tolerance
Allergen Name | T Cell Epitopes | Research Methods | References |
---|---|---|---|
Beta-lactoglobulin | AQKKIIAEK(67–75), IIAEKTKIP(71–79), AVFKIDALN(80–88), QSLVCQCLVRTPEVDDEALEKF(115–136), EALEKFDKALKALPMHIRLSFNPT(131–154), ALNENKVLVLDTDYKKYLLF986-105) | Mouse lymphocyte proliferation experiments | [100] |
LIVTQTMKGLDIQKVAGTWYS(1–21), KPTPEGDLEILLQKWENDECA(47–67), TDYKKYLLFCMENSAEPEQSL(97–117) | Allergic patients T cell proliferation test | [101] | |
KYLFCMENSAE(101–112) | Allergic patients T cell proliferation test | [102,103,104] | |
DIQKVAGTWYSLAMAASDIS(11–30), AMAASDISLLDAQSAPL(23–39) | Allergic patients T cell proliferation test | [105] | |
LIVTQTMKGLDIQKVAGTWY(1–20), MAASDISLLDAQSAPLRVYVEELKPTP(24–50), VRTPEVDDEALEKFDKA(123–139) | KU812 cells cultured with patient serum | [106] | |
YVEELKPTPEGDLEI(42–56), ENDEAAQKKIIAEKT(62–76), ALKALPMHIRLSFNPT(139–154) | Mouse animal experiment | [108] | |
AQKKIIAEKTKIPAVFKIDALN(67–88), ALKALPMHIRLSFNP(139–153) | Mouse animal experiment | [109] | |
QKVAGTWYSLAMAASDIS(29–45), WYSLAMAASDISLLDAQS(35–52), WYSLAMAASDISLLDAQS(41–58), LLDAQSAPLRVYVEELKP(47–64) | Mouse animal experiment | [110,111] | |
GAQALIVTQTMKGLDIQ(13–29), LDIQKVAGTWYSLAMAASDIS(26–46), LRVYVEELKPTPEGD(55–69), AQKKIIAEKTKIPAVFKIDALNENKV(83–108), VLDTDYKKYLLFCMENSAE(110–128), KALKALPMHIRLSFNPTQLE(154–174) | Mouse animal experiment | [112] | |
Alpha-lactalbumin | GGVSLPEWVCTTFHTSGY(19–36), EWVCTTFHTSGYDTQAIV(25–42), FHTSGYDTQAIVQNNDST(31–48), QNNDSTEYGLFQINNKIW(43–60) | Allergic patients T cell proliferation test | [113] |
TTFHTSGYDTQAIVQNNDSTEYG(29–51), FLDDDLTDDIM(80–90), KILDKVGINY(94–103) | KU812 cells cultured with patient serum | [106] |
4. Research Progress of Induction of Immune Tolerance by Whey Protein
4.1. Whey Protein Hydrolysate Induces Immune Tolerance
4.2. Whey Protein Combined with Other Components Synergistically Induces Immune Tolerance
5. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CMA | Cow milk allergy |
FA | food allergy |
WAO | World Allergy Organization |
DRACMA | Diagnostic and Action Criteria for cow’s milk allergy |
α-LA | α-lactalalbumin |
β-LG | β-lactoglobulin |
OIT | oral immune tolerance |
IT | immune tolerance |
LP | lamina propria |
GALT | gut-associated lymphoid tissue |
MLN | mesenteric lymph nodes |
PP | peyer’s patch |
DCs | dendric cells |
Treg | regulatory T cells |
nTreg | natural regulatory T cells |
iTreg | induced regulatory T cells |
Foxp3 | Forkhead box P3 |
Th2 | T helper 2 cell |
TGF-β | transforming growth factor-β |
IL-10 | interleukin-10 |
RA | retinoic acid |
CMP-OIT | cow’s milk protein-specific induction of oral immune tolerance |
APCs | antigen-presenting cells |
TLR | Toll-like receptor |
IFs | infant formula |
PBMC | peripheral blood mononuclear cell |
TCLs | T cell lines |
MW | molecular weight |
pHF | partially hydrolyzed formula powder |
eHF | extensively hydrolyzed formula powder |
eWH | extensive whey hydrolysate |
PHF-Ws | partially hydrolyzed whey formula |
WPI | whey protein isolate |
CA | caffeic acid |
EGCG | (−) epigallocatechin-3 gallate |
pHWP | partially hydrolyzed whey protein |
FOS | Fructooligosaccharide |
Bb-12 | Bifidobacterium animal Bb-12 |
References
- Lee, E.C.K.; Trogen, B.; Brady, K.; Ford, L.S.; Wang, J. The Natural History and Risk Factors for the Development of Food Allergies in Children and Adults. Curr. Allergy Asthma Rep. 2024, 24, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.S.; Warren, C.M.; Smith, B.M.; Jiang, J.; Blumenstock, J.A.; Davis, M.M.; Schleimer, R.P.; Nadeau, K.C. Prevalence and Severity of Food Allergies Among US Adults. JAMA Netw. Open 2019, 2, e185630. [Google Scholar] [CrossRef] [PubMed]
- Brozek, J.L.; Firmino, R.T.; Bognanni, A.; Arasi, S.; Ansotegui, I.; Assa’Ad, A.H.; Bahna, S.L.; Canani, R.B.; Bozzola, M.; Chu, D.K.; et al. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow’s Milk Allergy (DRACMA) Guideline update—XIV—Recommendations on CMA immunotherapy. World Allergy Organ. J. 2022, 15, 100646. [Google Scholar] [CrossRef] [PubMed]
- Pessato, T.B.; de Carvalho, N.C.; de Figueiredo, D.; Colomeu, T.C.; Fernandes, L.G.R.; Netto, F.M.; Zollner, R.d.L. Complexation of whey protein with caffeic acid or (−)-epigallocatechin-3-gallate as a strategy to induce oral tolerance to whey allergenic proteins. Int. Immunopharmacol. 2019, 68, 115–123. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, L.; Xian, R.; Fang, H.; Wang, J.; Hu, Y. Time trends of childhood food allergy in China: Three cross-sectional surveys in 1999, 2009, and 2019. Pediatr. Allergy Immunol. 2021, 32, 1073–1079. [Google Scholar] [CrossRef]
- Li, H. A Follow-Up Study on the Treatment of Cow Milk Protein Allergy by Diet Avoiding. Master’s Thesis, China Medical University, Taichung, Taiwan, 2018. [Google Scholar]
- Muraro, A.; Worm, M.; Alviani, C.; Cardona, V.; DunnGalvin, A.; Garvey, L.H.; Riggioni, C.; de Silva, D.; Angier, E.; Arasi, S.; et al. European Academy of allergy and clinical Immunology, food allergy, anaphylaxis guidelines group. EAACI guidelines: Anaphylaxis (2021 update). Allergy 2022, 77, 357–377. [Google Scholar] [CrossRef]
- Pepper, A.N.; Assa’ad, A.; Blaiss, M.; Brown, E.; Chinthrajah, S.; Ciaccio, C.; Fasano, M.B.; Gupta, R.; Hong, N.; Lang, D.; et al. Consensus report from the Food Allergy Research & Education (FARE) 2019 Oral Immunotherapy for Food Allergy Summit. J. Allergy Clin. Immunol. 2020, 146, 244–249. [Google Scholar] [CrossRef]
- Herbert, L.; Marchisotto, M.J.; Vickery, B. Patients’ Perspectives and Needs on Novel Food Allergy Treatments in the United States. Curr. Treat. Options Allergy 2021, 8, 9–20. [Google Scholar] [CrossRef]
- D’auria, E.; Salvatore, S.; Acunzo, M.; Peroni, D.; Pendezza, E.; Di Profio, E.; Fiore, G.; Zuccotti, G.V.; Verduci, E. Hydrolysed Formulas in the Management of Cow’s Milk Allergy: New Insights, Pitfalls and Tips. Nutrients 2021, 13, 2762. [Google Scholar] [CrossRef]
- Emmert, V.; Lendvai-Emmert, D.; Eklics, K.; Prémusz, V.; Tóth, G.P. Current Practice in Pediatric Cow’s Milk Protein Allergy–Immunological Features and Beyond. Int. J. Mol. Sci. 2023, 24, 5025. [Google Scholar] [CrossRef]
- Wang, F. Advances in the treatment of food allergy. Curr. Immunol. 2019, 39, 257–260. [Google Scholar]
- de Silva, D.; del Río, P.R.; de Jong, N.W.; Khaleva, E.; Singh, C.; Nowak-Wegrzyn, A.; Muraro, A.; Begin, P.; Pajno, G.; Fiocchi, A.; et al. Allergen immunotherapy and/or biologicals for IgE-mediated food allergy: A systematic review and meta-analysis. Allergy 2022, 77, 1852–1862. [Google Scholar] [CrossRef] [PubMed]
- Romantsik, O.; Tosca, M.A.; Zappettini, S.; Calevo, M.G. Oral and sublingual immunotherapy for egg allergy. Cochrane Database Syst. Rev. 2018, 2018, CD010638. [Google Scholar] [CrossRef] [PubMed]
- Klose, C.S.N.; Artis, D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 2016, 17, 765–774. [Google Scholar] [CrossRef]
- Nurmatov, U.; Dhami, S.; Arasi, S.; Pajno, G.B.; Fernandez-Rivas, M.; Muraro, A.; Roberts, G.; Akdis, C.; Alvaro-Lozano, M.; Beyer, K.; et al. Allergen immunotherapy for IgE-mediated food allergy: A systematic review and meta-analysis. Allergy 2017, 72, 1133–1147. [Google Scholar] [CrossRef]
- Yeung, J.P.; Kloda, L.A.; McDevitt, J.; Ben-Shoshan, M.; Alizadehfar, R. Oral immunotherapy for milk allergy. Cochrane Database Syst. Rev. 2012, 2012, CD009542. [Google Scholar] [CrossRef]
- Chu, D.K.; Wood, R.A.; French, S.; Fiocchi, A.; Jordana, M.; Waserman, S.; Brożek, J.L.; Schünemann, H.J. Oral immunotherapy for peanut allergy (PACE): A systematic review and meta-analysis of efficacy and safety. Lancet 2019, 393, 2222–2232. [Google Scholar] [CrossRef]
- Özdemir, P.G.; Sato, S.; Yanagida, N.; Ebisawa, M. Oral Immunotherapy in Food Allergy: Where Are We Now? Allergy Asthma Immunol. Res. 2023, 15, 125–144. [Google Scholar] [CrossRef]
- Maeda, M.; Imai, T.; Ishikawa, R.; Nakamura, T.; Kamiya, T.; Kimura, A.; Fujita, S.; Akashi, K.; Tada, H.; Morita, H.; et al. Effect of oral immunotherapy in children with milk allergy: The ORIMA study. Allergol. Int. 2021, 70, 223–228. [Google Scholar] [CrossRef]
- De Schryver, S.; Mazer, B.; Clarke, A.E.; Pierre, Y.S.; Lejtenyi, D.; Langlois, A.; Torabi, B.; Zhao, W.W.; Chan, E.S.; Baerg, I.; et al. Adverse Events in Oral Immunotherapy for the Desensitization of Cow’s Milk Allergy in Children: A Randomized Controlled Trial. J. Allergy Clin. Immunol. Pract. 2019, 7, 1912–1919. [Google Scholar] [CrossRef]
- Hauet-Broere, F.; Unger, W.W.J.; Garssen, J.; Hoijer, M.A.; Kraal, G.; Samsom, J.N. Functional CD25− and CD25+ mucosal regulatory T cells are induced in gut-draining lymphoid tissue within 48 h after oral antigen application. Eur. J. Immunol. 2003, 33, 2801–2810. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, S.; Agosti, M.; Baldassarre, M.E.; D’auria, E.; Pensabene, L.; Nosetti, L.; Vandenplas, Y. Cow’s Milk Allergy or Gastroesophageal Reflux Disease—Can We Solve the Dilemma in Infants? Nutrients 2021, 13, 297. [Google Scholar] [CrossRef] [PubMed]
- Kostadinova, A.I.; Middelburg, J.; Ciulla, M.; Garssen, J.; Hennink, W.E.; Knippels, L.M.; van Nostrum, C.F.; Willemsen, L.E. PLGA nanoparticles loaded with beta-lactoglobulin-derived peptides modulate mucosal immunity and may facilitate cow’s milk allergy prevention. Eur. J. Pharmacol. 2018, 818, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Chinthrajah, R.S.; Hernandez, J.D.; Boyd, S.D.; Galli, S.J.; Nadeau, K.C. Molecular and cellular mechanisms of food allergy and food tolerance. J. Allergy Clin. Immunol. 2016, 137, 984–997. [Google Scholar] [CrossRef]
- Dunlop, J.H.; Keet, C.A. Goals and motivations of families pursuing oral immunotherapy for food allergy. J. Allergy Clin. Immunol. Pract. 2019, 7, 662–663.e18. [Google Scholar] [CrossRef]
- Stephen-Victor, E.; Chatila, T.A. Regulation of oral immune tolerance by the microbiome in food allergy. Curr. Opin. Immunol. 2019, 60, 141–147. [Google Scholar] [CrossRef]
- Pabst, O.; Mowat, A.M. Oral tolerance to food protein. Mucosal Immunol. 2012, 5, 232–239. [Google Scholar] [CrossRef]
- Ohnmacht, C.; Park, J.-H.; Cording, S.; Wing, J.B.; Atarashi, K.; Obata, Y.; Gaboriau-Routhiau, V.; Marques, R.; Dulauroy, S.; Fedoseeva, M.; et al. The microbiota regulates type 2 immunity through RORγt+ T cells. Science 2015, 349, 989–993. [Google Scholar] [CrossRef]
- Wang, L.; Jia, X.; Yu, Q.; Shen, S.; Gao, Y.; Lin, X.; Zhang, W. Piper nigrum extract attenuates food allergy by decreasing Th2 cell response and regulating the Th17/Treg balance. Phytother. Res. 2021, 35, 3214–3225. [Google Scholar] [CrossRef]
- Durham, S.R.; Shamji, M.H. Allergen immunotherapy: Past, present and future. Nat. Rev. Immunol. 2022, 23, 317–328. [Google Scholar] [CrossRef]
- Agace, W.W.; McCoy, K.D. Regionalized Development and Maintenance of the Intestinal Adaptive Immune Landscape. Immunity 2017, 46, 532–548. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, P.B.; Fenton, T.M.; Mörbe, U.M.; Riis, L.B.; Jakobsen, H.L.; Nielsen, O.H.; Agace, W.W. Identification, isolation and analysis of human gut-associated lymphoid tissues. Nat. Protoc. 2021, 16, 2051–2067. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shen, J.; Zhang, L. Effects of Chaihu Guizhi Decoction on Patients with Mesenteric Lymphadenitis (Dampness-heat Syndromes in Spleen and Stomach). World Chin. Med. 2020, 15, 108–111. [Google Scholar] [CrossRef]
- Chehade, M.; Mayer, L. Oral tolerance and its relation to food hypersensitivities. J. Allergy Clin. Immunol. 2005, 115, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Bartolomé-Casado, R.; Xu, C.; Bertocchi, A.; Janney, A.; Heuberger, C.; Pearson, C.F.; Teichmann, S.A.; Thornton, E.E.; Powrie, F. Immune microniches shape intestinal Treg function. Nature 2024, 628, 854–862. [Google Scholar] [CrossRef]
- Horn, V.; Sonnenberg, G.F. Group 3 innate lymphoid cells in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 428–443. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Yamaguchi, T.; Nomura, T.; Ono, M. Regulatory T Cells and Immune Tolerance. Cell 2008, 133, 775–787. [Google Scholar] [CrossRef]
- Bertolini, T.B.; Biswas, M.; Terhorst, C.; Daniell, H.; Herzog, R.W.; Piñeros, A.R. Role of orally induced regulatory T cells in immunotherapy and tolerance. Cell. Immunol. 2021, 359, 104251. [Google Scholar] [CrossRef]
- Matsumoto, K.; Saito, H. Epicutaneous Immunity and Onset of Allergic Diseases—Per-“Eczema”tous Sensitization Drives the Allergy March. Allergol. Int. 2013, 62, 291–296. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, J.; Jia, R. Treg: A Promising Immunotherapeutic Target in Oral Diseases. Front. Immunol. 2021, 12, 667862. [Google Scholar] [CrossRef]
- Mo, X.; Shao, J. Clinical research progress of oral immunotherapy for food allergy. J. Clin. Pediatr. 2019, 37, 877–880. [Google Scholar]
- Schiavi, E.; Smolinska, S.; O’mahony, L. Intestinal dendritic cells. Curr. Opin. Gastroenterol. 2015, 31, 98–103. [Google Scholar] [CrossRef] [PubMed]
- de Quiros, E.B.; Seoane-Reula, E.; Alonso-Lebrero, E.; Pion, M.; Correa-Rocha, R. The role of regulatory T cells in the acquisition of tolerance to food allergens in children. Allergol. Immunopathol. 2018, 46, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Gavin, M.A.; Rasmussen, J.P.; Fontenot, J.D.; Vasta, V.; Manganiello, V.C.; Beavo, J.A.; Rudensky, A.Y. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 2007, 445, 771–775. [Google Scholar] [CrossRef]
- Miranda-Waldetario, M.C.G.; de Lafaille, M.A.C. Oral tolerance to dietary antigens and Foxp3+ regulatory T cells. Immunol. Rev. 2024, 326, 8–16. [Google Scholar] [CrossRef]
- Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 2005, 6, 345–352. [Google Scholar] [CrossRef]
- Alvarez, F.; Al-Aubodah, T.-A.; Yang, Y.H.; Piccirillo, C.A. Mechanisms of TREG cell adaptation to inflammation. J. Leukoc. Biol. 2020, 108, 559–571. [Google Scholar] [CrossRef]
- Sardecka-Milewska, I.; Łoś-Rycharska, E.; Gawryjołek, J.; Toporowska-Kowalska, E.; Krogulska, A. Role of FOXP3 Expression and Serum Vitamin D and C Concentrations When Predicting Acquisition of Tolerance in Infants with Cow’ s Milk Allergy. J. Investig. Allergol. Clin. Immunol. 2020, 30, 182–190. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Genest, G.; Zhao, W.; Ke, D.; Bartolucci, S.; Pavey, N.; Al-Aubodah, T.-A.; Lejtenyi, D.; Torabi, B.; et al. Successful Milk Oral Immunotherapy Promotes Generation of Casein-Specific CD137+ FOXP3+ Regulatory T Cells Detectable in Peripheral Blood. Front. Immunol. 2021, 12, 705615. [Google Scholar] [CrossRef]
- Gunaydin, N.C.; Azarsiz, E.; Susluer, S.Y.; Kutukculer, N.; Gunduz, C.; Gulen, F.; Aksu, G.; Tanac, R.; Demir, E. Immunologic changes during desensitization with cow’s milk: How it differs from natural tolerance or nonallergic state? Ann. Allergy Asthma Immunol. 2022, 129, 751–757.e3. [Google Scholar] [CrossRef]
- Hamad, A.; Burks, W. Oral tolerance and allergy. Semin. Immunol. 2017, 30, 28–35. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, A.P.; Wu, H.Y.; Rezende, R.M.; Vandeventer, T.; Weiner, H.L. In vivo anti-LAP mAb enhances IL-17/IFN-γ responses and abrogates anti-CD3-induced oral tolerance. Int. Immunol. 2015, 27, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Castro-Sánchez, P.; Martín-Villa, J.M. Gut immune system and oral tolerance. Br. J. Nutr. 2013, 109, S3–S11. [Google Scholar] [CrossRef] [PubMed]
- Carrier, Y.; Yuan, J.; Kuchroo, V.K.; Weiner, H.L. Th3 Cells in Peripheral Tolerance. I. Induction of Foxp3-Positive Regulatory T Cells by Th3 Cells Derived from TGF-β T Cell-Transgenic Mice. J. Immunol. 2007, 178, 179–185. [Google Scholar] [CrossRef]
- Daniell, H.; Kulis, M.; Herzog, R.W. Plant cell-made protein antigens for induction of Oral tolerance. Biotechnol. Adv. 2019, 37, 107413. [Google Scholar] [CrossRef]
- Kumar, S.R.P.; Wang, X.; Avuthu, N.; Bertolini, T.B.; Terhorst, C.; Guda, C.; Daniell, H.; Herzog, R.W. Role of Small Intestine and Gut Microbiome in Plant-Based Oral Tolerance for Hemophilia. Front. Immunol. 2020, 11, 844. [Google Scholar] [CrossRef]
- Gregori, S.; Goudy, K.S.; Roncarolo, M.G. The Cellular and Molecular Mechanisms of Immuno-Suppression by Human Type 1 Regulatory T Cells. Front. Immunol. 2012, 3, 20721. [Google Scholar] [CrossRef]
- Roncarolo, M.G.; Gregori, S.; Bacchetta, R.; Battaglia, M. Tr1 cells and the counter-regulation of immunity: Natural mechanisms and therapeutic applications. Curr. Top. Microbiol. Immunol. 2014, 380, 39–68. [Google Scholar] [CrossRef]
- van Leeuwen, M.; Costes, L.M.M.; van Berkel, L.; Simons-Oosterhuis, Y.; du Pré, M.; Kozijn, A.; Raatgeep, H.; Lindenbergh-Kortleve, D.; van Rooijen, N.; Koning, F.; et al. Macrophage-mediated gliadin degradation and concomitant IL-27 production drive IL-10- and IFN-γ-secreting Tr1-like-cell differentiation in a murine model for gluten tolerance. Mucosal Immunol. 2017, 10, 635–649. [Google Scholar] [CrossRef]
- Bergerson, J.R.; Erickson, K.; Singh, A.M. Tr1 Cell Identification and Phenotype in Children with and without Food Allergy. J. Allergy Clin. Immunol. 2017, 139, AB70. [Google Scholar] [CrossRef]
- Aliberti, J. Immunity and Tolerance Induced by Intestinal Mucosal Dendritic Cells. Mediat. Inflamm. 2016, 2016, 3104727. [Google Scholar] [CrossRef] [PubMed]
- Bekiaris, V.; Persson, E.K.; Agace, W.W. Intestinal dendritic cells in the regulation of mucosal immunity. Immunol. Rev. 2014, 260, 86–101. [Google Scholar] [CrossRef]
- Aguilera-Insunza, R.; Venegas, L.F.; Iruretagoyena, M.; Rojas, L.; Borzutzky, A. Role of dendritic cells in peanut allergy. Expert Rev. Clin. Immunol. 2018, 14, 367–378. [Google Scholar] [CrossRef] [PubMed]
- McDole, J.R.; Wheeler, L.W.; McDonald, K.G.; Wang, B.; Konjufca, V.; Knoop, K.A.; Newberry, R.D.; Miller, M.J. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 2012, 483, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Scott, C.L.; Aumeunier, A.M.; Mowat, A.M. Intestinal CD103+ dendritic cells: Master regulators of tolerance? Trends Immunol. 2011, 32, 412–419. [Google Scholar] [CrossRef]
- Milling, S.; Yrlid, U.; Cerovic, V.; MacPherson, G. Subsets of migrating intestinal dendritic cells. Immunol. Rev. 2010, 234, 259–267. [Google Scholar] [CrossRef]
- Hägerbrand, K.; Westlund, J.; Yrlid, U.; Agace, W.; Johansson-Lindbom, B. MyD88 Signaling Regulates Steady-State Migration of Intestinal CD103+ Dendritic Cells Independently of TNF-α and the Gut Microbiota. J. Immunol. 2015, 195, 2888–2899. [Google Scholar] [CrossRef]
- Coombes, J.L.; Siddiqui, K.R.; Arancibia-Carcamo, C.V.; Hall, J.; Sun, C.M.; Belkaid, Y.; Powrie, F. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 2007, 204, 1757–1764. [Google Scholar] [CrossRef]
- Agace, W.W. Tissue-tropic effector T cells: Generation and targeting opportunities. Nat. Rev. Immunol. 2006, 6, 682–692. [Google Scholar] [CrossRef]
- Zuo, Z.; Zhang, C. Research progress on the mechanism of intestinal mucosal immune tolerance. Curr. Immunol. 2015, 35, 68–71. [Google Scholar]
- Schulz, O.; Jaensson, E.; Persson, E.K.; Liu, X.; Worbs, T.; Agace, W.W.; Pabst, O. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 2009, 206, 3101–3114. [Google Scholar] [CrossRef] [PubMed]
- Jaensson, E.; Uronen-Hansson, H.; Pabst, O.; Eksteen, B.; Tian, J.; Coombes, J.L.; Berg, P.L.; Davidsson, T.; Powrie, F.; Johansson-Lindbom, B.; et al. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J. Exp. Med. 2008, 205, 2139–2149. [Google Scholar] [CrossRef] [PubMed]
- Fukaya, T.; Takagi, H.; Sato, Y.; Sato, K.; Eizumi, K.; Taya, H.; Shin, T.; Chen, L.; Dong, C.; Azuma, M.; et al. Crucial roles of B7-H1 and B7-DC expressed on mesenteric lymph node dendritic cells in the generation of antigen-specific CD4+Foxp3+ regulatory T cells in the establishment of oral tolerance. Blood 2010, 116, 2266–2276. [Google Scholar] [CrossRef] [PubMed]
- Shiokawa, A.; Tanabe, K.; Tsuji, N.M.; Sato, R.; Hachimura, S. IL-10 and IL-27 producing dendritic cells capable of enhancing IL-10 production of T cells are induced in oral tolerance. Immunol. Lett. 2009, 125, 7–14. [Google Scholar] [CrossRef]
- Lee, S.-W.; Park, Y.; Eun, S.-Y.; Madireddi, S.; Cheroutre, H.; Croft, M. Cutting Edge: 4-1BB Controls Regulatory Activity in Dendritic Cells through Promoting Optimal Expression of Retinal Dehydrogenase. J. Immunol. 2012, 189, 2697–2701. [Google Scholar] [CrossRef]
- Hacini-Rachinel, F.; de Agüero, M.G.; Kanjarawi, R.; Moro-Sibilot, L.; Le Luduec, J.-B.; Macari, C.; Boschetti, G.; Bardel, E.; Langella, P.; Dubois, B.; et al. Intestinal dendritic cell licensing through Toll-like receptor 4 is required for oral tolerance in allergic contact dermatitis. J. Allergy Clin. Immunol. 2018, 141, 163–170. [Google Scholar] [CrossRef]
- Huang, G.; Wang, Y.; Chi, H. Control of T Cell Fates and Immune Tolerance by p38α Signaling in Mucosal CD103+ Dendritic Cells. J. Immunol. 2013, 191, 650–659. [Google Scholar] [CrossRef]
- Wambre, E.; Jeong, D. Oral Tolerance Development and Maintenance. Immunol. Allergy Clin. N. Am. 2018, 38, 27–37. [Google Scholar] [CrossRef]
- Dawicki, W.; Li, C.; Town, J.; Zhang, X.; Gordon, J.R. Therapeutic reversal of food allergen sensitivity by mature retinoic acid–differentiated dendritic cell induction of LAG3+CD49b−Foxp3− regulatory T cells. J. Allergy Clin. Immunol. 2017, 139, 1608–1620.e3. [Google Scholar] [CrossRef]
- Pascal, M.; Perez-Gordo, M.; Caballero, T.; Escribese, M.M.; Longo, M.N.L.; Luengo, O.; Manso, L.; Matheu, V.; Seoane, E.; Zamorano, M.; et al. Microbiome and Allergic Diseases. Front. Immunol. 2018, 9, 1584. [Google Scholar] [CrossRef]
- Zubeldia-Varela, E.; Barker-Tejeda, T.; Obeso, D.; Villaseñor, A.; Barber, D.; Pérez-Gordo, M. Microbiome and Allergy: New Insights and Perspectives. J. Investig. Allergol. Clin. Immunol. 2022, 32, 327–344. [Google Scholar] [CrossRef]
- Zhao, W.; Ho, H.-E.; Bunyavanich, S. The gut microbiome in food allergy. Ann. Allergy Asthma Immunol. 2019, 122, 276–282. [Google Scholar] [CrossRef]
- Stephen-Victor, E.; Crestani, E.; Chatila, T.A. Dietary and Microbial Determinants in Food Allergy. Immunity 2020, 53, 277–289. [Google Scholar] [CrossRef]
- Yokanovich, L.T.; Newberry, R.D.; Knoop, K.A. Regulation of oral antigen delivery early in life: Implications for oral tolerance and food allergy. Clin. Exp. Allergy 2021, 51, 518–526. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, J.; Meng, X.; Gao, J.; Li, H.; Sun, J.; Li, X.; Chen, H. The gut microbiome-immune axis as a target for nutrition-mediated modulation of food allergy. Trends Food Sci. Technol. 2021, 114, 116–132. [Google Scholar] [CrossRef]
- You, S.; Ma, Y.; Yan, B.; Pei, W.; Wu, Q.; Ding, C.; Huang, C. The promotion mechanism of prebiotics for probiotics: A review. Front. Nutr. 2022, 9, 1000517. [Google Scholar] [CrossRef]
- Esber, N.; Mauras, A.; Delannoy, J.; Labellie, C.; Mayeur, C.; Caillaud, M.-A.; Kashima, T.; Souchaud, L.; Nicolis, I.; Kapel, N.; et al. Three Candidate Probiotic Strains Impact Gut Microbiota and Induce Anergy in Mice with Cow’s Milk Allergy. Appl. Environ. Microbiol. 2020, 86, e01203-20. [Google Scholar] [CrossRef]
- Shibata, R.; Koga, Y.; Takahashi, M.; Murakami, Y.; Tochio, T.; Kadota, Y. In children with cow’s milk allergy, 1-kestose affects the gut microbiota and reaction threshold. Pediatr. Res. 2023, 94, 1067–1074. [Google Scholar] [CrossRef]
- Takeshita, K.; Mizuno, S.; Mikami, Y.; Sujino, T.; Saigusa, K.; Matsuoka, K.; Naganuma, M.; Sato, T.; Takada, T.; Tsuji, H.; et al. A Single Species of Clostridium Subcluster XIVa Decreased in Ulcerative Colitis Patients. Inflamm. Bowel Dis. 2016, 22, 2802–2810. [Google Scholar] [CrossRef]
- Guo, M. Whey Protein Production, Chemistry, Functionality, and Applications, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Hochwallner, H.; Schulmeister, U.; Swoboda, I.; Spitzauer, S.; Valenta, R. Cow’s milk allergy: From allergens to new forms of diagnosis, therapy and prevention. Methods 2014, 66, 22–33. [Google Scholar] [CrossRef]
- Bøgh, K.L.; Larsen, J.M. Reducing allergenicity by proteolysis. In Agents of Change; Food Engineering Series; Springer: Cham, Switzerland, 2021; pp. 499–523. [Google Scholar] [CrossRef]
- Hochwallner, H.; Schulmeister, U.; Swoboda, I.; Focke-Tejkl, M.; Reininger, R.; Civaj, V.; Campana, R.; Thalhamer, J.; Scheiblhofer, S.; Balic, N.; et al. Infant milk formulas differ regarding their allergenic activity and induction of T-cell and cytokine responses. Allergy 2016, 72, 416–424. [Google Scholar] [CrossRef]
- Sz’epfalusi, Z.; Nentwich, I.; Jost, E.; Gerstmayr, M.; Ebner, C.; Frischer, T.; Urbanek, R. Cord blood mononuclear cells and milk-specific T-cell clones are tools to evaluate the residual immunogenicity of hydrolyzed milk formulas. J. Allergy Clin. Immunol. 1998, 101 Pt 1, 514–520. [Google Scholar] [CrossRef]
- Wai, C.Y.Y.; Leung, N.Y.H.; Chu, K.H.; Leung, P.S.C. From molecule studies of allergens to development of immunotherapy of allergies. J. Aller. Ther. 2012, 3, 124. [Google Scholar] [CrossRef]
- Ahmad, T.A.; Eweida, A.E.; El-Sayed, L.H. T-cell epitope mapping for the design of powerful vaccines. Vaccine Rep. 2016, 6, 13–22. [Google Scholar] [CrossRef]
- Zhou, F.; He, S.; Sun, H.; Wang, Y.; Zhang, Y. Advances in epitope mapping technologies for food protein allergens: A review. Trends Food Sci. Technol. 2021, 107, 226–239. [Google Scholar] [CrossRef]
- Lewis, S.A.; Sutherland, A.; Soldevila, F.; Westernberg, L.; Aoki, M.; Frazier, A.; Maiche, S.; Erlewyn-Lajeunesse, M.; Arshad, H.; Leonard, S.; et al. Identification of cow milk epitopes to characterize and quantify disease-specific T cells in allergic children. J. Allergy Clin. Immunol. 2023, 152, 1196–1209. [Google Scholar] [CrossRef]
- Totsuka, M.; Ametani, A.; Kaminogawa, S. Fine mapping of T-cell determinants of bovine β-lactoglobin. Cytotechnology 1997, 25, 101–113. [Google Scholar] [CrossRef]
- Inoue, R.; Matsushita, S.; Kaneko, H.; Shinoda, S.; Sakaguchi, H.; Nishimura, Y.; Kondo, N. Identification of β-lactoglobulin-derived peptides and class II HLA molecules recognized by T cells from patients with milk allergy. Clin. Exp. Allergy 2001, 31, 1126–1134. [Google Scholar] [CrossRef]
- Sakaguchi, H.; Inoue, R.; Kaneko, H.; Watanabe, M.; Suzuki, K.; Kato, Z.; Matsushita, S.; Kondo, N. Interaction among human leucocyte antigen–peptide–T cell receptor complexes in cow’s milk allergy: The significance of human leucocyte antigen and T cell receptor–complementarity determining region 3 loops. Clin. Exp. Allergy 2002, 32, 762–770. [Google Scholar] [CrossRef]
- Kondo, M.; Kaneko, H.; Fukao, T.; Suzuki, K.; Sakaguchi, H.; Shinoda, S.; Kato, Z.; Matsui, E.; Teramoto, T.; Nakano, T.; et al. The response of bovine beta-lactoglobulin-specific T-cell clones to single amino acid sub-stitution of T-cell core epitope. Pediatr. Allergy Immunol. 2008, 19, 592–598. [Google Scholar] [CrossRef]
- Ueno, H.M.; Kato, T.; Ohnishi, H.; Kawamoto, N.; Kato, Z.; Kaneko, H.; Kondo, N.; Nakano, T. T-cell epitope-containing hypoallergenic β-lactoglobulin for oral immunotherapy in milk allergy. Pediatr. Allergy Immunol. 2016, 27, 818–824. [Google Scholar] [CrossRef]
- Gouw, J.W.; Jo, J.; Meulenbroek, L.A.P.M.; Heijjer, T.S.; Kremer, E.; Sandalova, E.; Knulst, A.C.; Jeurink, P.V.; Garssen, J.; Rijnierse, A.; et al. Identification of peptides with tolerogenic potential in a hydrolysed whey-based infant formula. Clin. Exp. Allergy 2018, 48, 1345–1353. [Google Scholar] [CrossRef]
- Xu, Z.; Bai, H.; Ma, X.; Wu, Y.; Wu, Z.; Yang, A.; Mao, W.; Li, X.; Chen, H. Cytological evaluation by Caco-2 and KU812 of non-allergenic peptides from simulated digestion of infant formula in vitro. Food Sci. Hum. Wellness 2023, 12, 817–824. [Google Scholar] [CrossRef]
- Larsen, J.M.; Bøgh, K.L. Animal models of allergen-specific immunotherapy in food allergy: Overview and opportunities. Clin. Exp. Allergy 2018, 48, 1255–1274. [Google Scholar] [CrossRef]
- Mizumachi, K.; Tsuji, N.M.; Kurisaki, J. Suppression of immune responses to β-lactoglobulin in mice by the oral administration of peptides representing dominant T cell epitopes. J. Sci. Food Agric. 2008, 88, 542–549. [Google Scholar] [CrossRef]
- Thang, C.L.; Zhao, X. Effects of orally administered immunodominant T-cell epitope peptides on cow’s milk protein allergy in a mouse model. Food Res. Int. 2015, 71, 126–131. [Google Scholar] [CrossRef]
- Kostadinova, A.I.; Meulenbroek, L.A.P.M.; van Esch, B.C.A.M.; Hofman, G.A.; Garssen, J.; Willemsen, L.E.M.; Knippels, L.M.J. A specific mixture of fructo-oligosaccharides and bifidobacterium breve M-16V facilitates partial non-responsiveness to whey protein in mice orally exposed to beta-lactoglobulin-derived peptides. Front. Immunol. 2016, 7, 673. [Google Scholar] [CrossRef]
- Meulenbroek, L.A.P.M.; van Esch, B.C.A.M.; Hofman, G.A.; Jager, C.F.D.H.; Nauta, A.J.; Willemsen, L.E.M.; Bruijnzeel-Koomen, C.A.F.M.; Garssen, J.; van Hoffen, E.; Knippels, L.M.J. Oral treatment with β-lactoglobulin peptides prevents clinical symptoms in a mouse model for cow’s milk allergy. Pediatr. Allergy Immunol. 2013, 24, 656–664. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, Q.; Cong, Y.; Yan, W. Preparation and identification ofβ-lactoglobulin hydrolysates with T-cell oral immunotolerance. J. Food Sci. Technol. 2023, 41, 57–69. [Google Scholar] [CrossRef]
- Meulenbroek, L.A.; Jager, C.F.D.H.; Lebens, A.F.; Knulst, A.C.; Bruijnzeel-Koomen, C.A.; Garssen, J.; Knippels, L.M.; van Hoffen, E. Characterization of T Cell Epitopes in Bovine α-Lactalbumin. Int. Arch. Allergy Immunol. 2014, 163, 292–296. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H.; Hu, Y.; Tu, Z. Investigation on potential allergenic peptides and critical amino acids of the digestive products of glycated α-lactalbumin via allergenicity evaluation and molecular dynamic simulation. LWT 2024, 195, 115800. [Google Scholar] [CrossRef]
- Xiong, Z.; Wang, W.; Ma, X.; Zhang, X.; Wu, Z.; Yang, A.; Wu, Y.; Meng, X.; Chen, H.; Li, X. Development of a two-step hydrolysis hypoallergenic cow’s milk formula and evaluation of residue allergenicity by peptidomics and immunoreactivity analysis. J. Agric. Food Chem. 2023, 71, 12237–12249. [Google Scholar] [CrossRef]
- Shi, J.Q.; Li, X.; Jia, X.J.; Zhu, H.; Wang, S.J.; Wang, S. Allergenicity Assessment of Partially Hydrolyzed Whey Protein Infant Formula. Food Res. Dev. 2020, 41, 16–20. [Google Scholar]
- Knipping, K.; Buelens, L.; Simons, P.J.; Garssen, J. An In Vitro and In Vivo Translational Research Approach for the Assessment of Sensitization Capacity and Residual Allergenicity of an Extensive Whey Hydrolysate for Cow’s Milk-Allergic Infants. Foods 2022, 11, 2005. [Google Scholar] [CrossRef]
- Chikhi, A.; Elmecherfi, K.; Bernard, H.; Cortes-Perez, N.; Kheroua, O.; Saidi, D.; Adel-Patient, K. Evaluation of the efficiency of hydrolyzed whey formula to prevent cow’s milk allergy in the BALB/c mouse model. Pediatr. Allergy Immunol. 2019, 30, 370–377. [Google Scholar] [CrossRef]
- Bourdeau, T.; Affolter, M.; Dupuis, L.; Panchaud, A.; Lahrichi, S.; Merminod, L.; Martin-Paschoud, C.; Adams, R.; Nutten, S.; Blanchard, C. Peptide Characterization and Functional Stability of a Partially Hydrolyzed Whey-Based Formula over Time. Nutrients 2021, 13, 3011. [Google Scholar] [CrossRef]
- Liu, M.; Thijssen, S.; van Nostrum, C.F.; Hennink, W.E.; Garssen, J.; Willemsen, L.E.M. Inhibition of cow’s milk allergy development in mice by oral delivery of β-lactoglobulin-derived peptides loaded PLGA nanoparticles is associated with systemic whey-specific immune silencing. Clin. Exp. Allergy 2022, 52, 137–148. [Google Scholar] [CrossRef]
- Liu, M.; Thijssen, S.; Hennink, W.E.; Garssen, J.; van Nostrum, C.F.; Willemsen, L.E.M. Oral pretreatment with β-lactoglobulin derived peptide and CpG co-encapsulated in PLGA nanoparticles prior to sensitizations attenuates cow’s milk allergy development in mice. Front. Immunol. 2023, 13, 1053107. [Google Scholar] [CrossRef]
- Freidl, R.; Garib, V.; Linhart, B.; Haberl, E.M.; Mader, I.; Szépfalusi, Z.; Schmidthaler, K.; Douladiris, N.; Pampura, A.; Varlamov, E.; et al. Extensively Hydrolyzed Hypoallergenic Infant Formula with Retained T Cell Reactivity. Nutrients 2022, 15, 111. [Google Scholar] [CrossRef]
- Otten, L.; Schelker, E.; Petersen, H.; Nomayo, A.; Conzade, R.; Günther, J.; Grieger, A.; Jochum, F.; on behalf of the HASI Study Group. Gastrointestinal Tolerance of an Infant Formula Manufactured from Extensively Hydrolysed Protein in Healthy Term Infants. Nutrients 2023, 15, 4674. [Google Scholar] [CrossRef]
- Jiang, S.; Jiang, Y.; Meng, L.; Tuo, Y.; Mu, G. β-lactoglobulin hydrolysates by L.plantarum AHQ-14 and L.bulgaricus BD0390 alleviate allergic responses to β-lactoglobulin in sensitized mice. Food Biosci. 2024, 58, 103770. [Google Scholar] [CrossRef]
- Picaud, J.-C.; Pajek, B.; Arciszewska, M.; Tarczón, I.; Escribano, J.; Porcel, R.; Adelt, T.; Hassink, E.; Rijnierse, A.; Abrahamse-Berkeveld, M.; et al. An Infant Formula with Partially Hydrolyzed Whey Protein Supports Adequate Growth and Is Safe and Well-Tolerated in Healthy, Term Infants: A Randomized, Double-Blind, Equivalence Trial. Nutrients 2020, 12, 2072. [Google Scholar] [CrossRef]
- Chu, X.; Li, G.; Xiong, L.; Jiang, Y.; Zheng, H.; Liu, D. Efficacy and Mechanism of Hydrolyzed Whey Protein in Ameliorating Cow’s Milk Protein Allergy. J. Chin. Inst. Food Sci. Technol. 2024, 24, 46–55. [Google Scholar] [CrossRef]
- Maeda-Yamamoto, M.; Inagaki, N.; Kitaura, J.; Chikumoto, T.; Kawahara, H.; Kawakami, Y.; Sano, M.; Miyase, T.; Tachibana, H.; Nagai, H.; et al. O-Methylated Catechins from Tea Leaves Inhibit Multiple Protein Kinases in Mast Cells. J. Immunol. 2004, 172, 4486–4492. [Google Scholar] [CrossRef]
- Venkatesh, P.; Mukherjee, P.K.; Kumar, N.S.; Bandyopadhyay, A.; Fukui, H.; Mizuguchi, H.; Islam, N. Anti-allergic activity of standardized extract of Albizia lebbeck with reference to catechin as a phytomarker. Immunopharmacol. Immunotoxicol. 2010, 32, 272–276. [Google Scholar] [CrossRef]
- Tamura, S.; Yoshihira, K.; Fujiwara, K.; Murakami, N. New inhibitors for expression of IgE receptor on human mast cell. Bioorg. Med. Chem. Lett. 2010, 20, 2299–2302. [Google Scholar] [CrossRef]
- Zuercher, A.W.; Holvoet, S.; Weiss, M.; Mercenier, A. Polyphenol-enriched apple extract attenuates food allergy in mice. Clin. Exp. Allergy 2010, 40, 942–950. [Google Scholar] [CrossRef]
- Ognjenović, J.; Stojadinović, M.; Milčić, M.; Apostolović, D.; Vesić, J.; Stambolić, I.; Atanasković-Marković, M.; Simonović, M.; Velickovic, T.C. Interactions of epigallo-catechin 3-gallate and ovalbumin, the major allergen of egg white. Food Chem. 2014, 164, 36–43. [Google Scholar] [CrossRef]
- Plundrich, N.J.; Kulis, M.; White, B.L.; Grace, M.H.; Guo, R.; Burks, A.W.; Davis, J.P.; Lila, M.A. Novel Strategy to Create Hypoallergenic Peanut Protein–Polyphenol Edible Matrices for Oral Immunotherapy. J. Agric. Food Chem. 2014, 62, 7010–7021. [Google Scholar] [CrossRef]
- Martins, R.; Minshall, E.; Connolly, M.P. Cost-effectiveness Analysis of Hypoallergenic Milk Formulas for the Management of Cow’s Milk Protein Allergy in the United Kingdom. J. Health Econ. Outcomes Res. 2021, 8, 14–25. [Google Scholar] [CrossRef]
- CAC/RS 72-1981; Standard for Infant Formula and Formulas for Special Medical Purposes Intended for Infants [EB/OL]. Codex Alimentarius Commission (CAC): Rome, Italy, 1981.
Main Components | Research Methods | Results | Reference |
---|---|---|---|
pHWF | CMA BALB/c mouse model | Alleviate CMA | [116] |
eWH | CMA C3H/HeOuJ mouse model | Establish OIT | [117] |
pHWF | OIT BALB/c mouse model | Alleviate CMA | [118] |
pHWF | CMA Sprague Dawley Rats model | OIT failed | [119] |
WPI and phenolic compound—CA or EGCG | OIT C3H/HeOuJ mouse model | Attenuate oral sensitization | [4] |
β-LG -derived peptides loaded PLGA nanoparticles | OIT C3H/HeOuJ mouse model | Establish OIT | [120] |
β-LG -Pep and TLR9 ligand CpG loaded PLGA nanoparticles | OIT C3H/HeOuJ mouse model | Establish OIT | [121] |
eHF, GOS, LF CECT 5716 | Allergic infants T cell proliferation test | Reduce sensitization but retained T cell reactivity | [122] |
eHF, GOS, LF CECT 5716 | Infant clinical experiment | Establish OIT | [123] |
β-LG hydrolysis by L. cartarum AHQ-14 or L. bulgaricus BD0390 | OIT BALB/c mouse model | Establish OIT | [124] |
pHWF, FOS, GOS | A Randomized, Double-Blind, Equivalence Trial | Establish OIT | [125] |
pHWP+FOS+Bb-12 | CMA BALB/c mouse model | Establish OIT | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, M.; Zhang, Q.; Cong, Y. Research Progress of Oral Immune Tolerance Mechanism Induced by Whey Protein. Nutrients 2025, 17, 1517. https://doi.org/10.3390/nu17091517
Lin M, Zhang Q, Cong Y. Research Progress of Oral Immune Tolerance Mechanism Induced by Whey Protein. Nutrients. 2025; 17(9):1517. https://doi.org/10.3390/nu17091517
Chicago/Turabian StyleLin, Mao, Qianqian Zhang, and Yanjun Cong. 2025. "Research Progress of Oral Immune Tolerance Mechanism Induced by Whey Protein" Nutrients 17, no. 9: 1517. https://doi.org/10.3390/nu17091517
APA StyleLin, M., Zhang, Q., & Cong, Y. (2025). Research Progress of Oral Immune Tolerance Mechanism Induced by Whey Protein. Nutrients, 17(9), 1517. https://doi.org/10.3390/nu17091517