Dietary Habits and Their Influence on the Microbiome and Mental Health in Adolescents
Abstract
1. Introduction
2. Methodology
3. The Gut Microbiome: Fundamentals and Importance in Mental Well-Being
4. Diet and Its Influence on the Microbiome
4.1. Dietary Fibers
4.2. Dietary Proteins
4.3. Dietary Carbohydrates
4.4. Alcohol Consumption
5. Adolescence: A Critical Stage in Development
6. The Link Between Microbiome, Diet, and Mental Health
7. Practical Implications and Recommendations
8. Discussions
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ADHD | Attention-Deficit Hyperactivity Disorder |
BDNF | Brain-Derived Neurotrophic Factor |
BMI | Body mass index |
CNS | Central nervous system |
COS | Chito-oligosaccharides |
DHA | Docosahexaenoic Acid |
EPA | Eicosapentaenoic Acid |
FOS | Fructo-oligosaccharides |
GABA | Gamma-aminobutyric acid |
GBA | Gut–brain axis |
GIT | Gastrointestinal tract |
GOS | Galacto-oligosaccharides |
HMP | Human Microbiome Project |
HPA | Hypothalamic–pituitary–adrenal |
HPD | High-protein diet |
IBD | Intestinal bowel disease |
IBS | Irritable bowel syndrome |
IGF-1 | Insulin-like growth factor 1 |
IL-1 | Interleukin-1 |
IL-6 | Interleukin-6 |
LPS | Lipopolysaccharides |
MDD | Major depressive disorders |
NA | Noradrenaline |
NPD | Normal protein diet |
rRNA | Ribosomal ribonucleic acid |
SCFA | Short-chain fatty acid |
SCFAs | Short-chain fatty acids |
TMAO | Trimethylamine N-oxide |
TNF-α | Tumor Necrosis Factor-alpha |
VLCKD | Very low-calorie ketogenic diet |
XOS | Xylo-oligosaccharides |
References
- Bremner, J.; Moazzami, K.; Wittbrodt, M.; Nye, J.; Lima, B.; Gillespie, C.; Rapaport, M.; Pearce, B.; Shah, A.; Vaccarino, V. Diet, Stress and Mental Health. Nutrients 2020, 12, 2428. [Google Scholar] [CrossRef] [PubMed]
- Simkin, D.R. Microbiome and Mental Health, Specifically as It Relates to Adolescents. Curr. Psychiatry Rep. 2019, 21, 93. [Google Scholar] [CrossRef] [PubMed]
- Felger, J.C.; Lotrich, F.E. Inflammatory Cytokines in Depression: Neurobiological Mechanisms and Therapeutic Implications. Neuroscience 2013, 246, 199–229. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in Inflammation and Metabolic Disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Casillo, M.; Deledda, A.; Mereu, A.; Pasqui, F.; Ventura, C.; Carta, M.G.; Petroni, M.L. Modification of the Microbiota in Obese Individuals Following a Very Low-Calorie Ketogenic Diet. Prog. Nutr. 2021, 26, 15752. [Google Scholar] [CrossRef]
- Martin, C.R.; Osadchiy, V.; Kalani, A.; Mayer, E.A. The Brain-Gut-Microbiome Axis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 133–148. [Google Scholar] [CrossRef]
- Zimmermann-Rösner, A.; Prehn-Kristensen, A. The Microbiome in Child and Adolescent Psychiatry. Z. Kinder-Jugendpsychiatrie Psychother. 2024, 52, 213–226. [Google Scholar] [CrossRef]
- Wang, Y.; Telesford, K.M.; Ochoa-Repáraz, J.; Haque-Begum, S.; Christy, M.; Kasper, E.J.; Wang, L.; Wu, Y.; Robson, S.C.; Kasper, D.L.; et al. An Intestinal Commensal Symbiosis Factor Controls Neuroinflammation via TLR2-Mediated CD39 Signalling. Nat. Commun. 2014, 5, 4432. [Google Scholar] [CrossRef]
- Ligezka, A.N.; Sonmez, A.I.; Corral-Frias, M.P.; Golebiowski, R.; Lynch, B.; Croarkin, P.E.; Romanowicz, M. A Systematic Review of Microbiome Changes and Impact of Probiotic Supplementation in Children and Adolescents with Neuropsychiatric Disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 108, 110187. [Google Scholar] [CrossRef]
- O’Donnell, P.M.; Aviles, H.; Lyte, M.; Sonnenfeld, G. Enhancement of In Vitro Growth of Pathogenic Bacteria by Norepinephrine: Importance of Inoculum Density and Role of Transferrin. Appl. Environ. Microbiol. 2006, 72, 5097–5099. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Wang, X.; Wang, Z.; Zhang, J.; Jiang, R.; Wang, X.; Wang, K.; Liu, Z.; Xia, Z.; et al. Similar Fecal Microbiota Signatures in Patients with Diarrhea-Predominant Irritable Bowel Syndrome and Patients with Depression. Clin. Gastroenterol. Hepatol. 2016, 14, 1602–1611.e5. [Google Scholar] [CrossRef]
- Liu, C.; Yang, S.-Y.; Wang, L.; Zhou, F. The Gut Microbiome: Implications for Neurogenesis and Neurological Diseases. Neural Regen. Res. 2022, 17, 53. [Google Scholar] [CrossRef] [PubMed]
- Sarubbo, F.; Cavallucci, V.; Pani, G. The Influence of Gut Microbiota on Neurogenesis: Evidence and Hopes. Cells 2022, 11, 382. [Google Scholar] [CrossRef] [PubMed]
- Dohm-Hansen, S.; Donoso, F.; Lucassen, P.J.; Clarke, G.; Nolan, Y.M. The Gut Microbiome and Adult Hippocampal Neurogenesis: A New Focal Point for Epilepsy? Neurobiol. Dis. 2022, 170, 105746. [Google Scholar] [CrossRef]
- Knight, R.; Callewaert, C.; Marotz, C.; Hyde, E.R.; Debelius, J.W.; McDonald, D.; Sogin, M.L. The Microbiome and Human Biology. Annu. Rev. Genom. Hum. Genet. 2017, 18, 65–86. [Google Scholar] [CrossRef]
- Xiong, R.-G.; Li, J.; Cheng, J.; Zhou, D.-D.; Wu, S.-X.; Huang, S.-Y.; Saimaiti, A.; Yang, Z.-J.; Gan, R.-Y.; Li, H.-B. The Role of Gut Microbiota in Anxiety, Depression, and Other Mental Disorders as Well as the Protective Effects of Dietary Components. Nutrients 2023, 15, 3258. [Google Scholar] [CrossRef]
- Forssten, S.D.; Ouwehand, A.C.; Griffin, S.M.; Patterson, E. One Giant Leap from Mouse to Man: The Microbiota–Gut–Brain Axis in Mood Disorders and Translational Challenges Moving towards Human Clinical Trials. Nutrients 2022, 14, 568. [Google Scholar] [CrossRef]
- Sălcudean, A.; Trușculescu, L.-M.; Popovici, R.A.; Serb, N.; Pasca, C.; Bodo, C.R.; Craciun, R.E.; Olariu, I. Dental Anxiety—A Psychosocial Cause Affecting the Quality of Life—A Systematic Review. Rom. J. Oral Rehabil. 2024, 16, 471–483. [Google Scholar] [CrossRef]
- Răchită, A.I.C.; Strete, G.E.; Sălcudean, A.; Ghiga, D.V.; Huțanu, A.; Muntean, L.M.; Suciu, L.M.; Mărginean, C. The Relationship between Psychological Suffering, Value of Maternal Cortisol during Third Trimester of Pregnancy and Breastfeeding Initiation. Medicina 2023, 59, 339. [Google Scholar] [CrossRef]
- Farzi, A.; Fröhlich, E.E.; Holzer, P. Gut Microbiota and the Neuroendocrine System. Neurother. J. Am. Soc. Exp. Neurother. 2018, 15, 5–22. [Google Scholar] [CrossRef]
- Răchită, A.; Strete, G.E.; Suciu, L.M.; Ghiga, D.V.; Sălcudean, A.; Mărginean, C. Psychological Stress Perceived by Pregnant Women in the Last Trimester of Pregnancy. Int. J. Environ. Res. Public Health 2022, 19, 8315. [Google Scholar] [CrossRef] [PubMed]
- Herlo, L.-F.; Salcudean, A.; Sirli, R.; Iurciuc, S.; Herlo, A.; Nelson-Twakor, A.; Alexandrescu, L.; Dumache, R. Gut Microbiota Signatures in Colorectal Cancer as a Potential Diagnostic Biomarker in the Future: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 7937. [Google Scholar] [CrossRef] [PubMed]
- Kalinovic, R.; Pascariu, A.; Vlad, G.; Nitusca, D.; Sălcudean, A.; Sirbu, I.; Marian, C.; Enatescu, V. Involvement of the Expression of G Protein-Coupled Receptors in Schizophrenia. Pharmaceuticals 2024, 17, 85. [Google Scholar] [CrossRef] [PubMed]
- Cresci, G.A.; Bawden, E. Gut Microbiome: What We Do and Don’t Know. Nutr. Clin. Pract. 2015, 30, 734–746. [Google Scholar] [CrossRef]
- Ding, T.; Schloss, P.D. Dynamics and Associations of Microbial Community Types across the Human Body. Nature 2014, 509, 357–360. [Google Scholar] [CrossRef]
- Verma, A.; Inslicht, S.S.; Bhargava, A. Gut-Brain Axis: Role of Microbiome, Metabolomics, Hormones, and Stress in Mental Health Disorders. Cells 2024, 13, 1436. [Google Scholar] [CrossRef]
- Strandwitz, P. Neurotransmitter Modulation by the Gut Microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef]
- Tilinca, M.C. Oxidative Stress and Cytokines’ Involvement in The Occurence and Progression of Diabetic Complications in the Covid-19 Pandemic Context. Farmacia 2021, 69, 635–641. [Google Scholar] [CrossRef]
- Berding, K.; Vlckova, K.; Marx, W.; Schellekens, H.; Stanton, C.; Clarke, G.; Jacka, F.; Dinan, T.G.; Cryan, J.F. Diet and the Microbiota–Gut–Brain Axis: Sowing the Seeds of Good Mental Health. Adv. Nutr. 2021, 12, 1239–1285. [Google Scholar] [CrossRef]
- Ahmed, H.; Leyrolle, Q.; Koistinen, V.; Kärkkäinen, O.; Layé, S.; Delzenne, N.; Hanhineva, K. Microbiota-Derived Metabolites as Drivers of Gut–Brain Communication. Gut Microbes 2022, 14, 2102878. [Google Scholar] [CrossRef]
- Bilen, M.; Dufour, J.-C.; Lagier, J.-C.; Cadoret, F.; Daoud, Z.; Dubourg, G.; Raoult, D. The Contribution of Culturomics to the Repertoire of Isolated Human Bacterial and Archaeal Species. Microbiome 2018, 6, 94. [Google Scholar] [CrossRef] [PubMed]
- Dicks, L.M.T. Gut Bacteria and Neurotransmitters. Microorganisms 2022, 10, 1838. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.-M.; et al. Enterotypes of the Human Gut Microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Park, W. Gut Microbiomes and Their Metabolites Shape Human and Animal Health. J. Microbiol. 2018, 56, 151–153. [Google Scholar] [CrossRef]
- Prakash, S.; Rodes, L.; Coussa-Charley, M.; Tomaro-Duchesneau, C. Gut Microbiota: Next Frontier in Understanding Human Health and Development of Biotherapeutics. Biol. Targets Ther. 2011, 5, 71–86. [Google Scholar] [CrossRef]
- Ortega, M.A.; Alvarez-Mon, M.A.; García-Montero, C.; Fraile-Martinez, O.; Guijarro, L.G.; Lahera, G.; Monserrat, J.; Valls, P.; Mora, F.; Rodríguez-Jiménez, R.; et al. Gut Microbiota Metabolites in Major Depressive Disorder—Deep Insights into Their Pathophysiological Role and Potential Translational Applications. Metabolites 2022, 12, 50. [Google Scholar] [CrossRef]
- Indiani, C.M.D.S.P.; Rizzardi, K.F.; Castelo, P.M.; Ferraz, L.F.C.; Darrieux, M.; Parisotto, T.M. Childhood Obesity and Firmicutes/Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review. Child. Obes. 2018, 14, 501–509. [Google Scholar] [CrossRef]
- Tilinca, M.C. The Newest Therapeutically Approach Of “Diabesity” Using Glp-1 Ra Molecules: Impact of the Oral Formulation. Farmacia 2023, 71, 1–10. [Google Scholar] [CrossRef]
- Liu, L.; Wang, H.; Chen, X.; Zhang, Y.; Zhang, H.; Xie, P. Gut Microbiota and Its Metabolites in Depression: From Pathogenesis to Treatment. eBioMedicine 2023, 90, 104527. [Google Scholar] [CrossRef]
- Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; Zeng, L.; Chen, J.; Fan, S.; Du, X.; et al. Gut Microbiome Remodeling Induces Depressive-like Behaviors through a Pathway Mediated by the Host’s Metabolism. Mol. Psychiatry 2016, 21, 786–796. [Google Scholar] [CrossRef]
- Caspani, G.; Kennedy, S.; Foster, J.A.; Swann, J. Gut Microbial Metabolites in Depression: Understanding the Biochemical Mechanisms. Microb. Cell 2019, 6, 454–481. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Syed, Y.A.; Khan, M.R. Understanding the Role of the Gut Microbiome in Brain Development and Its Association with Neurodevelopmental Psychiatric Disorders. Front. Cell Dev. Biol. 2022, 10, 880544. [Google Scholar] [CrossRef] [PubMed]
- Sălcudean, A. Serum Serotonin Level Can Be Used as a Predictive Marker for Depression in Patients with Type 2 Diabetes Mellitus. True Or False? Farmacia 2024, 72, 1283–1289. [Google Scholar] [CrossRef]
- Tilinca, M.C. New Directions in Pharmacological Treatment with Sglt-2 Inhibitor Molecules in the Light of Current Guidelines for Diabetes Mellitus, Heart Failure and Kidney Disease. Farmacia 2023, 71, 686–696. [Google Scholar] [CrossRef]
- Sălcudean, A.; Nan, A.G.; Bodo, C.R.; Cosma, M.C.; Strete, E.G.; Lica, M.M. Association between Childhood Onset Inflammatory Bowel Disease and Psychiatric Comorbidities in Adulthood. Diagnostics 2023, 13, 1868. [Google Scholar] [CrossRef]
- Kearns, R. Gut–Brain Axis and Neuroinflammation: The Role of Gut Permeability and the Kynurenine Pathway in Neurological Disorders. Cell. Mol. Neurobiol. 2024, 44, 64. [Google Scholar] [CrossRef]
- Sălcudean, A.; Popovici, R.-A.; Pitic, D.E.; Sârbu, D.; Boroghina, A.; Jomaa, M.; Salehi, M.A.; Kher, A.A.M.; Lica, M.M.; Bodo, C.R.; et al. Unraveling the Complex Interplay Between Neuroinflammation and Depression: A Comprehensive Review. Int. J. Mol. Sci. 2025, 26, 1645. [Google Scholar] [CrossRef]
- Bodo, C.R.; Salcudean, A.; Nirestean, A.; Lukacs, E.; Lica, M.M.; Muntean, D.L.; Anculia, R.C.; Popovici, R.A.; Neda Stepan, O.; Enătescu, V.R.; et al. Association between Chronic Misophonia-Induced Stress and Gastrointestinal Pathology in Children—A Hypothesis. Children 2024, 11, 699. [Google Scholar] [CrossRef]
- Zhang, P. Influence of Foods and Nutrition on the Gut Microbiome and Implications for Intestinal Health. Int. J. Mol. Sci. 2022, 23, 9588. [Google Scholar] [CrossRef]
- Ravid, N.L.; Annunziato, R.A.; Ambrose, M.A.; Chuang, K.; Mullarkey, C.; Sicherer, S.H.; Shemesh, E.; Cox, A.L. Mental Health and Quality-of-Life Concerns Related to the Burden of Food Allergy. Psychiatr. Clin. N. Am. 2015, 38, 77–89. [Google Scholar] [CrossRef]
- Rinninella, E.; Tohumcu, E.; Raoul, P.; Fiorani, M.; Cintoni, M.; Mele, M.C.; Cammarota, G.; Gasbarrini, A.; Ianiro, G. The Role of Diet in Shaping Human Gut Microbiota. Best Pract. Res. Clin. Gastroenterol. 2023, 62–63, 101828. [Google Scholar] [CrossRef] [PubMed]
- Logan, A.C.; Jacka, F.N.; Craig, J.M.; Prescott, S.L. The Microbiome and Mental Health: Looking Back, Moving Forward with Lessons from Allergic Diseases. Clin. Psychopharmacol. Neurosci. 2016, 14, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Ross, F.C.; Patangia, D.; Grimaud, G.; Lavelle, A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. The Interplay between Diet and the Gut Microbiome: Implications for Health and Disease. Nat. Rev. Microbiol. 2024, 22, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.H.; Oerbeck, B.; Skirbekk, B.; Petrovski, B.É.; Kristensen, H. Neurodevelopmental Disorders: Prevalence and Comorbidity in Children Referred to Mental Health Services. Nord. J. Psychiatry 2018, 72, 285–291. [Google Scholar] [CrossRef]
- Singh, R.K.; Chang, H.-W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of Diet on the Gut Microbiome and Implications for Human Health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef]
- Dash, S.; Clarke, G.; Berk, M.; Jacka, F.N. The Gut Microbiome and Diet in Psychiatry: Focus on Depression. Curr. Opin. Psychiatry 2015, 28, 1–6. [Google Scholar] [CrossRef]
- Lica, M.M.; Papai, A.; Salcudean, A.; Crainic, M.; Covaciu, C.G.; Mihai, A. Assessment of Psychopathology in Adolescents with Insulin-Dependent Diabetes (IDD) and the Impact on Treatment Management. Children 2021, 8, 414. [Google Scholar] [CrossRef]
- Aslam, H.; Lotfaliany, M.; So, D.; Berding, K.; Berk, M.; Rocks, T.; Hockey, M.; Jacka, F.N.; Marx, W.; Cryan, J.F.; et al. Fiber Intake and Fiber Intervention in Depression and Anxiety: A Systematic Review and Meta-Analysis of Observational Studies and Randomized Controlled Trials. Nutr. Rev. 2024, 82, 1678–1695. [Google Scholar] [CrossRef]
- Fu, J.; Zheng, Y.; Gao, Y.; Xu, W. Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms 2022, 10, 2507. [Google Scholar] [CrossRef]
- Chong, J.; Xia, J. Computational Approaches for Integrative Analysis of the Metabolome and Microbiome. Metabolites 2017, 7, 62. [Google Scholar] [CrossRef]
- Soveid, N.; Barkhidarian, B.; Samadi, M.; Hatami, M.; Gholami, F.; Yekaninejad, M.S.; Saedisomeolia, A.; Karbasian, M.; Siadat, S.D.; Mirzaei, K. Animal and Plant Protein Intake Association with Mental Health, Tryptophan Metabolites Pathways, and Gut Microbiota in Healthy Women: A Cross-Sectional Study. BMC Microbiol. 2024, 24, 390. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.S.; Luu, K.; Lagishetty, V.; Sedighian, F.; Woo, S.-L.; Dreskin, B.W.; Katzka, W.; Chang, C.; Zhou, Y.; Arias-Jayo, N.; et al. A High Protein Calorie Restriction Diet Alters the Gut Microbiome in Obesity. Nutrients 2020, 12, 3221. [Google Scholar] [CrossRef] [PubMed]
- Reichelt, A.C.; Loughman, A.; Bernard, A.; Raipuria, M.; Abbott, K.N.; Dachtler, J.; Van, T.T.H.; Moore, R.J. An Intermittent Hypercaloric Diet Alters Gut Microbiota, Prefrontal Cortical Gene Expression and Social Behaviours in Rats. Nutr. Neurosci. 2020, 23, 613–627. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.S.; Noman, O.; Jaiswal, N. Unveiling the Gut Microbiome: How Junk Food Impacts the Gut. Cureus 2023, 15, e49179. [Google Scholar] [CrossRef]
- Noble, E.E.; Hsu, T.M.; Jones, R.B.; Fodor, A.A.; Goran, M.I.; Kanoski, S.E. Early-Life Sugar Consumption Affects the Rat Microbiome Independently of Obesity. J. Nutr. 2017, 147, 20–28. [Google Scholar] [CrossRef]
- Salcudean, A.; Lica, M.M. The Role of Systemic Family Psychotherapy in Glycemic Control for Children with Type 1 Diabetes. Children 2024, 11, 104. [Google Scholar] [CrossRef]
- Lee, J.E.; Walton, D.; O’Connor, C.P.; Wammes, M.; Burton, J.P.; Osuch, E.A. Drugs, Guts, Brains, but Not Rock and Roll: The Need to Consider the Role of Gut Microbiota in Contemporary Mental Health and Wellness of Emerging Adults. Int. J. Mol. Sci. 2022, 23, 6643. [Google Scholar] [CrossRef]
- Iddrisu, I.; Monteagudo-Mera, A.; Poveda, C.; Pyle, S.; Shahzad, M.; Andrews, S.; Walton, G.E. Malnutrition and Gut Microbiota in Children. Nutrients 2021, 13, 2727. [Google Scholar] [CrossRef]
- Jalanka-Tuovinen, J.; Salonen, A.; Nikkilä, J.; Immonen, O.; Kekkonen, R.; Lahti, L.; Palva, A.; De Vos, W.M. Intestinal Microbiota in Healthy Adults: Temporal Analysis Reveals Individual and Common Core and Relation to Intestinal Symptoms. PLoS ONE 2011, 6, e23035. [Google Scholar] [CrossRef]
- Xu, Z.; Knight, R. Dietary Effects on Human Gut Microbiome Diversity. Br. J. Nutr. 2015, 113, S1–S5. [Google Scholar] [CrossRef]
- Butwicka, A.; Olén, O.; Larsson, H.; Halfvarson, J.; Almqvist, C.; Lichtenstein, P.; Serlachius, E.; Frisén, L.; Ludvigsson, J.F. Association of Childhood-Onset Inflammatory Bowel Disease with Risk of Psychiatric Disorders and Suicide Attempt. JAMA Pediatr. 2019, 173, 969. [Google Scholar] [CrossRef] [PubMed]
- Rudbaek, J.J.; Agrawal, M.; Torres, J.; Mehandru, S.; Colombel, J.-F.; Jess, T. Deciphering the Different Phases of Preclinical Inflammatory Bowel Disease. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Sanmarco, L.M.; Chao, C.-C.; Wang, Y.-C.; Kenison, J.E.; Li, Z.; Rone, J.M.; Rejano-Gordillo, C.M.; Polonio, C.M.; Gutierrez-Vazquez, C.; Piester, G.; et al. Identification of Environmental Factors That Promote Intestinal Inflammation. Nature 2022, 611, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Sălcudean, A. The Efficacy of Antidepresive Treatment on Covid-19 Pandemic-Related Depressive Symptoms—A Prospective, Single-Center, Questionnaire-Based Study. Farmacia 2023, 71, 631–637. [Google Scholar] [CrossRef]
- Borrego-Ruiz, A.; Borrego, J.J. Neurodevelopmental Disorders Associated with Gut Microbiome Dysbiosis in Children. Children 2024, 11, 796. [Google Scholar] [CrossRef]
- Konkel, L. What Is Your Gut Telling You? Exploring the Role of the Microbiome in Gut–Brain Signaling. Environ. Health Perspect. 2018, 126, 062001. [Google Scholar] [CrossRef]
- Mohajeri, M.H.; La Fata, G.; Steinert, R.E.; Weber, P. Relationship between the Gut Microbiome and Brain Function. Nutr. Rev. 2018, 76, 481–496. [Google Scholar] [CrossRef]
- Patel, A.L.; Mutlu, E.A.; Sun, Y.; Koenig, L.; Green, S.; Jakubowicz, A.; Mryan, J.; Engen, P.; Fogg, L.; Chen, A.L.; et al. Longitudinal Survey of Microbiota in Hospitalized Preterm Very-Low-Birth-Weight Infants. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 292–303. [Google Scholar] [CrossRef]
- DiBartolomeo, M.E.; Claud, E.C. The Developing Microbiome of the Preterm Infant. Clin. Ther. 2016, 38, 733–739. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Mahony, S.M. The Microbiome-Gut-Brain Axis: From Bowel to Behavior: From Bowel to Behavior. Neurogastroenterol. Motil. 2011, 23, 187–192. [Google Scholar] [CrossRef]
- Lefter, R.; Ciobica, A.; Timofte, D.; Stanciu, C.; Trifan, A. A Descriptive Review on the Prevalence of Gastrointestinal Disturbances and Their Multiple Associations in Autism Spectrum Disorder. Medicina 2019, 56, 11. [Google Scholar] [CrossRef] [PubMed]
- Reiff, C.; Kelly, D. Inflammatory Bowel Disease, Gut Bacteria and Probiotic Therapy. Int. J. Med. Microbiol. 2010, 300, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.A.; Julio-Pieper, M.; Forsythe, P.; Kunze, W.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Communication between Gastrointestinal Bacteria and the Nervous System. Curr. Opin. Pharmacol. 2012, 12, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Konturek, P.C.; Brzozowski, T.; Konturek, S.J. Stress and the Gut: Pathophysiology, Clinical Consequences, Diagnostic Approach and Treatment Options. J. Physiol. Pharmacol. 2011, 62, 591–599. [Google Scholar]
- Mach, T. The Brain-Gut Axis in Irritable Bowel Syndrome—Clinical Aspects. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2004, 10, RA125-131. [Google Scholar]
- Collins, S.M.; Denou, E.; Verdu, E.F.; Bercik, P. The Putative Role of the Intestinal Microbiota in the Irritable Bowel Syndrome. Dig. Liver Dis. 2009, 41, 850–853. [Google Scholar] [CrossRef]
- Checa-Ros, A.; Jeréz-Calero, A.; Molina-Carballo, A.; Campoy, C.; Muñoz-Hoyos, A. Current Evidence on the Role of the Gut Microbiome in ADHD Pathophysiology and Therapeutic Implications. Nutrients 2021, 13, 249. [Google Scholar] [CrossRef]
- Boonchooduang, N.; Louthrenoo, O.; Chattipakorn, N.; Chattipakorn, S.C. Possible Links between Gut-Microbiota and Attention-Deficit/Hyperactivity Disorders in Children and Adolescents. Eur. J. Nutr. 2020, 59, 3391–3403. [Google Scholar] [CrossRef]
- Zagórska, A.; Marcinkowska, M.; Jamrozik, M.; Wiśniowska, B.; Paśko, P. From Probiotics to Psychobiotics—The Gut-Brain Axis in Psychiatric Disorders. Benef. Microbes 2020, 11, 717–732. [Google Scholar] [CrossRef]
- Smith, K.S.; Greene, M.W.; Babu, J.R.; Frugé, A.D. Psychobiotics as Treatment for Anxiety, Depression, and Related Symptoms: A Systematic Review. Nutr. Neurosci. 2021, 24, 963–977. [Google Scholar] [CrossRef]
- Taylor, A.M.; Holscher, H.D. A Review of Dietary and Microbial Connections to Depression, Anxiety, and Stress. Nutr. Neurosci. 2020, 23, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Foster, J. Psychobiotics and the Gut–Brain Axis: In the Pursuit of Happiness. Neuropsychiatr. Dis. Treat. 2015, 11, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Kleiman, S.C.; Watson, H.J.; Bulik-Sullivan, E.C.; Huh, E.Y.; Tarantino, L.M.; Bulik, C.M.; Carroll, I.M. The Intestinal Microbiota in Acute Anorexia Nervosa and During Renourishment: Relationship to Depression, Anxiety, and Eating Disorder Psychopathology. Psychosom. Med. 2015, 77, 969–981. [Google Scholar] [CrossRef] [PubMed]
- Landini, L.; Dadson, P.; Gallo, F.; Honka, M.-J.; Cena, H. Microbiota in Anorexia Nervosa: Potential for Treatment. Nutr. Res. Rev. 2023, 36, 372–391. [Google Scholar] [CrossRef]
- Seitz, J.; Dahmen, B.; Keller, L.; Herpertz-Dahlmann, B. Gut Feelings: How Microbiota Might Impact the Development and Course of Anorexia Nervosa. Nutrients 2020, 12, 3295. [Google Scholar] [CrossRef]
- Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; et al. Altered Fecal Microbiota Composition in Patients with Major Depressive Disorder. Brain. Behav. Immun. 2015, 48, 186–194. [Google Scholar] [CrossRef]
- Iannone, L.F.; Preda, A.; Blottière, H.M.; Clarke, G.; Albani, D.; Belcastro, V.; Carotenuto, M.; Cattaneo, A.; Citraro, R.; Ferraris, C.; et al. Microbiota-Gut Brain Axis Involvement in Neuropsychiatric Disorders. Expert Rev. Neurother. 2019, 19, 1037–1050. [Google Scholar] [CrossRef]
- Geier, M.; Butler, R.; Howarth, G. Inflammatory Bowel Disease: Current Insights into Pathogenesis and New Therapeutic Options; Probiotics, Prebiotics and Synbiotics. Int. J. Food Microbiol. 2007, 115, 1–11. [Google Scholar] [CrossRef]
- Socała, K.; Doboszewska, U.; Szopa, A.; Serefko, A.; Włodarczyk, M.; Zielińska, A.; Poleszak, E.; Fichna, J.; Wlaź, P. The Role of Microbiota-Gut-Brain Axis in Neuropsychiatric and Neurological Disorders. Pharmacol. Res. 2021, 172, 105840. [Google Scholar] [CrossRef]
- Warner, B.B. The Contribution of the Gut Microbiome to Neurodevelopment and Neuropsychiatric Disorders. Pediatr. Res. 2019, 85, 216–224. [Google Scholar] [CrossRef]
- Armstrong-Wells, J.; Donnelly, M.; Post, M.D.; Manco-Johnson, M.J.; Winn, V.D.; Sébire, G. Inflammatory Predictors of Neurologic Disability after Preterm Premature Rupture of Membranes. Am. J. Obstet. Gynecol. 2015, 212, 212.e1–212.e9. [Google Scholar] [CrossRef] [PubMed]
- Mulder, R.H.; Kraaij, R.; Schuurmans, I.K.; Frances-Cuesta, C.; Sanz, Y.; Medina-Gomez, C.; Duijts, L.; Rivadeneira, F.; Tiemeier, H.; Jaddoe, V.W.V.; et al. Early-Life Stress and the Gut Microbiome: A Comprehensive Population-Based Investigation. Brain Behav. Immun. 2024, 118, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Michels, N.; Van De Wiele, T.; Fouhy, F.; O’Mahony, S.; Clarke, G.; Keane, J. Gut Microbiome Patterns Depending on Children’s Psychosocial Stress: Reports versus Biomarkers. Brain Behav. Immun. 2019, 80, 751–762. [Google Scholar] [CrossRef]
- Michels, N.; Van De Wiele, T.; De Henauw, S. Chronic Psychosocial Stress and Gut Health in Children: Associations with Calprotectin and Fecal Short-Chain Fatty Acids. Psychosom. Med. 2017, 79, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Bear, T.; Dalziel, J.; Coad, J.; Roy, N.; Butts, C.; Gopal, P. The Microbiome-Gut-Brain Axis and Resilience to Developing Anxiety or Depression under Stress. Microorganisms 2021, 9, 723. [Google Scholar] [CrossRef]
- Mersky, J.P.; Topitzes, J.; Reynolds, A.J. Impacts of Adverse Childhood Experiences on Health, Mental Health, and Substance Use in Early Adulthood: A Cohort Study of an Urban, Minority Sample in the U.S. Child Abuse Negl. 2013, 37, 917–925. [Google Scholar] [CrossRef]
- Ouabbou, S.; He, Y.; Butler, K.; Tsuang, M. Inflammation in Mental Disorders: Is the Microbiota the Missing Link? Neurosci. Bull. 2020, 36, 1071–1084. [Google Scholar] [CrossRef]
- Lazar, V.; Ditu, L.-M.; Pircalabioru, G.G.; Picu, A.; Petcu, L.; Cucu, N.; Chifiriuc, M.C. Gut Microbiota, Host Organism, and Diet Trialogue in Diabetes and Obesity. Front. Nutr. 2019, 6, 21. [Google Scholar] [CrossRef]
- Su, K.-P.; Tseng, P.-T.; Lin, P.-Y.; Okubo, R.; Chen, T.-Y.; Chen, Y.-W.; Matsuoka, Y.J. Association of Use of Omega-3 Polyunsaturated Fatty Acids with Changes in Severity of Anxiety Symptoms: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2018, 1, e182327. [Google Scholar] [CrossRef]
- Nolte, S.; Krüger, K.; Lenz, C.; Zentgraf, K. Optimizing the Gut Microbiota for Individualized Performance Development in Elite Athletes. Biology 2023, 12, 1491. [Google Scholar] [CrossRef]
- Sheflin, A.M.; Melby, C.L.; Carbonero, F.; Weir, T.L. Linking Dietary Patterns with Gut Microbial Composition and Function. Gut Microbes 2017, 8, 113–129. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Martins, L.B.; Braga Tibães, J.R.; Sanches, M.; Jacka, F.; Berk, M.; Teixeira, A.L. Nutrition-Based Interventions for Mood Disorders. Expert Rev. Neurother. 2021, 21, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Romano, K.; Shah, A.N.; Schumacher, A.; Zasowski, C.; Zhang, T.; Bradley-Ridout, G.; Merriman, K.; Parkinson, J.; Szatmari, P.; Campisi, S.C.; et al. The Gut Microbiome in Children with Mood, Anxiety, and Neurodevelopmental Disorders: An Umbrella Review. Gut Microbiome 2023, 4, e18. [Google Scholar] [CrossRef]
- Lai, H.-C.; Young, J.; Lin, C.-S.; Chang, C.-J.; Lu, C.-C.; Martel, J.; Ojcius, D.; Ko, Y.-F. Impact of the Gut Microbiota, Prebiotics, and Probiotics on Human Health and Disease. Biomed. J. 2014, 37, 259. [Google Scholar] [CrossRef]
- Trebatická, J.; Hradečná, Z.; Böhmer, F.; Vaváková, M.; Waczulíková, I.; Garaiova, I.; Luha, J.; Škodáček, I.; Šuba, J.; Ďuračková, Z. Emulsified Omega-3 Fatty-Acids Modulate the Symptoms of Depressive Disorder in Children and Adolescents: A Pilot Study. Child Adolesc. Psychiatry Ment. Health 2017, 11, 30. [Google Scholar] [CrossRef]
- Franco, K. Optimizing Nutritional Health for Children Through School-Based Initiatives. J. Am. Diet. Assoc. 2001, 101, 873–874. [Google Scholar] [CrossRef]
- Druart, C.; Alligier, M.; Salazar, N.; Neyrinck, A.M.; Delzenne, N.M. Modulation of the Gut Microbiota by Nutrients with Prebiotic and Probiotic Properties. Adv. Nutr. 2014, 5, 624S–633S. [Google Scholar] [CrossRef]
- Nair, M.; Baltag, V.; Bose, K.; Boschi-Pinto, C.; Lambrechts, T.; Mathai, M. Improving the Quality of Health Care Services for Adolescents, Globally: A Standards-Driven Approach. J. Adolesc. Health 2015, 57, 288–298. [Google Scholar] [CrossRef]
- Mwale, D.; Manda-Taylor, L.; Langton, J.; Likumbo, A.; Van Hensbroek, M.B.; IMPALA Study team; Calis, J.; Janssens, W.; Pell, C. The Role of Healthcare Providers and Caregivers in Monitoring Critically Ill Children: A Qualitative Study in a Tertiary Hospital, Southern Malawi. BMC Health Serv. Res. 2024, 24, 595. [Google Scholar] [CrossRef]
- Flores-Vázquez, A.S.; Rodríguez-Rocha, N.P.; Herrera-Echauri, D.D.; Macedo-Ojeda, G. A Systematic Review of Educational Nutrition Interventions Based on Behavioral Theories in School Adolescents. Appetite 2024, 192, 107087. [Google Scholar] [CrossRef]
Components | Structure | Effect |
---|---|---|
Protein | Increased protein intake | Increases beneficial Lactobacillus and Bifidobacterium; reduces harmful Clostridium and Bacteroides |
Increased animal-derived protein | Increases bile-tolerant anaerobes like Bacteroides, Alistipes, and Bilophila | |
Increased total protein | Reduces certain beneficial bacteria and butyrate production; increases risk of IBD, higher levels of IGF-1: linked to cancer and diabetes risk | |
Fats | High-fat Western diets | Increases anaerobic microflora and Bacteroides counts |
Low-fat diet | Increases Bifidobacterium; reduces glucose and total cholesterol | |
High saturated fat diet | Increases Faecalibacterium prausnitzii | |
High monounsaturated fat intake | Reduces overall bacterial load and plasma cholesterol | |
Bioavailable carbohydrates | High glucose, fructose, and sucrose intake | Increases Bifidobacteria; reduces Bacteroides |
Supplementation with lactose | Reduces Clostridia species; increases beneficial SCFA concentration. | |
Non-digestible carbohydrates (fiber) | Probiotics-fermented food (cultured milk products, yogurt) | Increases total bacterial load and beneficial bacteria like Bifidobacteria and Lactobacillus; reduces enteropathogens like Escherichia coli and Helicobacter pylori |
Polyphenols | Increases Bifidobacterium and Lactobacillus and antibacterial activity against pathogens like Staphylococcus aureus, Salmonella typhimurium, pathogenic Clostridium species | |
Prebiotics: soybeans, inulins, whole grains, oligosaccharides | Increases Bifidobacteria, lactic-acid bacteria, Ruminococcus, and Eubacterium rectale; reduces Clostridium and Enterococcus |
Dietary Component | Effect on Gut and Microbiome | Psychopathological Mechanism |
---|---|---|
Prebiotics (e.g., inulin, FOS, GOS, XOS, COS) | ↑ Bifidobacterium and Lactobacillus species | ↑ SCAFs that reduce inflammation with a modulatory effect on gut–brain axis |
Probiotics (e.g., Lactobacillus and Bifidobacterium) | ↑ gut-barrier function ↑ SCAFs ↑ beneficial bacteria (Bifidobacterium and Lactobacillus) ↓ harmful species (e.g., Clostridium) | ↑ synthesis of GABA, serotonin, and dopamine ↓ anxiety and depression ↓ cortisol level and stress mechanism |
Omega-3 fatty acids (e.g., EPA and DHA) | ↑ beneficial bacteria (Bifidobacterium and Lactobacillus) ↓ inflammatory cytokines (IL-1, IL-6, TNF-alfa) ↑ SCAFs | ↑ neuroplasticity and cognitive function ↑ synthesis of serotonin and dopamine ↓ depressive symptoms Improves symptoms of autism-spectrum disorders |
Polyphenols | ↑ beneficial bacteria (Bifidobacterium, Lactobacillus and Akkermansia) ↑ SCAFs ↑ gut-barrier integrity ↓ harmful species (e.g., Clostridium perfringens and Escherichia coli) ↓ inflammation | ↑ neuroplasticity and cognitive function ↑ synthesis of serotonin GABA and dopamine ↑ BDNF expression |
Dietary fibers | ↑ beneficial bacteria (Bifidobacterium, Lactobacillus, and Faecalibacterium) ↑ SCAFs ↓ production of endotoxins | ↓ anxiety and depression ↑ BDNF ↑ synthesis of serotonin and dopamine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sălcudean, A.; Cîmpian, D.-M.; Popovici, R.-A.; Forna, N.; Corodan-Comiati, D.-M.; Sasu, A.-B.; Cozma, M.-M.; Bodo, C.-R.; Enache, E.-C.; Păcurar, M.; et al. Dietary Habits and Their Influence on the Microbiome and Mental Health in Adolescents. Nutrients 2025, 17, 1496. https://doi.org/10.3390/nu17091496
Sălcudean A, Cîmpian D-M, Popovici R-A, Forna N, Corodan-Comiati D-M, Sasu A-B, Cozma M-M, Bodo C-R, Enache E-C, Păcurar M, et al. Dietary Habits and Their Influence on the Microbiome and Mental Health in Adolescents. Nutrients. 2025; 17(9):1496. https://doi.org/10.3390/nu17091496
Chicago/Turabian StyleSălcudean, Andreea, Dora-Mihaela Cîmpian, Ramona-Amina Popovici, Norina Forna, Diana-Mihaela Corodan-Comiati, Andreea-Bianca Sasu, Melania-Maria Cozma, Cristina-Raluca Bodo, Eduard-Cristian Enache, Mariana Păcurar, and et al. 2025. "Dietary Habits and Their Influence on the Microbiome and Mental Health in Adolescents" Nutrients 17, no. 9: 1496. https://doi.org/10.3390/nu17091496
APA StyleSălcudean, A., Cîmpian, D.-M., Popovici, R.-A., Forna, N., Corodan-Comiati, D.-M., Sasu, A.-B., Cozma, M.-M., Bodo, C.-R., Enache, E.-C., Păcurar, M., Crăciun, R.-E., Blidaru, A., Jinga, V., Pașca, M.-D., Lukacs, E.-E., Tilinca, M.-C., Strete, E.-G., Crișan, A.-I., Osz, B.-E., & Muntean, D.-L. (2025). Dietary Habits and Their Influence on the Microbiome and Mental Health in Adolescents. Nutrients, 17(9), 1496. https://doi.org/10.3390/nu17091496