Effects of Protein Supplementation During High-Intensity Functional Training on Physical Performance in Recreationally Trained Males and Females: A Randomized Controlled Trial
Highlights
- Short-term (six-week) high-intensity functional training (HIFT) improved upper-body strength and core muscle endurance in recreationally trained males and females.
- Exercise capacity was enhanced during the same period.
- Increasing daily protein intake from 1.0 to 1.6 g/kg through supplementation with either egg white or whey protein did not enhance these positive adaptations to HIFT.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Participants
2.3. Supplementation
2.4. Nutritional Control
2.5. Monitoring of Menstrual Status
2.6. Exercise Protocol
2.7. Outcome Measures
2.8. Training Variables During HIFT Sessions
2.9. Maximal Dynamic Strength of Shoulder Muscles
2.10. Force–Velocity Relationship of Shoulder Muscles
2.11. Grip Strength
2.12. Strength Endurance of Core Muscles
2.13. Force–Velocity Relationship of Knee Extensors and Flexors
2.14. Strength Endurance of Knee Extensors and Flexors
2.15. Aerobic Capacity
2.16. Adverse Events
2.17. Handling of Missing Data
2.18. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Examination of Confounding Variables
3.3. Menstrual Status
3.4. Training Variables of HIFT Sessions
3.5. Performance Variables
3.6. Order Effect
- The duration of each training session (in min:s) was 42:46 ± 6:43 in the first intervention period, 41:58 ± 5:56 in the second period, and 47:24 ± 10:03 in the third period (p = 0.002, ES = 0.315).
- The average HR in each training session (in bpm) decreased from 141 ± 11 in the first period to 140 ± 13 in the second period to 135 ± 14 in the third period (p = 0.026, ES = 0.166).
- The same pattern was depicted in the average HR as a percentage of HRmax, which decreased from 76 ± 6 in the first period to 75 ± 8 in the second period to 73 ± 8 in the third period (p = 0.040, ES = 0.149).
- The time expended in HR zone 2 during each training session (in min:s) increased from 07:25 ± 04:38 in the first period to 07:45 ± 4:24 in the second period to 10:13 ± 6:00 in the third period (p = 0.028, ES = 0.192).
- The time expended in HR zone 3 (in min:s) was 12:13 ± 04:03 in the first period, 10:02 ± 04:26 in the second period, and 12:28 ± 6:43 in the third period (p = 0.040, ES = 0.149).
- The time expended in HR zone 4, as a percentage of total exercise time, decreased from 28 ± 12 in the first period and 28 ± 11 in the second period to 22 ± 13 in the third period (p = 0.031, ES = 0.212).
- 1 RM of shoulder press (in kg) increased from 54.4 ± 19.8 kg the first period to 56.8 ± 20.3 in the second period to 57.4 ± 20.6 in the third period (p < 0.001, ES = 0.371).
- The strength endurance of core muscles (in sit-ups/min) increased from 38 ± 6 in the first period to 40 ± 6 in the second period to 42 ± 6 in the third period (p < 0.001, ES = 0.638).
3.7. Correlations Between Study Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falk Neto, J.H.; Kennedy, M.D. The Multimodal Nature of High-Intensity Functional Training: Potential Applications to Improve Sport Performance. Sports 2019, 7, 33. [Google Scholar] [CrossRef]
- Feito, Y.; Heinrich, K.M.; Butcher, S.J.; Poston, W.S.C. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports 2018, 6, 76. [Google Scholar] [CrossRef]
- Feito, Y.; Brown, C.; Olmos, A. A Content Analysis of the High-Intensity Functional Training Literature: A Look at the Past and Directions for the Future. Hum. Mov. 2019, 20, 1–15. [Google Scholar] [CrossRef]
- Crawford, D.A.; Drake, N.B.; Carper, M.J.; DeBlauw, J.; Heinrich, K.M. Are Changes in Physical Work Capacity Induced by High-Intensity Functional Training Related to Changes in Associated Physiologic Measures? Sports 2018, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Kliszczewicz, B.; McKenzie, M.; Nickerson, B. Physiological Adaptation Following Four-Weeks of High-Intensity Functional Training. Vojnosanit. Pregl. 2019, 76, 272–277. [Google Scholar] [CrossRef]
- Heinrich, K.M.; Becker, C.; Carlisle, T.; Gilmore, K.; Hauser, J.; Frye, J.; Harms, C.A. High-Intensity Functional Training Improves Functional Movement and Body Composition among Cancer Survivors: A Pilot Study. Eur. J. Cancer Care 2015, 24, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Soh, K.G.; Samsudin, S.; Deng, N.; Liu, X.; Zhao, Y.; Akbar, S. Effects of High-Intensity Functional Training on Physical Fitness and Sport-Specific Performance among the Athletes: A Systematic Review with Meta-Analysis. PLoS ONE 2023, 18, e0295531. [Google Scholar] [CrossRef]
- Brisebois, M.; Kramer, S.; Lindsay, K.G.; Wu, C.-T.; Kamla, J. Dietary Practices and Supplement Use among CrossFit® Participants. J. Int. Soc. Sports Nutr. 2022, 19, 316–335. [Google Scholar] [CrossRef]
- dos Santos Quaresma, M.V.L.; Marques, C.G.; Magalhães, A.C.O.; Cirillo, L.; Ciudi, R.B.; Oliveira, L.S.; dos Santos, R.V.T.; Nakamoto, F.P. Prevalence of Dietary Supplement Consumption among CrossFit Practitioners. Nutrire 2023, 48, 9. [Google Scholar] [CrossRef]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A Systematic Review, Meta-Analysis and Meta-Regression of the Effect of Protein Supplementation on Resistance Training-Induced Gains in Muscle Mass and Strength in Healthy Adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef]
- Nunes, E.A.; Colenso-Semple, L.; McKellar, S.R.; Yau, T.; Ali, M.U.; Fitzpatrick-Lewis, D.; Sherifali, D.; Gaudichon, C.; Tomé, D.; Atherton, P.J.; et al. Systematic Review and Meta-analysis of Protein Intake to Support Muscle Mass and Function in Healthy Adults. J. Cachexia Sarcopenia Muscle 2022, 13, 795–810. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, R.; Hooshmand Moghadam, B.; Jo, E.; Tinsley, G.M.; Stratton, M.T.; Ashtary-Larky, D.; Eskandari, M.; Wong, A. Comparison of Whole Egg v. Egg White Ingestion during 12 Weeks of Resistance Training on Skeletal Muscle Regulatory Markers in Resistance-Trained Men. Br. J. Nutr. 2020, 124, 1035–1043. [Google Scholar] [CrossRef]
- Bagheri, R.; Moghadam, B.H.; Ashtary-Larky, D.; Forbes, S.C.; Candow, D.G.; Galpin, A.J.; Eskandari, M.; Kreider, R.B.; Wong, A. Whole Egg Vs. Egg White Ingestion During 12 Weeks of Resistance Training in Trained Young Males: A Randomized Controlled Trial. J. Strength. Cond. Res. 2021, 35, 411–419. [Google Scholar] [CrossRef]
- Hida, A.; Hasegawa, Y.; Mekata, Y.; Usuda, M.; Masuda, Y.; Kawano, H.; Kawano, Y. Effects of Egg White Protein Supplementation on Muscle Strength and Serum Free Amino Acid Concentrations. Nutrients 2012, 4, 1504–1517. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988; ISBN 0-8058-0283-5. [Google Scholar]
- Schoenfeld, B.J.; Aragon, A.A.; Krieger, J.W. The Effect of Protein Timing on Muscle Strength and Hypertrophy: A Meta-Analysis. J. Int. Soc. Sports Nutr. 2013, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Training Load Pro|Polar Global. Available online: https://www.polar.com/img/static/whitepapers/pdf/polar-training-load-pro-white-paper.pdf (accessed on 22 April 2025).
- Haff, G.; Triplett, N.T.; National Strength & Conditioning Association. Essentials of Strength Training and Conditioning, 4th ed.; Human Kinetics: Champaign, IL, USA, 2016; ISBN 978-1-4925-0162-6. [Google Scholar]
- Bell, M.L.; Fiero, M.; Horton, N.J.; Hsu, C.-H. Handling Missing Data in RCTs; a Review of the Top Medical Journals. BMC Med. Res. Methodol. 2014, 14, 118. [Google Scholar] [CrossRef]
- Gupta, S.K. Intention-to-Treat Concept: A Review. Perspect. Clin. Res. 2011, 2, 109–112. [Google Scholar] [CrossRef]
- Sabin, C.A.; Lepri, A.C.; Phillips, A.N. A Practical Guide to Applying the Intention-to-Treat Principle to Clinical Trials in HIV Infection. HIV Clin. Trials 2000, 1, 31–38. [Google Scholar] [CrossRef]
- Posnakidis, G.; Aphamis, G.; Giannaki, C.D.; Mougios, V.; Aristotelous, P.; Samoutis, G.; Bogdanis, G.C. High-Intensity Functional Training Improves Cardiorespiratory Fitness and Neuromuscular Performance Without Inflammation or Muscle Damage. J. Strength. Cond. Res. 2022, 36, 615–623. [Google Scholar] [CrossRef]
- Sobrero, G.; Arnett, S.; Schafer, M.; Stone, W.; Tolbert, T.A.; Salyer-Funk, A.; Crandall, J.; Farley, L.B.; Brown, J.; Lyons, S.; et al. A Comparison of High Intensity Functional Training and Circuit Training on Health and Performance Variables in Women: A Pilot Study. Women Sport. Phys. Act. J. 2017, 25, 1–10. [Google Scholar] [CrossRef]
- Outlaw, J.J.; Wilborn, C.D.; Smith-Ryan, A.E.; Hayward, S.E.; Urbina, S.L.; Taylor, L.W.; Foster, C.A. Effects of a Pre-and Post-Workout Protein-Carbohydrate Supplement in Trained Crossfit Individuals. SpringerPlus 2014, 3, 369. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.; Knapp, K.; Lackie, A.; Lewry, C.; Horvey, K.; Benko, C.; Trinh, J.; Butcher, S. Multimodal High-Intensity Interval Training Increases Muscle Function and Metabolic Performance in Females. Appl. Physiol. Nutr. Metab. 2015, 40, 1157–1162. [Google Scholar] [CrossRef]
- Posnakidis, G.; Giannaki, C.D.; Mougios, V.; Pantzaris, M.; Patrikios, I.; Calder, P.C.; Sari, D.K.; Bogdanis, G.C.; Aphamis, G. Effects of Supplementation with Omega-3 and Omega-6 Polyunsaturated Fatty Acids and Antioxidant Vitamins, Combined with High-Intensity Functional Training, on Exercise Performance and Body Composition: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024, 16, 2914. [Google Scholar] [CrossRef]
- Brin, H.N.; Sigmund, B.G.; Dicks, N.D.; Deshaw, K.J.; Walch, T.J.; Carper, M.J.; Barry, A.M. The Effects of High-Intensity Functional Training on the Perceptions of Exercise in Middle-Aged Females: A Pilot Study. Int. J. Exerc. Sci. 2024, 17, 1392–1405. [Google Scholar] [CrossRef] [PubMed]
- Brisebois, M.F.; Rigby, B.R.; Nichols, D.L. Physiological and Fitness Adaptations after Eight Weeks of High-Intensity Functional Training in Physically Inactive Adults. Sports 2018, 6, 146. [Google Scholar] [CrossRef]
- Amir Hossein Saffar, K.Q.; Mohammad Yari, S.; Karami, E. The Comparison of Eight Weeks of High-Intensity Functional Training with High-Intensity Interval Training on Some Factors of Physical Fitness, Time to Exhaustion, and Lactate Levels in Officer Students. J. Mil. Med. 2024, 26, 2192–2204. [Google Scholar] [CrossRef]
- Chizewski, A.; Box, A.; Kesler, R.M.; Petruzzello, S.J. High Intensity Functional Training (HIFT) Improves Fitness in Recruit Firefighters. Int. J. Environ. Res. Public Health 2021, 18, 13400. [Google Scholar] [CrossRef] [PubMed]
- Posnakidis, G.; Aphamis, G.; Giannaki, C.D.; Mougios, V.; Bogdanis, G.C. The Addition of High-Load Resistance Exercises to a High-Intensity Functional Training Program Elicits Further Improvements in Body Composition and Strength: A Randomized Trial. Sports 2022, 10, 207. [Google Scholar] [CrossRef]
- Cosgrove, S.J.; Crawford, D.A.; Heinrich, K.M. Multiple Fitness Improvements Found after 6-Months of High Intensity Functional Training. Sports 2019, 7, 203. [Google Scholar] [CrossRef]
- O’Bryan, K.R.; Doering, T.M.; Morton, R.W.; Coffey, V.G.; Phillips, S.M.; Cox, G.R. Do Multi-Ingredient Protein Supplements Augment Resistance Training-Induced Gains in Skeletal Muscle Mass and Strength? A Systematic Review and Meta-Analysis of 35 Trials. Br. J. Sports Med. 2020, 54, 573–581. [Google Scholar] [CrossRef]
- Lin, Y.-N.; Tseng, T.-T.; Knuiman, P.; Chan, W.P.; Wu, S.-H.; Tsai, C.-L.; Hsu, C.-Y. Protein Supplementation Increases Adaptations to Endurance Training: A Systematic Review and Meta-Analysis. Clin. Nutr. Edinb. Scotl. 2021, 40, 3123–3132. [Google Scholar] [CrossRef] [PubMed]
- Karpouzi, C.; Kypraiou, A.; Mougios, V.; Petridou, A. Effects of Protein Supplementation during Pilates Training on Body Composition, Core Muscle Endurance, and Joint Flexibility in Trained Women: A Randomized Controlled Trial. J. Int. Soc. Sports Nutr. 2025, 22, 2472891. [Google Scholar] [CrossRef] [PubMed]
Variable | Males (n = 20) | Females (n = 10) |
---|---|---|
Age (y) | 35.7 ± 8.5 | 30.2 ± 4.5 |
Body mass (kg) | 84.8 ± 9.5 | 60.2 ± 6.9 |
Height (m) | 1.81 ± 0.07 | 1.68 ± 0.05 |
Body mass index (kg/m2) | 25.9 ± 2.5 | 21.4 ± 1.5 |
1 RM of shoulder press (kg) | 64.8 ± 10.9 | 28.5 ± 5.7 |
Maximal force of shoulder muscles (Ν) | 932 ± 295 | 396 ± 127 |
Maximal velocity of shoulder muscles (m/s) | 3.24 ± 0.62 | 2.57 ± 0.58 |
Grip strength (Ν) | 50.5 ± 7.4 | 28.8 ± 3.6 |
Strength endurance of core muscles (sit-ups/min) | 37 ± 7 | 33 ± 4 |
Peak torque knee extensors 60°/s (Nm) | 225 ± 47 | 122 ± 27 |
Peak torque knee flexors 60°/s (Nm) | 133 ± 27 | 83 ± 16 |
Peak torque knee extensors 120°/s (Nm) | 189 ± 39 | 103 ± 17 |
Peak torque knee flexors 120°/s (Nm) | 119 ± 24 | 71 ± 12 |
Peak torque knee extensors 180°/s (Nm) | 166 ± 31 | 86 ± 16 |
Peak torque knee flexors 180°/s (Nm) | 103 ± 21 | 60 ± 9 |
Peak torque knee extensors 240°/s (Nm) | 146 ± 27 | 73 ± 15 |
Peak torque knee flexors 240°/s (Nm) | 90 ± 20 | 50 ± 10 |
Endurance ratio knee extensors (%) | 74 ± 8 | 75 ± 10 |
Endurance ratio knee flexors (%) | 68 ± 6 | 74 ± 8 |
VO2max (mL/kg/min) | 46.3 ± 9.0 | 40.1 ± 4.4 |
Egg White | Whey Protein | Placebo | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Males | Females | Males | Females | Males | Females | |||||||
1st Week | 6th Week | 1st Week | 6th Week | 1st Week | 6th Week | 1st Week | 6th Week | 1st Week | 6th Week | 1st Week | 6th Week | |
Total exercise time (min:s) | 40:01 ± 04:45 | 44:31 ± 06:53 | 44:17 ± 08:22 | 46:41 ± 11:57 | 41:50 ± 06:40 | 44:01 ± 08:43 | 45:41 ± 06:49 | 47:53 ± 07:50 | 38:21 ± 05:46 | 49:21 ± 08:17 | 41:59 ± 07:07 | 46:42 ± 09:16 |
Average HR (% HRmax) | 76 ± 8 | 76 ± 7 | 75 ± 5 | 75 ± 8 | 74 ± 8 | 76 ± 6 | 76 ± 7 | 72 ± 7 | 72 ± 9 | 74 ± 8 | 73 ± 6 | 74 ± 6 |
Highest HR (% HRmax) | 97 ± 9 | 96 ± 10 | 95 ± 7 | 95 ± 7 | 98 ± 11 | 93 ± 5 | 98 ± 8 | 98 ± 6 | 95 ± 16 | 100 ± 14 | 92 ± 4 | 97 ± 8 |
Time in HR zone 1 (min:s) | 02:39 ± 03:18 | 03:47 ± 03:17 | 04:16 ± 02:38 | 05:46 ± 04:07 | 04:40 ± 05:03 | 04:52 ± 06:00 | 05:59 ± 06:29 | 07:33 ± 05:37 | 04:08 ± 04:15 | 06:34 ± 06:28 | 06:33 ± 04:07 | 05:23 ± 03:32 |
Time in HR zone 2 (min:s) | 06:06 ± 03:36 | 08:23 ± 04:59 | 09:14 ± 06:00 | 10:19 ± 06:12 | 07:25 ± 03:48 | 07:36 ± 06:26 | 09:11 ± 04:37 | 10:12 ± 03:59 | 07:09 ± 04:23 | 09:48 ± 06:44 | 09:30 ± 05:41 | 08:34 ± 05:28 |
Time in HR zone 3 (min:s) | 11:05 ± 04:04 | 11:25 ± 03:18 | 13:45 ± 04:32 | 11:56 ± 04:54 | 10:47 ± 04:57 | 12:13 ± 04:24 | 10:36 ± 02:49 | 11:34 ± 05:20 | 11:32 ± 07:56 | 12:34 ± 07:56 | 11:20 ± 06:04 | 10:02 ± 05:26 |
Time in HR zone 4 (min:s) | 12:25 ± 05:48 | 12:38 ± 04:44 | 11:09 ± 04:52 | 11:55 ± 06:09 | 11:45 ± 05:57 | 13:24 ± 05:56 | 10:47 ± 04:13 | 10:47 ± 08:13 | 08:46 ± 06:19 | 12:21 ± 07:16 | 10:01 ± 05:45 | 13:04 ± 05:53 |
Time in HR zone 5 (min:s) | 05:36 ± 07:01 | 06:04 ± 07:35 | 04:52 ± 05:06 | 05:34 ± 06:17 | 05:14 ± 06:29 | 05:06 ± 05:04 | 08:17 ± 07:33 | 04:24 ± 05:10 | 03:02 ± 04:36 | 05:14 ± 06:45 | 03:20 ± 04:46 | 04:32 ± 05:04 |
Energy expenditure (kcal) | 513 ± 136 | 562 ± 121 | 365 ± 88 | 381 ± 115 | 514 ± 143 | 540 ± 101 | 385 ± 98 | 365 ± 117 | 437 ± 149 | 588 ± 165 | 326 ± 75 | 358 ± 107 |
Training load score | 83 ± 30 | 89 ± 27 | 79 ± 16 | 82 ± 25 | 80 ± 33 | 86 ± 21 | 86 ± 29 | 75 ± 28 | 66 ± 30 | 88 ± 34 | 68 ± 19 | 77 ± 22 |
Cardio load | 69 ± 29 | 74 ± 26 | 79 ± 16 | 83 ± 26 | 68 ± 29 | 72 ± 20 | 87 ± 28 | 77 ± 26 | 55 ± 25 | 75 ± 26 | 69 ± 19 | 78 ± 24 |
Main Effect | Interaction | ||||||
---|---|---|---|---|---|---|---|
Supplement | Time | Sex | Supplement × Time | Supplement × Sex | Time × Sex | Supplement × Time × Sex | |
Total exercise time | 0.828 0.009 | <0.001 0.459 | 0.204 0.079 | 0.117 0.012 | 0.573 0.027 | 0.218 0.075 | 0.524 0.032 |
Time in HR zone 2 (min:s) | 0.974 0.001 | 0.033 0.209 | 0.273 0.060 | 0.795 0.011 | 0.627 0.023 | 0.163 0.095 | 0.423 0.042 |
Time in HR zone 4 (min:s) | 0.668 0.020 | 0.049 0.181 | 0.733 0.006 | 0.394 0.046 | 0.437 0.041 | 0.715 0.007 | 0.889 0.006 |
Energy expenditure | 0.346 0.052 | 0.005 0.328 | <0.001 0.444 | 0.084 0.116 | 0.903 0.005 | 0.025 0.228 | 0.504 0.034 |
Training load score | 0.133 0.096 | 0.049 0.181 | 0.677 0.009 | 0.105 0.106 | 0.946 0.003 | 0.053 0.174 | 0.695 0.018 |
Cardio load | 0.134 0.096 | 0.034 0.205 | 0.254 0.065 | 0.064 0.128 | 0.877 0.007 | 0.090 0.137 | 0.639 0.022 |
Egg White | Whey Protein | Placebo | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Males | Females | Males | Females | Males | Females | |||||||
Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | |
1 RM of shoulder press (kg) | 68.4 ± 11.1 | 68.8 ± 13.1 | 32.0 ± 5.5 | 32.9 ± 4.7 | 67.3 ± 11.1 | 69.0 ± 11.6 | 29.5 ± 6.2 | 32.2 ± 6.0 | 67.4 ± 13.2 | 70.3 ± 11.3 | 31.5 ± 5.7 | 31.5 ± 5.6 |
Maximal force of shoulder muscles (Ν) | 894 ± 193 | 859 ± 187 | 396 ± 97 | 477 ± 125 | 913 ± 307 | 872 ± 158 | 409 ± 134 | 448 ± 95 | 858 ± 157 | 896 ± 182 | 499 ± 111 | 449 ± 118 |
Maximal velocity of shoulder muscles (m/s) | 3.34 ± 0.81 | 3.47 ± 0.64 | 3.34 ± 1.34 | 2.54 ± 0.46 | 3.33 ± 0.57 | 3.54 ± 0.67 | 2.55 ± 0.74 | 2.56 ± 0.43 | 3.43 ± 0.57 | 3.36 ± 0.75 | 2.36 ± 0.45 | 3.14 ± 1.51 |
Grip strength (Ν) | 51.0 ± 6.6 | 49.7 ± 7.1 | 28.4 ± 3.4 | 29.3 ± 2.8 | 50.2 ± 7.2 | 51.6 ± 6.3 | 29.1 ± 2.5 | 28.8 ± 2.3 | 49.6 ± 6.0 | 50.8 ± 6.0 | 28.9 ± 2.8 | 29.2 ± 2.5 |
Strength endurance of core muscles (sit-ups/min) | 40 ± 6 | 42 ± 6 | 37 ± 4 | 40 ± 5 | 41 ± 7 | 42 ± 7 | 35 ± 4 | 37 ± 4 | 40 ± 7 | 42 ± 7 | 36 ± 5 | 40 ± 6 |
Peak torque knee extensors 60°/s (Nm) | 214 ± 52 | 203 ± 43 | 114 ± 23 | 118 ± 18 | 208 ± 44 | 202 ± 46 | 124 ± 24 | 119 ± 21 | 207 ± 44 | 195 ±32 | 118 ± 18 | 113 ± 16 |
Peak torque knee flexors 60°/s (Nm) | 136 ± 31 | 133 ± 30 | 80 ± 13 | 79 ± 14 | 132 ± 25 | 135 ± 28 | 82 ± 15 | 89 ± 37 | 133 ± 29 | 125 ± 24 | 79 ± 14 | 78 ± 12 |
Peak torque knee extensors 120°/s (Nm) | 185 ± 44 | 180 ± 35 | 106 ± 18 | 106 ± 16 | 187 ± 38 | 176 ± 37 | 108 ± 19 | 107 ± 17 | 175 ± 28 | 178 ± 33 | 103 ± 13 | 96 ± 33 |
Peak torque knee flexors 120°/s (Nm) | 120 ± 27 | 120 ± 25 | 74 ± 10 | 73 ± 11 | 119 ± 23 | 120 ± 22 | 72 ± 13 | 73 ± 11 | 119 ± 20 | 113 ± 19 | 71 ± 11 | 73 ± 10 |
Peak torque knee extensors 180°/s (Nm) | 166 ± 34 | 162 ± 29 | 90 ± 19 | 91 ± 15 | 165 ± 30 | 163 ± 31 | 92 ± 16 | 92 ± 18 | 161 ± 24 | 162 ± 27 | 86 ± 14 | 91 ± 13 |
Peak torque knee flexors 180°/s (Nm) | 108 ± 27 | 105± 21 | 63 ± 11 | 62 ± 10 | 104 ± 21 | 109 ± 26 | 61 ± 10 | 63 ± 10 | 104 ± 20 | 102 ± 17 | 62 ± 10 | 64 ± 10 |
Peak torque knee extensors 240°/s (Nm) | 146 ± 31 | 144 ± 27 | 76 ± 17 | 76 ± 14 | 145 ± 27 | 145 ± 29 | 78 ± 16 | 79 ± 14 | 145 ± 26 | 144 ± 26 | 74 ± 11 | 79 ± 12 |
Peak torque knee flexors 240°/s (Nm) | 96 ± 26 | 92 ± 21 | 53 ± 10 | 53 ± 11 | 90 ± 19 | 95 ± 26 | 51 ± 11 | 55± 10 | 93 ± 22 | 90 ± 16 | 53 ± 10 | 54 ± 9 |
Endurance ratio knee extensors (%) | 73 ± 10 | 73 ± 9 | 74 ± 7 | 70 ± 9 | 74 ± 10 | 72 ± 9 | 72 ± 11 | 71 ± 7 | 73 ± 9 | 76 ± 11 | 72 ± 7 | 71 ± 8 |
Endurance ratio knee flexors (%) | 68 ± 12 | 65 ± 10 | 68 ± 5 | 67 ± 6 | 65 ± 7 | 65 ± 10 | 71 ± 9 | 70 ± 6 | 65 ± 8 | 66 ± 15 | 71 ± 7 | 66 ± 6 |
VO2max (mL/kg/min) | 47.2 ± 9.4 | 45.8 ± 7.6 | 40.5 ± 4.3 | 41.6 ± 4.5 | 46.9 ± 7.4 | 47.1 ± 8.4 | 40.9 ± 4.1 | 41.6 ± 4.4 | 46.5 ± 8.5 | 46.2 ± 8.3 | 42.5 ± 3.9 | 41.9 ± 3.5 |
Main Effect | Interaction | ||||||
---|---|---|---|---|---|---|---|
Supplement | Time | Sex | Supplement × Time | Supplement × Sex | Time × Sex | Supplement × Time × Sex | |
1 RM of shoulder press | 0.302 0.041 | <0.001 0.474 | <0.001 0.767 | 0.472 0.026 | 0.564 0.018 | 0.430 0.022 | 0.270 0.046 |
Maximal force of shoulder muscles | 0.571 0.017 | 0.449 0.021 | <0.001 0.668 | 0.971 0.000 | 0.049 0.111 | 0.117 0.086 | 0.752 0.006 |
Maximal velocity of shoulder muscles | 0.055 0.098 | 0.603 0.010 | 0.006 0.237 | 0.083 0.098 | 0.019 0.132 | 0.119 0.085 | 0.027 0.151 |
Grip strength | 0.749 0.010 | 0.194 0.060 | <0.001 0.806 | 0.589 0.019 | 0.695 0.013 | 0.823 0.002 | 0.133 0.070 |
Strength endurance of core muscles | 0.348 0.037 | <0.001 0.656 | 0.097 0.095 | 0.173 0.061 | 0.222 0.052 | 0.285 0.041 | 0.909 0.003 |
Peak torque knee extensors 60°/s | 0.335 0.038 | 0.001 0.325 | <0.001 0.604 | 0.759 0.010 | 0.409 0.031 | 0.027 0.163 | 0.659 0.015 |
Peak torque knee flexors 60°/s | 0.075 0.088 | 0.664 0.007 | <0.001 0.565 | 0.379 0.034 | 0.330 0.039 | 0.189 0.061 | 0.922 0.003 |
Peak torque knee extensors 120°/s | 0.081 0.086 | 0.050 0.130 | <0.001 0.635 | 0.864 0.005 | 0.900 0.004 | 0.683 0.006 | 0.454 0.028 |
Peak torque knee flexors 120°/s | 0.322 0.040 | 0.435 0.022 | <0.001 0.619 | 0.874 0.005 | 0.620 0.017 | 0.143 0.075 | 0.604 0.018 |
Peak torque knee extensors 180°/s | 0.268 0.046 | 0.644 0.008 | <0.001 0.688 | 0.635 0.016 | 0.934 0.002 | 0.108 0.090 | 0.944 0.002 |
Peak torque knee flexors 180°/s | 0.576 0.019 | 0.468 0.019 | <0.001 0.607 | 0.452 0.028 | 0.393 0.033 | 0.333 0.034 | 0.681 0.014 |
Peak torque knee extensors 240°/s | 0.806 0.008 | 0.599 0.010 | <0.001 0.679 | 0.754 0.010 | 0.797 0.008 | 0.146 0.074 | 0.907 0.003 |
Peak torque knee flexors 240°/s | 0.922 0.003 | 0.774 0.003 | <0.001 0.589 | 0.398 0.032 | 0.736 0.011 | 0.247 0.048 | 0.784 0.009 |
Endurance ratio knee extensors | 0.892 0.003 | 0.202 0.058 | 0.544 0.013 | 0.456 0.028 | 0.541 0.020 | 0.043 0.138 | 0.470 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpouzi, C.; Kosmidis, I.; Petridou, A.; Voulgaridou, G.; Papadopoulou, S.K.; Bogdanis, G.C.; Mougios, V. Effects of Protein Supplementation During High-Intensity Functional Training on Physical Performance in Recreationally Trained Males and Females: A Randomized Controlled Trial. Nutrients 2025, 17, 1441. https://doi.org/10.3390/nu17091441
Karpouzi C, Kosmidis I, Petridou A, Voulgaridou G, Papadopoulou SK, Bogdanis GC, Mougios V. Effects of Protein Supplementation During High-Intensity Functional Training on Physical Performance in Recreationally Trained Males and Females: A Randomized Controlled Trial. Nutrients. 2025; 17(9):1441. https://doi.org/10.3390/nu17091441
Chicago/Turabian StyleKarpouzi, Christina, Ioannis Kosmidis, Anatoli Petridou, Gabriela Voulgaridou, Sousana K. Papadopoulou, Gregory C. Bogdanis, and Vassilis Mougios. 2025. "Effects of Protein Supplementation During High-Intensity Functional Training on Physical Performance in Recreationally Trained Males and Females: A Randomized Controlled Trial" Nutrients 17, no. 9: 1441. https://doi.org/10.3390/nu17091441
APA StyleKarpouzi, C., Kosmidis, I., Petridou, A., Voulgaridou, G., Papadopoulou, S. K., Bogdanis, G. C., & Mougios, V. (2025). Effects of Protein Supplementation During High-Intensity Functional Training on Physical Performance in Recreationally Trained Males and Females: A Randomized Controlled Trial. Nutrients, 17(9), 1441. https://doi.org/10.3390/nu17091441