Extra Virgin Olive Oil Phenolic Compounds: Modulating Mitochondrial Function and Protecting Against Chronic Diseases—A Narrative Review
Highlights
- Key phenolic compounds in extra virgin olive oil (EVOO), such as mitochondrial function, reduce oxidative stress and inflammation.
- The beneficial components of EVOO activate crucial cellular pathways that promote mitochondrial biogenesis, improve electron transport chain efficiency, and protect mitochondrial DNA integrity.
- Preclinical research has indicated the potential of EVOO as a dietary tool against diseases associated with mitochondrial dysfunction, showing benefits in models of cardiovascular, neurodegenerative, and metabolic disorders.
- Higher nutrition literacy is positively correlated with better adherence to the Mediterranean diet and increased EVOO consumption, highlighting the potential impact of targeted educational strategies.
Abstract
:1. Introduction
2. Methods
3. EVOO in the MedDiet
4. EVOO Phenolic Compounds and Their Bioavailability
5. Effects of Olive Oil Phenolic Compounds on Mitochondrial Function
5.1. Improvements in Mitochondrial Biogenesis
5.2. Oxidative Stress Reduction
5.3. Mitochondrial Respiration Improvement
5.4. Mitochondrial DNA Protection
6. Mechanisms of Action
6.1. Antioxidant Effects
6.2. Anti-Inflammatory Effects
7. Mitochondrial Impact of Olive Oil in Disease
7.1. Cardiovascular Health
7.2. Neuroprotection
7.3. Metabolic Disorders
8. Nutrition Literacy and Eating Behaviors
9. Discussion
10. Conclusions
11. Future Research Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
AMPK | AMP-activated protein kinase |
ATP | Adenosine triphosphate |
Ca2+ | Ion de calcio intracelular |
CVD | Cardiovascular disease |
DRP1 | Dynamin-related protein 1 |
EGFR | Epidermal growth factor receptor |
EFSA | European Food Safety Authority |
ETC | Electron transport chain |
EVOO | Extra virgin olive oil |
HFD | High-fat diet |
HT | Hydroxytyrosol |
MASLD | Metabolic dysfunction-associated steatotic liver disease |
MedDiet | Mediterranean diet |
MetS | Metabolic syndrome |
MFN2 | Mitofusin 2 |
mtDNA | Mitochondrial DNA |
mTOR | Mammalian Target of Rapamycin |
MUFAs | Monounsaturated fatty acids |
mRNA | Messenger RNA |
ND | Neurodegenerative diseases |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
Nrf-2 | Nuclear factor erythroid 2-related factor 2 |
NRF-1 | Nuclear respiratory factor 1 |
OLEA | Oleacein |
OLEO | Oleocanthal |
OLEU | Oleuropein |
OO | Olive oil |
OS | Oxidative stress |
PGC-1α | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha |
POS | Highly purified olive secoiridoids |
ROS | Reactive oxygen species |
SIRT1 | Sirtuin 1 |
SOD | Superoxide dismutase |
T2DM | Type 2 diabetes mellitus |
TFAM | Mitochondrial transcription factor A |
Tyr | Tyrosol |
UCP-2 | Uncoupling protein-2 |
References
- Dominguez, L.J.; Veronese, N.; Di Bella, G.; Cusumano, C.; Parisi, A.; Tagliaferri, F.; Ciriminna, S.; Barbagallo, M. Mediterranean diet in the management and prevention of obesity. Exp. Gerontol. 2023, 174, 112121. [Google Scholar] [CrossRef] [PubMed]
- Finicelli, M.; Di Salle, A.; Galderisi, U.; Peluso, G. The Mediterranean Diet: An Update of the Clinical Trials. Nutrients 2022, 14, 2956. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Flynn, M.M.; Tierney, A.; Itsiopoulos, C. Is Extra Virgin Olive Oil the Critical Ingredient Driving the Health Benefits of a Mediterranean Diet? A Narrative Review. Nutrients 2023, 15, 2916. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salvesi, C.; Coman, M.M.; Tomás-Barberán, F.A.; Fiorini, D.; Silvi, S. In vitro study of potential prebiotic properties of monovarietal extra virgin olive oils. Int. J. Food Sci. Nutr. 2024, 75, 45–57. [Google Scholar] [CrossRef] [PubMed]
- De Santis, S.; Crupi, P.; Piacente, L.; Mestice, A.; Colabufo, N.A.; Amodio, L.; Pontrelli, P.; Gesualdo, L.; Moschetta, A.; Clodoveo, M.L.; et al. Extra virgin olive oil extract rich in secoiridoids induces an anti-inflammatory profile in peripheral blood mononuclear cells from obese children. Front. Nutr. 2022, 9, 1017090. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alkhalifa, A.E.; Al-Ghraiybah, N.F.; Kaddoumi, A. Extra-Virgin Olive Oil in Alzheimer’s Disease: A Comprehensive Review of Cellular, Animal, and Clinical Studies. Int. J. Mol. Sci. 2024, 25, 1914. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ryu, K.W.; Fung, T.S.; Baker, D.C.; Saoi, M.; Park, J.; Febres-Aldana, C.A.; Aly, R.G.; Cui, R.; Sharma, A.; Fu, Y.; et al. Cellular ATP demand creates metabolically distinct subpopulations of mitochondria. Nature 2024, 635, 746–754. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brands, M.; Verhoeven, A.J.; Serlie, M.J. Role of mitochondrial function in insulin resistance. Adv. Exp. Med. Biol. 2012, 942, 215–234. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Sancheti, H.; Liu, Z.; Cadenas, E. Mitochondrial function in ageing: Coordination with signalling and transcriptional pathways. J. Physiol. 2016, 594, 2025–2042. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Radosavljevic, T.; Brankovic, M.; Samardzic, J.; Djuretić, J.; Vukicevic, D.; Vucevic, D.; Jakovljevic, V. Altered Mitochondrial Function in MASLD: Key Features and Promising Therapeutic Approaches. Antioxidants 2024, 13, 906. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kusminski, C.M.; Scherer, P.E. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol. Metab. 2012, 23, 435–443. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blanco-Benítez, M.; Calderón-Fernández, A.; Canales-Cortés, S.; Alegre-Cortés, E.; Uribe-Carretero, E.; Paredes-Barquero, M.; Gimenez-Bejarano, A.; Duque González, G.; Gómez-Suaga, P.; Ortega-Vidal, J.; et al. Biological effects of olive oil phenolic compounds on mitochondria. Mol. Cell Oncol. 2022, 9, 2044263. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Itsiopoulos, C.; Mayr, H.L.; Thomas, C.J. The anti-inflammatory effects of a Mediterranean diet: A review. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Effects of the Mediterranean Diet on Health and Gut Microbiota. Nutrients 2023, 15, 2150. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Farhan, N.; Al-Maleki, A.R.; Muhamad Sarih, N.; Yahya, R.; Shebl, M. Therapeutic importance of chemical compounds in extra virgin olive oil and their relationship to biological indicators: A narrative review and literature update. Food Biosci. 2023, 52, 102372. [Google Scholar] [CrossRef]
- Rivero-Pino, F.; Millan-Linares, M.C.; Villanueva-Lazo, A.; Fernandez-Prior, Á.; Montserrat-de-la-Paz, S. In vivo evidences of the health-promoting properties of bioactive compounds obtained from olive by-products and their use as food ingredient. Crit. Rev. Food Sci. Nutr. 2024, 64, 8728–8740. [Google Scholar] [CrossRef] [PubMed]
- López-Bascón, M.A.; Moscoso-Ruiz, I.; Quirantes-Piné, R.; Del Pino-García, R.; López-Gámez, G.; Justicia-Rueda, A.; Verardo, V.; Quiles, J.L. Characterization of Phenolic Compounds in Extra Virgin Olive Oil from Granada (Spain) and Evaluation of Its Neuroprotective Action. Int. J. Mol. Sci. 2024, 25, 4878. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cuffaro, D.; Bertini, S.; Macchia, M.; Digiacomo, M. Enhanced Nutraceutical Properties of Extra Virgin Olive Oil Extract by Olive Leaf Enrichment. Nutrients 2023, 15, 1073. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maestrello, V.; Solovyev, P.; Bontempo, L.; Mannina, L.; Camin, F. Nuclear magnetic resonance spectroscopy in extra virgin olive oil authentication. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4056–4075. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Santis, S.; Clodoveo, M.L.; Corbo, F. Correlation between Chemical Characterization and Biological Activity: An Urgent Need for Human Studies Using Extra Virgin Olive Oil. Antioxidants 2022, 11, 258. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kiritsakis, A.; Keceli, T.M. Extra Virgin Olive Oil Composition and its Bioactive Phenolic Compounds. Nov. Tech. Nutr. Food Sci. 2023, 7, 654–657. [Google Scholar] [CrossRef]
- Mechi, D.; Baccouri, B.; Martín-Vertedor, D.; Abaza, L. Bioavailability of Phenolic Compounds in Californian-Style Table Olives with Tunisian Aqueous Olive Leaf Extracts. Molecules 2023, 28, 707. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de la Torre, R.; Fitó, M.; Covas, M.I. Chapter 16—The Bioavailability of Olive Oil Phenolic Compounds and Their Bioactive Effects in Humans, 2nd ed.; Academic Press: San Diego, CA, USA, 2021. [Google Scholar]
- Bellumori, M.; Cecchi, L.; Innocenti, M.; Clodoveo, M.L.; Corbo, F.; Mulinacci, N. The EFSA Health Claim on Olive Oil Polyphenols: Acid Hydrolysis Validation and Total Hydroxytyrosol and Tyrosol Determination in Italian Virgin Olive Oils. Molecules 2019, 24, 2179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Catinella, G.; Donzella, S.; Borgonovo, G.; Dallavalle, S.; Contente, M.L.; Pinto, A. Efficient 2-Step Enzymatic Cascade for the Bioconversion of Oleuropein into Hydroxytyrosol. Antioxidants 2022, 11, 260. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Varela-Lopez, A.; Pérez-López, M.P.; Ramirez-Tortosa, C.L.; Battino, M.; Granados-Principal, S.; Ramirez-Tortosa, M.D.C.; Ochoa, J.J.; Vera-Ramirez, L.; Giampieri, F.; Quiles, J.L. Gene pathways associated with mitochondrial function, oxidative stress and telomere length are differentially expressed in the liver of rats fed lifelong on virgin olive, sunflower or fish oils. J. Nutr. Biochem. 2018, 52, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, R.; Arroyo, L.; Luaces, P.; Sanz, C.; Pérez, A.G. Olive Polyphenol Oxidase Gene Family. Int. J. Mol. Sci. 2023, 24, 3233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shademan, B.; Avci, C.B.; Karamad, V.; Soureh, G.J.; Olia, J.B.H.; Esmaily, F.; Nourazarian, A.; Nikanfar, M. The Role of Mitochondrial Biogenesis in Ischemic Stroke. J. Integr. Neurosci. 2023, 22, 88. [Google Scholar] [CrossRef] [PubMed]
- Popov, L.D. Mitochondrial biogenesis: An update. J. Cell Mol. Med. 2020, 24, 4892–4899. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khalil, M.; Shanmugam, H.; Abdallah, H.; John Britto, J.S.; Galerati, I.; Gómez-Ambrosi, J.; Frühbeck, G.; Portincasa, P. The Potential of the Mediterranean Diet to Improve Mitochondrial Function in Experimental Models of Obesity and Metabolic Syndrome. Nutrients 2022, 14, 3112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hao, J.; Shen, W.; Yu, G.; Jia, H.; Li, X.; Feng, Z.; Wang, Y.; Weber, P.; Wertz, K.; Sharman, E.; et al. Hydroxytyrosol promotes mitochondrial biogenesis and mitochondrial function in 3T3-L1 adipocytes. J. Nutr. Biochem. 2010, 21, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Grewal, R.; Reutzel, M.; Dilberger, B.; Hein, H.; Zotzel, J.; Marx, S.; Tretzel, J.; Sarafeddinov, A.; Fuchs, C.; Eckert, G.P. Purified oleocanthal and ligstroside protect against mitochondrial dysfunction in models of early Alzheimer’s disease and brain ageing. Exp. Neurol. 2020, 328, 113248. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.Z.; Li, L.; Espe, M.; Lu, K.L.; Rahimnejad, S. Hydroxytyrosol Attenuates Hepatic Fat Accumulation via Activating Mitochondrial Biogenesis and Autophagy through the AMPK Pathway. J. Agric. Food Chem. 2020, 68, 9377–9386. [Google Scholar] [CrossRef] [PubMed]
- Bucciantini, M.; Leri, M.; Nardiello, P.; Casamenti, F.; Stefani, M. Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants 2021, 10, 1044. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zou, X.; Zeng, M.; Zheng, Y.; Zheng, A.; Cui, L.; Cao, W.; Wang, X.; Liu, J.; Xu, J.; Feng, Z. Comparative Study of Hydroxytyrosol Acetate and Hydroxytyrosol in Activating Phase II Enzymes. Antioxidants 2023, 12, 1834. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Serreli, G.; Deiana, M. Extra Virgin Olive Oil Polyphenols: Modulation of Cellular Pathways Related to Oxidant Species and Inflammation in Aging. Cells 2020, 9, 478. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Siervo, M.; Shannon, O.M.; Llewellyn, D.J.; Stephan, B.C.; Fontana, L. Mediterranean diet and cognitive function: From methodology to mechanisms of action. Free Radic. Biol. Med. 2021, 176, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Muroi, H.; Hori, K.; Tokutake, Y.; Hakamata, Y.; Kawabata, F.; Toyomizu, M.; Kikusato, M. Oleuropein suppresses mitochondrial reactive oxygen species generation possibly via an activation of transient receptor potential V1 and sirtuin-1 in cultured chicken muscle cells. Anim. Sci. J. 2021, 93, e13677. [Google Scholar] [CrossRef] [PubMed]
- Harrington, J.S.; Ryter, S.W.; Plataki, M.; Price, D.R.; Choi, A.M.K. Mitochondria in health, disease, and aging. Physiol. Rev. 2023, 103, 2349–2422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sung, H.J.; Ma, W.; Wang, P.Y.; Hynes, J.; O’Riordan, T.C.; Combs, C.A.; McCoy, J.P., Jr.; Bunz, F.; Kang, J.G.; Hwang, P.M. Mitochondrial respiration protects against oxygen-associated DNA damage. Nat. Commun. 2010, 1, 5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bronnikov, G.E.; Kulagina, T.P.; Aripovskii, A.V.; Kramarova, L.I. Correction of Mitochondrial Enzyme Activities in the Skeletal Muscles of Old Rats in Response to Addition of Olive Oil to the Ration. Bull. Exp. Biol. Med. 2015, 159, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.; Yan, J.; Mai, K.; Ai, Q. Dietary Olive and Perilla Oils Affect Liver Mitochondrial DNA Methylation in Large Yellow Croakers. J. Nutr. 2015, 145, 2479–2485. [Google Scholar] [CrossRef] [PubMed]
- Fernández del Río, L.; Gutiérrez-Casado, E.; Varela-López, A.; Villalba, J.M. Olive Oil and the Hallmarks of Aging. Molecules 2016, 21, 163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yeo, D.; Zhang, T.; Liu, T.; Zhang, Y.; Kang, C.; Ji, L.L. Protective effects of extra virgin olive oil and exercise training on rat skeletal muscle against high-fat diet feeding. J. Nutr. Biochem. 2022, 100, 108902. [Google Scholar] [CrossRef] [PubMed]
- Micheli, L.; Bertini, L.; Bonato, A.; Villanova, N.; Caruso, C.; Caruso, M.; Bernini, R.; Tirone, F. Role of Hydroxytyrosol and Oleuropein in the Prevention of Aging and Related Disorders: Focus on Neurodegeneration, Skeletal Muscle Dysfunction and Gut Microbiota. Nutrients 2023, 15, 1767. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reutzel, M.; Grewal, R.; Silaidos, C.; Zotzel, J.; Marx, S.; Tretzel, J.; Eckert, G.P. Effects of Long-Term Treatment with a Blend of Highly Purified Olive Secoiridoids on Cognition and Brain ATP Levels in Aged NMRI Mice. Oxid. Med. Cell Longev. 2018, 2018, 4070935. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Pablos, R.M.; Espinosa-Oliva, A.M.; Hornedo-Ortega, R.; Cano, M.; Arguelles, S. Hydroxytyrosol protects from aging process via AMPK and autophagy; a review of its effects on cancer, metabolic syndrome, osteoporosis, immune-mediated and neurodegenerative diseases. Pharmacol. Res. 2019, 143, 58–72. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Guo, L.; Zhang, Y.; Qiao, C.; Wang, Y.; Li, J.; Wang, M.; Xing, J.; Li, F.; Ji, L.; et al. MFN2-mediated mitochondrial fusion facilitates acute hypobaric hypoxia-induced cardiac dysfunction by increasing glucose catabolism and ROS production. Biochim. Biophys. Acta Gen. Subj. 2023, 1867, 130413. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, I.F.; Migliaccio, V.; Lepretti, M.; Paolella, G.; Di Gregorio, I.; Caputo, I.; Ribeiro, E.B.; Lionetti, L. Dose- and Time-Dependent Effects of Oleate on Mitochondrial Fusion/Fission Proteins and Cell Viability in HepG2 Cells: Comparison with Palmitate Effects. Int. J. Mol. Sci. 2021, 22, 9812. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Butt, M.S.; Tariq, U.; Iahtisham-Ul-Haq Naz, A.; Rizwan, M. Neuroprotective effects of oleuropein: Recent developments and contemporary research. J. Food Biochem. 2021, 45, e13967. [Google Scholar] [CrossRef] [PubMed]
- Oyewole, A.O.; Birch-Machin, M.A. Mitochondria-targeted antioxidants. FASEB J. 2015, 29, 4766–4771. [Google Scholar] [CrossRef]
- Duval, C.; Augé, N.; Frisach, M.F.; Casteilla, L.; Salvayre, R.; Nègre-Salvayre, A. Mitochondrial oxidative stress is modulated by oleic acid via an epidermal growth factor receptor-dependent activation of glutathione peroxidase. Biochem. J. 2002, 367 Pt 3, 889–894. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Torić, J.; Karković Marković, A.; Mustać, S.; Pulitika, A.; Jakobušić Brala, C.; Pilepić, V. Proton-Coupled Electron Transfer and Hydrogen Tunneling in Olive Oil Phenol Reactions. Int. J. Mol. Sci. 2024, 25, 6341. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boronat, A.; Serreli, G.; Rodríguez-Morató, J.; Deiana, M.; de la Torre, R. Olive Oil Phenolic Compounds’ Activity against Age-Associated Cognitive Decline: Clinical and Experimental Evidence. Antioxidants 2023, 12, 1472. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, J.; You, G.; Ruan, L.; Lu, Y.; Wen, B.; Wu, S. Antioxidant Behavior Affected by Polarity in the Olive Oil: Experimental and Molecular Simulation Investigations. ACS Omega 2021, 6, 7119–7126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giusti, L.; Angeloni, C.; Barbalace, M.C.; Lacerenza, S.; Ciregia, F.; Ronci, M.; Urbani, A.; Manera, C.; Digiacomo, M.; Macchia, M.; et al. A Proteomic Approach to Uncover Neuroprotective Mechanisms of Oleocanthal against Oxidative Stress. Int. J. Mol. Sci. 2018, 19, 2329. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferreira, C.; Vieira, P.; Sá, H.; Malva, J.; Castelo-Branco, M.; Reis, F.; Viana, S. Polyphenols: Immunonutrients tipping the balance of immunometabolism in chronic diseases. Front. Immunol. 2024, 15, 1360065. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lama, A.; Pirozzi, C.; Mollica, M.P.; Trinchese, G.; Di Guida, F.; Cavaliere, G.; Calignano, A.; Mattace Raso, G.; Berni Canani, R.; Meli, R. Polyphenol-rich virgin olive oil reduces insulin resistance and liver inflammation and improves mitochondrial dysfunction in high-fat diet fed rats. Mol. Nutr. Food Res. 2017, 61, 1600418. [Google Scholar] [CrossRef] [PubMed]
- Bucciantini, M.; Leri, M.; Scuto, M.; Ontario, M.; Trovato Salinaro, A.; Calabrese, E.J.; Calabrese, V.; Stefani, M. Xenohormesis underlyes the anti-aging and healthy properties of olive polyphenols. Mech. Ageing Dev. 2022, 202, 111620. [Google Scholar] [CrossRef] [PubMed]
- Torres-Sánchez, E.D.; Pacheco-Moisés, F.P.; Macias-Islas, M.A.; Morales-Sánchez, E.W.; Ramírez-Ramírez, V.; Celis de la Rosa, A.J.; Cid-Hernández, M.; Sorto-Gómez, T.E.; Ortiz, G.G. Effect of fish and olive oil on mitochondrial ATPase activity and membrane fluidity in patients with relapsing-remitting multiple sclerosis treated with interferon beta 1-b. Nutr. Hosp. 2018, 35, 162–168, In English. [Google Scholar] [CrossRef] [PubMed]
- Mirsanei, Z.; Heidari, N.; Hazrati, A.; Asemani, Y.; Niknam, B.; Yousefi, Z.; Jafari, R. Oleuropein reduces LPS-induced inflammation via stimulating M2 macrophage polarization. Biomed. Pharmacother. 2023, 163, 114857. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; Pender, C.L.; Bar-Ziv, R.; Zhang, H.; Wickham, K.; Willey, E.; Durieux, J.; Ahmad, Q.; Dillin, A. Mitochondria as Cellular and Organismal Signaling Hubs. Annu. Rev. Cell Dev. Biol. 2022, 38, 179–218. [Google Scholar] [CrossRef] [PubMed]
- Boardman, N.T.; Trani, G.; Scalabrin, M.; Romanello, V.; Wüst, R.C.I. Intracellular to Interorgan Mitochondrial Communication in Striated Muscle in Health and Disease. Endocr. Rev. 2023, 44, 668–692. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burtscher, J.; Soltany, A.; Visavadiya, N.P.; Burtscher, M.; Millet, G.P.; Khoramipour, K.; Khamoui, A.V. Mitochondrial stress and mitokines in aging. Aging Cell 2023, 22, e13770. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- San-Millán, I. The Key Role of Mitochondrial Function in Health and Disease. Antioxidants 2023, 12, 782. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khan, T.; Waseem, R.; Zehra, Z.; Aiman, A.; Bhardwaj, P.; Ansari, J.; Hassan, M.I.; Islam, A. Mitochondrial Dysfunction: Pathophysiology and Mitochondria-Targeted Drug Delivery Approaches. Pharmaceutics 2022, 14, 2657. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, T.H.; Koh, K.Y.; Lin, K.M.; Chou, C.K. Mitochondrial Dysfunction as an Underlying Cause of Skeletal Muscle Disorders. Int. J. Mol. Sci. 2022, 23, 12926. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al Ojaimi, M.; Salah, A.; El-Hattab, A.W. Mitochondrial Fission and Fusion: Molecular Mechanisms, Biological Functions, and Related Disorders. Membranes 2022, 12, 893. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arauna, D.; Furrianca, M.; Espinosa-Parrilla, Y.; Fuentes, E.; Alarcón, M.; Palomo, I. Natural Bioactive Compounds As Protectors Of Mitochondrial Dysfunction In Cardiovascular Diseases And Aging. Molecules 2019, 24, 4259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manolis, A.S.; Manolis, A.A.; Manolis, T.A.; Apostolaki, N.E.; Apostolopoulos, E.J.; Melita, H.; Katsiki, N. Mitochondrial dysfunction in cardiovascular disease: Current status of translational research/clinical and therapeutic implications. Med. Res. Rev. 2021, 41, 275–313. [Google Scholar] [CrossRef] [PubMed]
- Siasos, G.; Tsigkou, V.; Kosmopoulos, M.; Theodosiadis, D.; Simantiris, S.; Tagkou, N.M.; Tsimpiktsioglou, A.; Stampouloglou, P.K.; Oikonomou, E.; Mourouzis, K.; et al. Mitochondria and cardiovascular diseases-from pathophysiology to treatment. Ann. Transl. Med. 2018, 6, 256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liesa, M.; Shirihai, O.S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013, 17, 491–506. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chistiakov, D.A.; Shkurat, T.P.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. The role of mitochondrial dysfunction in cardiovascular disease: A brief review. Ann. Med. 2018, 50, 121–127. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Huang, L.; Sun, K.; Li, J.; Han, S.; Gao, X.; Wang, Q.Q.; Yang, S.; Sun, W.; Gao, H. Oleuropein alleviates myocardial ischemia-reperfusion injury by suppressing oxidative stress and excessive autophagy via TLR4/MAPK signaling pathway. Chin. Med. 2024, 19, 59. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Christodoulou, A.; Nikolaou, P.E.; Symeonidi, L.; Katogiannis, K.; Pechlivani, L.; Nikou, T.; Varela, A.; Chania, C.; Zerikiotis, S.; Efentakis, P.; et al. Cardioprotective potential of oleuropein, hydroxytyrosol, oleocanthal and their combination: Unravelling complementary effects on acute myocardial infarction and metabolic syndrome. Redox Biol. 2024, 76, 103311. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ikonomidis, I.; Katogiannis, K.; Chania, C.; Iakovis, N.; Tsoumani, M.; Christodoulou, A.; Brinia, E.; Pavlidis, G.; Thymis, J.; Tsilivarakis, D.; et al. Association of hydroxytyrosol enriched olive oil with vascular function in chronic coronary disease. Eur. J. Clin. Investig. 2023, 53, e13983. [Google Scholar] [CrossRef] [PubMed]
- Katsiki, N.; Pérez-Martínez, P.; Lopez-Miranda, J. Olive Oil Intake and Cardiovascular Disease Prevention: “Seek and You Shall Find”. Curr. Cardiol. Rep. 2021, 23, 64. [Google Scholar] [CrossRef] [PubMed]
- Mataix, J.; Ochoa, J.J.; Quiles, J.L. Olive oil and mitochondrial oxidative stress. Int. J. Vitam. Nutr. Res. 2006, 76, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Rodríguez-Pérez, M.; Gómez-Torres, Ó.; Pintado-Losa, C.; Burgos-Ramos, E. Hydroxytyrosol improves mitochondrial energetics of a cellular model of Alzheimer’s disease. Nutr. Neurosci. 2022, 25, 990–1000. [Google Scholar] [CrossRef] [PubMed]
- Khalatbary, A.R. Olive oil phenols and neuroprotection. Nutr. Neurosci. 2013, 16, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Kaddoumi, A.; Denney, T.S., Jr.; Deshpande, G.; Robinson, J.L.; Beyers, R.J.; Redden, D.T.; Praticò, D.; Kyriakides, T.C.; Lu, B.; Kirby, A.N.; et al. Extra-Virgin Olive Oil Enhances the Blood-Brain Barrier Function in Mild Cognitive Impairment: A Randomized Controlled Trial. Nutrients 2022, 14, 5102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caplliure-Llopis, J.; Peralta-Chamba, T.; Carrera-Juliá, S.; Cuerda-Ballester, M.; Drehmer-Rieger, E.; López-Rodriguez, M.M.; de la Rubia Ortí, J.E. Therapeutic alternative of the ketogenic Mediterranean diet to improve mitochondrial activity in Amyotrophic Lateral Sclerosis (ALS): A Comprehensive Review. Food Sci. Nutr. 2019, 8, 23–35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koh, Y.C.; Ho, C.T.; Pan, M.H. The Role of Mitochondria in Phytochemically Mediated Disease Amelioration. J. Agric. Food Chem. 2023, 71, 6775–6788. [Google Scholar] [CrossRef] [PubMed]
- Terracina, S.; Petrella, C.; Francati, S.; Lucarelli, M.; Barbato, C.; Minni, A.; Ralli, M.; Greco, A.; Tarani, L.; Fiore, M.; et al. Antioxidant Intervention to Improve Cognition in the Aging Brain: The Example of Hydroxytyrosol and Resveratrol. Int. J. Mol. Sci. 2022, 23, 15674. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sánchez-Calvo, B.; Cassina, A.; Mastrogiovanni, M.; Santos, M.; Trias, E.; Kelley, E.E.; Rubbo, H.; Trostchansky, A. Olive oil-derived nitro-fatty acids: Protection of mitochondrial function in non-alcoholic fatty liver disease. J. Nutr. Biochem. 2021, 94, 108646. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dong, Y.; Yu, M.; Wu, Y.; Xia, T.; Wang, L.; Song, K.; Zhang, C.; Lu, K.; Rahimnejad, S. Hydroxytyrosol Promotes the Mitochondrial Function through Activating Mitophagy. Antioxidants 2022, 11, 893. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heden, T.D.; Chen, C.; Leland, G.; Mashek, M.M.; Najt, C.P.; Shang, L.; Chow, L.S.; Mashek, D.G. Isolated and combined impact of dietary olive oil and exercise on markers of health and energy metabolism in female mice. J. Nutr. Biochem. 2022, 107, 109040. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deng, X.; Elam, M.B.; Wilcox, H.G.; Cagen, L.M.; Park, E.A.; Raghow, R.; Patel, D.; Kumar, P.; Sheybani, A.; Russell, J.C. Dietary olive oil and menhaden oil mitigate induction of lipogenesis in hyperinsulinemic corpulent JCR:LA-cp rats: Microarray analysis of lipid-related gene expression. Endocrinology 2004, 145, 5847–5861. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Xu, J.; Zou, X.; Li, Y.; Chen, C.; Zheng, A.; Li, H.; Li, H.; Szeto, I.M.; Shi, Y.; et al. Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice. Free Radic. Biol. Med. 2014, 67, 396–407. [Google Scholar] [CrossRef] [PubMed]
- Baraldi, F.G.; Vicentini, T.M.; Teodoro, B.G.; Dalalio, F.M.; Dechandt, C.R.; Prado, I.M.; Curti, C.; Cardoso, F.C.; Uyemura, S.A.; Alberici, L.C. The combination of conjugated linoleic acid (CLA) and extra virgin olive oil increases mitochondrial and body metabolism and prevents CLA-associated insulin resistance and liver hypertrophy in C57Bl/6 mice. J. Nutr. Biochem. 2016, 28, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Mostafazadeh, P.; Jafari, M.J.; Mojebi, M.R.; Nemati-Vakilabad, R.; Mirzaei, A. Assessing the relationship between nutrition literacy and eating behaviors among nursing students: A cross-sectional study. BMC Public Health 2024, 24, 18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sanlier, N.; Kocaay, F.; Kocabas, S.; Ayyildiz, P. The Effect of Sociodemographic and Anthropometric Variables on Nutritional Knowledge and Nutrition Literacy. Foods 2024, 13, 346. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aureli, V.; Rossi, L. Nutrition Knowledge as a Driver of Adherence to the Mediterranean Diet in Italy. Front. Nutr. 2022, 9, 804865. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yurtdaş Depboylu, G.; Kaner, G.; Süer, M.; Kanyılmaz, M.; Alpan, D. Nutrition literacy status and its association with adherence to the Mediterranean diet, anthropometric parameters and lifestyle behaviours among early adolescents. Public Health Nutr. 2023, 26, 2108–2117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mengi Çelik, Ö.; Ekici, E.M.; Yılmaz, S.; Metin, Z.E. Evaluation of the relationship between nutrition literacy, Mediterranean diet compliance, ecological footprint and sustainable environmental attitudes in adolescents. BMC Public Health 2025, 25, 130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qi, Q.; Sun, Q.; Yang, L.; Cui, Y.; Du, J.; Liu, H. High nutrition literacy linked with low frequency of take-out food consumption in chinese college students. BMC Public Health 2023, 23, 1132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abreu, F.; Hernando, A.; Goulão, L.F.; Pinto, A.M.; Branco, A.; Cerqueira, A.; Galvão, C.; Guedes, F.B.; Bronze, M.R.; Viegas, W.; et al. Mediterranean diet adherence and nutritional literacy: An observational cross-sectional study of the reality of university students in a COVID-19 pandemic context. BMJ Nutr. Prev. Health 2023, 6, 221–230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, S.; Fan, X.; Jiang, L.; Liu, T. A cross-sectional study on the moderating effect of self-efficacy on the relationship between sociodemographic variables and nutrition literacy among older adults in rural areas of North Sichuan. Front. Nutr. 2024, 10, 1335008. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mo, G.; Zhu, E.; Guo, X.; Kong, S.; Ma, J. Nutrition literacy level of medical personnel in tertiary hospitals: Evidence from a cross-sectional study. Arch. Public Health 2024, 82, 124. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taleb, S.; Itani, L. Nutrition Literacy among Adolescents and Its Association with Eating Habits and BMI in Tripoli, Lebanon. Diseases 2021, 9, 25. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lai, I.J.; Chang, L.C.; Lee, C.K.; Liao, L.L. Preliminary evaluation of a scenario-based nutrition literacy online programme for college students: A pilot study. Public Health Nutr. 2023, 26, 3190–3201. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naoi, M.; Wu, Y.; Shamoto-Nagai, M.; Maruyama, W. Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure. Int. J. Mol. Sci. 2019, 20, 2451. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Reference | Effects on Mitochondria | Study Type | Year | Intervention |
---|---|---|---|---|
[32] | ↑ Mitochondrial biogenesis, fatty acid oxidation, complexes I-V activity, PPARGC1α expression | In vitro | 2010 | Hydroxytyrosol |
[33] | ↑ Brain ATP levels, ↓ Aβ 1-40 (AD model), ↑ mRNA mitochondrial biogenesis genes | In vitro and in vivo | 2020 | Oleocanthal and Ligstroside |
[34] | ↓ Hepatic fat deposition, ↓ ROS, ↑ p-AMPK, ↑ autophagy genes | In vivo | 2020 | Hydroxytyrosol |
[39] | ↑ AMPK, PGC-1α, intracellular Ca2+ concentration, ↓ mitochondrial ROS | In vitro | 2022 | Oleuropein |
[42] | ↑ Mitochondrial enzyme activity | In vivo | 2015 | EVOO |
[45] | ↑ Muscle cytochrome c, PGC-1α, mitochondrial fusion proteins, ↓ lipid peroxidation | In vivo | 2022 | EVOO + Training |
[47] | ↑ Brain ATP levels | In vivo | 2018 | Purified Olive Secoiridoids |
[50] | ↑ MFN2 (mitochondrial fusion) | In vitro | 2021 | Oleate |
[59] | ↓ Liver inflammation, ↑ fatty acid oxidation, glucose homeostasis, ↓ NAFLD progression | In vivo | 2017 | EVOO |
[61] | ↑ Mitochondrial membrane fluidity, ↓ ATP hydrolysis in RR-MS patients | Controlled Trial | 2018 | EVOO |
[86] | ↑ NO2-FA formation, mitochondrial function, respiratory indexes, complex activity (NAFLD model) | In vivo | 2021 | EVOO + Nitrite |
[87] | ↓ Fat accumulation, oxidative stress, ↑ PINK1-mediated mitophagy | In vivo | 2022 | Hydroxytyrosol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Soto, M.Á.; Carrillo-Fernández, P.; Saez Lancellotti, E.T.; Medina-Jiménez, E.; Mogaburo Alba, J.F.; Catena-Granados, N.; López-Carmona, M.D.; Pérez-Belmonte, L.M.; Prieto Lain, N.; Gómez Hernández, A.I.; et al. Extra Virgin Olive Oil Phenolic Compounds: Modulating Mitochondrial Function and Protecting Against Chronic Diseases—A Narrative Review. Nutrients 2025, 17, 1443. https://doi.org/10.3390/nu17091443
Silva-Soto MÁ, Carrillo-Fernández P, Saez Lancellotti ET, Medina-Jiménez E, Mogaburo Alba JF, Catena-Granados N, López-Carmona MD, Pérez-Belmonte LM, Prieto Lain N, Gómez Hernández AI, et al. Extra Virgin Olive Oil Phenolic Compounds: Modulating Mitochondrial Function and Protecting Against Chronic Diseases—A Narrative Review. Nutrients. 2025; 17(9):1443. https://doi.org/10.3390/nu17091443
Chicago/Turabian StyleSilva-Soto, María Ángeles, Paloma Carrillo-Fernández, Estefanía T. Saez Lancellotti, Elena Medina-Jiménez, Juan Francisco Mogaburo Alba, Nerea Catena-Granados, María Dolores López-Carmona, Luis Miguel Pérez-Belmonte, Nuria Prieto Lain, Ana Isabel Gómez Hernández, and et al. 2025. "Extra Virgin Olive Oil Phenolic Compounds: Modulating Mitochondrial Function and Protecting Against Chronic Diseases—A Narrative Review" Nutrients 17, no. 9: 1443. https://doi.org/10.3390/nu17091443
APA StyleSilva-Soto, M. Á., Carrillo-Fernández, P., Saez Lancellotti, E. T., Medina-Jiménez, E., Mogaburo Alba, J. F., Catena-Granados, N., López-Carmona, M. D., Pérez-Belmonte, L. M., Prieto Lain, N., Gómez Hernández, A. I., Gómez-Huelgas, R., & Bernal-López, M.-R. (2025). Extra Virgin Olive Oil Phenolic Compounds: Modulating Mitochondrial Function and Protecting Against Chronic Diseases—A Narrative Review. Nutrients, 17(9), 1443. https://doi.org/10.3390/nu17091443