Validation of Two Portion Size Estimation Methods for Use with the Global Diet Quality Score App
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Recruitment of Participants
2.3. Ethical Considerations
2.4. Estimating Amounts Using WFR
2.5. Administering the GDQS App Interview
2.6. Estimating Amounts with Cubes
2.7. Estimating Amounts with Playdough
2.8. The Built-In Algorithm to Infer the Amount of Liquid Oils Consumed
2.9. Data Entry and Processing
2.10. Data Analysis
3. Results
3.1. Sample Characteristics
3.2. Equivalence of GDQS Tabulated from WFR Versus the GDQS App Using Cubes or Playdough
3.3. Agreement on Classification of Risk of Poor Diet Quality Outcomes from WFR Versus the GDQS App Using Cubes or Playdough
3.4. Kappa Coefficients for GDQS Positive Food Groups
3.5. Kappa Coefficients for GDQS Negative Food Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
FHI | Family Health International |
GDQS | Global Diet Quality Score |
NCD | Non-communicable disease |
TOST | Two one-sided t-test |
WFR | Weighed food records |
INSP | Institute of Public Health |
References
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, U. Impact of nutrition on the next generation: The INCAP Longitudinal Study. Food Nutr. Bull. 2020, 41, S50–S58. [Google Scholar] [CrossRef] [PubMed]
- Willet, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Comission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Bromage, S.; Batis, C.; Bhupathiraju, S.N.; Fawzi, W.W.; Fung, T.T.; Li, Y.; Deitchler, M.; Angulo, E.; Birk, N.; Castellanos-Gutiérrez, A.; et al. Development and validation of a novel food-based global diet quality score (GDQS). J. Nutr. 2021, 151, 75S–92S. [Google Scholar] [CrossRef] [PubMed]
- Larson, E.; Zhao, Z.; Bader-Larsen, K.S.; Magkos, F. Egg consumption and growth in children: A meta-analysis of interventional trials. Front. Nutr. 2024, 10, 1278753. [Google Scholar] [CrossRef]
- Asare, H.; Rosi, A.; Faber, M.; Smuts, C.M.; Ricci, C. Animal-source foods as a suitable complementary food for improved physical growth in 6 to 24-month-old children in low- and middle-income countries: A systematic review and meta-analysis of randomised controlled trials. Br. J. Nutr. 2022, 128, 2271–2283. [Google Scholar] [CrossRef]
- Afshin, A.; Micha, R.; Khatibzadeh, S.; Mozaffarian, D. Legume consumption and risk of all-cause and cause-specific mortality: A systematic review and dose–response meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2014, 100, 278–288. [Google Scholar] [CrossRef]
- Marventano, S.; Izquierdo Pulido, M.; Sánchez-González, C.; Godos, J.; Martínez-González, M.Á.; Grosso, G.; Galvano, F. Legume consumption and CVD risk: A systematic review and meta-analysis of prospective studies. Public Health Nutr. 2017, 20, 245–254. [Google Scholar] [CrossRef]
- Poorolajal, J.; Mohammadi, Y.; Fattahi-Darghlou, M.; Almasi-Moghadam, F. The association between major gastrointestinal cancers and red and processed meat and fish consumption: A systematic review and meta-analysis of the observational studies. PLoS ONE 2024, 19, e0305994. [Google Scholar] [CrossRef]
- Vitale, M.; Costabile, G.; Testa, R.; D’Abbronzo, G.; Nettore, I.C.; Macchia, P.E.; Giacco, R. Ulra-Processed foods and human health: A systematic review and meta-analysis of prosepective cohort studies. Adv. Nutr. 2024, 15, 100121. [Google Scholar] [CrossRef]
- Iamamura, F.; O’Connor, L.; Ye, Z.; Mursu, J.; Hayashino, Y.; Bhupathiraju, S.; Forouhi, N.G. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 2015, 351, h3576. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.M.; Travica, N.; Gamage, E.; Marshall, S.; Trakman, G.L.; Young, C.; Teasdale, S.B.; Dissanayaka, T.; Dawson, S.L.; Orr, R.; et al. Sugar-sweetened beverages and adverse human health outcomes: An umbrella review of meta-analyses of observational studies. Ann. Rev. Nutr. 2024, 44, 383–404. [Google Scholar] [CrossRef]
- Intake—Center for Dietary Assessment. Global Diet Quality Score Toolkit. 2022. Available online: https://www.intake.org/news/gdqs-toolkit-now-available-multiple-languages (accessed on 24 September 2024).
- Intake—Center for Dietary Assessment. The Global Diet Quality Score: Data Collection Options and Tabulation Guidelines. 2021. Available online: https://www.intake.org/resource/global-diet-quality-score-data-collection-options-and-tabulation-guidelines (accessed on 24 September 2024).
- Moursi, M.; Bromage, S.; Fung, T.T.; Isanaka, S.; Matsuzaki, M.; Batis, C.; Castellanos-Gutiérrez, A.; Angulo, E.; Birk, N.; Bhupathiraju, S.N.; et al. There’s an App for That: Development of an Application to Operationalize the Global Diet Quality Score. J. Nutr. 2021, 151, 176S–184S. [Google Scholar] [CrossRef]
- Gibson, R.S.; Ferguson, E.L. An Interactive 24-Hour Recall for Assessing the Adequacy of Iron and Zinc Intakes in Developing Countries; HarvestPlus Technical Monographs 8; IFPRI: Washington, DC, USA, 2008; Available online: https://www.ifpri.org/publication/interactive-24-hour-recall-assessing-adequacy-iron-and-zinc-intakes-developing-countries/ (accessed on 24 September 2024).
- Vossenaar, M.; Lubowa, A.; Hotz, C.; Deitchler, M.; Moursi, M.; Arimond, M.; Crispim, S.P.; Arsenault, J. Considerations for the Selection of Portion Size Estimation Methods for Use in Quantitative 24-Hour Dietary Recall Surveys in Low-and Middle-Income Countries; Intake—Center for Dietary Assessment/FHI Solutions: Washington, DC, USA, 2020; Available online: https://www.intake.org/sites/default/files/2020-12/Intake-PSEM-Guidance%20Nov%2030%202020.pdf (accessed on 25 October 2024).
- Nightingale, H.; Walsh, K.J.; Olupot-Olupot, P.; Engoru, C.; Ssenyondo, T.; Nteziyaremye, J.; Amorut, D.; Nakuya, M.; Arimi, M.; Frost, G.; et al. Validation of triple pass 24-hour dietary recall in Ugandan children by simultaneous weighed food assessment. BMC Nutr. 2016, 2, 56. [Google Scholar] [CrossRef]
- Amoutzopoulos, B.; Page, P.; Roberts, C.; Roe, M.; Cade, J.; Steer, T.; Baker, R.; Hawes, T.; Galloway, C.; Yu, D.; et al. Portion size estimation in dietary assessment: A systematic review of existing tools, their strengths and limitations. Nutr. Rev. 2020, 78, 885–900. [Google Scholar] [CrossRef] [PubMed]
- Kruger, R.; Hepburn, A.J.; Beck, K.L.; McNaughton, S.; Stonehouse, W. Evaluating a novel dietary diversity questionnaire to assess dietary diversity and adequacy of New Zealand women. Nutr. J. 2021, 91–92, 111468. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, J.E.; Moursi, M.; Olney, D.K.; Becquey, E.; Ganaba, R. Validation of 24-h dietary recall for estimating nutrient intakes and adequacy in adolescents in Burkina Faso. Matern. Child. Nutr. 2020, 16, e13014. [Google Scholar] [CrossRef]
- U.S. Departement of Agricutlure. Food Yeilds Summarized by Different Stages of Preparation; USDA Agriculture Handbook n°102; USDA: Washington, DC, USA, 1975. [Google Scholar]
- Schuirmann, D.J. A Comparison of the Two One-Sided Tests Procedure and the Power Approach for Assessing the Equivalence of Average Bioavalability. J. Pharmacokinet. Biopharm. 1987, 15, 657–680. [Google Scholar] [CrossRef]
- Thompson, F.E.; Dixit-Joshi, S.; Potischman, N.; Dodd, K.W.; Kirkpatrick, S.I.; Kushi, L.H.; Alexander, G.L.; Coleman, L.A.; Zimmerman, T.P.; Sundaram, M.E.; et al. Comparison of Interviewer-Administered and Automated Self-Administered 24-Hour Dietary Recalls in 3 Diverse Integrated Health Systems. Am. J. Epidemiol. 2015, 181, 970–978. [Google Scholar] [CrossRef]
- Tugault-Lafleur, C.N.; Black, J.L.; Barr, S.I. A systematic review of methods to assess children’s diets in the school context. Adv. Nutr. 2017, 8, 63–79. [Google Scholar] [CrossRef]
- Intake. Visualizations: This Is Where You Can View, Explore, and Interact with GDQS Data for More Than 20 Countries Across Different Regions of the World. 2024. Available online: https://www.intake.org/visualizations (accessed on 4 November 2024).
- Landis, J.; Koch, G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Dinno, A. Tost: Two One-Sided Test for Equivalence. Stata Software Package. 2017. Available online: https://www.alexisdinno.com/stata/tost.html (accessed on 8 January 2024).
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025. 2020. Available online: https://www.dietaryguidelines.gov (accessed on 15 February 2025).
- Bucher, T.; Weltert, M.; Rollo, M.E.; Smith, S.P.; Jia, W.; Collins, C.E.; Sun, M. The international food unit: A new measurement aid that can improve portion size estimation. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 124. [Google Scholar] [CrossRef] [PubMed]
- Byrd-Bredbenner, C.; Schwartz, J. The effect of practical portion size measurement aids on the accuracy of portion size estimates made by young adults. J. Hum. Nutr. Diet. 2004, 17, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Bromage, S.; Pongcharoen, T.; Prachansuwan, A.; Sukboon, P.; Srichan, W.; Purttiponthanee, S.; Deitchler, M.; Moursi, M.; Arsenault, J.; Ali, N.B.; et al. Performance of the Global Diet Quality Score (GDQS) App in Predicting Nutrient Adequacy and Metabolic Risk Factors among Thai Adults. J. Nutr. 2023, 153, 3576–3594. [Google Scholar] [CrossRef]
- Asrat, Y.T.; Moursi, M.; Vossenaar, M.; Deitchler, M.; Omare, A. The feasibility of using the application developed to operationalize the Global Diet Quality Score in Ethiopia. BMC Nutr. 2024, 10, 159. [Google Scholar] [CrossRef]
Characteristics of Study Participants | n | Percentage |
---|---|---|
Age groups | ||
18–24 y | 48 | 28 |
25–35 y | 69 | 41 |
36–45 y | 21 | 12 |
46–73 y | 32 | 19 |
Sex (%) | ||
Male | 48 | 28 |
Female | 121 | 71 |
Refused to answer | 1 | 1 |
Race of participant | ||
White | 86 | 51 |
Black or African American | 33 | 19 |
Asian | 40 | 24 |
American Indian or Alaska Native | 1 | 1 |
Other | 10 | 6 |
Hispanic or Latino | ||
Yes | 20 | 12 |
No | 150 | 88 |
Number of people living in the household | ||
1 | 36 | 21 |
2 | 43 | 25 |
3 | 33 | 19 |
4 or more | 58 | 34 |
Highest level of education completed | ||
High school completed | 0 | 0 |
Some college | 26 | 15 |
College degree | 55 | 32 |
Some post-college coursework | 36 | 21 |
Post-college degree | 53 | 31 |
WFR | GDQS App with Cubes | GDQS App with Playdough | Paired Difference Cubes-WFR | Paired Difference Playdough-WFR | Equivalence WFR vs. Cubes | Equivalence WFR vs. Playdough | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean (SE) | Mean (95% CI) | Min. | Max. | Mean (95% CI) | Min. | Max. | |||||
GDQS | 20.5 (0.4) | 22.5 (0.4) | 21.8 (0.4) | 2.0 (1.7, 2.4) | −4.0 | 9.3 | 1.3 (1.0, 1.7) | −4.8 | 8.3 | Yes (overall p = 0.006) | Yes (overall p < 0.001) |
GDQS positive | 9.7 (0.4) | 12.2 (0.4) | 11.1 (0.4) | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
GDQS negative | 10.6 (0.2) | 10.3 (0.2) | 10.8 (0.2) | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
WFR | GDQS App with Cubes | GDQS App with Playdough | |
---|---|---|---|
Risk of poor diet quality outcomes (N, %) | |||
Low (GDQS ≥ 23) | 54 (31.8%) | 83 (48.8%) | 69 (40.6%) |
Moderate (GDQS ≥ 15 and <23) | 89 (52.4%) | 70 (41.2%) | 85 (50.0%) |
High (GDQS < 15) | 27 (15.9%) | 17 (10.0%) | 16 (9.4%) |
Kappa coefficient of agreement with WFR | n/a | κ = 0.5685, p < 0.001 (moderate agreement) | κ = 0.5843, p < 0.001 (moderate agreement) |
Agreement with WFR (%) | n/a | 73.5% | 75.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moursi, M.; Vossenaar, M.; Arsenault, J.E.; Bell, W.; Chen, M.; Deitchler, M. Validation of Two Portion Size Estimation Methods for Use with the Global Diet Quality Score App. Nutrients 2025, 17, 1497. https://doi.org/10.3390/nu17091497
Moursi M, Vossenaar M, Arsenault JE, Bell W, Chen M, Deitchler M. Validation of Two Portion Size Estimation Methods for Use with the Global Diet Quality Score App. Nutrients. 2025; 17(9):1497. https://doi.org/10.3390/nu17091497
Chicago/Turabian StyleMoursi, Mourad, Marieke Vossenaar, Joanne E. Arsenault, Winnie Bell, Mario Chen, and Megan Deitchler. 2025. "Validation of Two Portion Size Estimation Methods for Use with the Global Diet Quality Score App" Nutrients 17, no. 9: 1497. https://doi.org/10.3390/nu17091497
APA StyleMoursi, M., Vossenaar, M., Arsenault, J. E., Bell, W., Chen, M., & Deitchler, M. (2025). Validation of Two Portion Size Estimation Methods for Use with the Global Diet Quality Score App. Nutrients, 17(9), 1497. https://doi.org/10.3390/nu17091497