How Screen Time Affects Greek Schoolchildren’s Eating Habits and Functional Food Consumption?—A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Procedures
2.1.1. Inclusion and Exclusion Criteria
2.1.2. Ethical Approval
2.2. Measures
2.3. Demographic and Socioeconomic Characteristics
2.4. Dietary Assessment
2.5. Functional Foods
2.6. Physical Activity
2.7. Screen Time
2.8. Statistical Analysis
3. Results
3.1. Children’s Screen Time and Eating Habits
3.2. Family Clusters (Parent-Child Dyads)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huo, J.; Kuang, X.; Xi, Y.; Xiang, C.; Yong, C.; Liang, J.; Zou, H.; Lin, Q. Screen Time and Its Association with Vegetables, Fruits, Snacks and Sugary Sweetened Beverages Intake among Chinese Preschool Children in Changsha, Hunan Province: A Cross-Sectional Study. Nutrients 2022, 14, 4086. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Wang, J.; O'Loughlin, J.; Tremblay, A.; Mathieu, M.; Henderson, M.; Gray-Donald, K. Screen time is associated with dietary intake in overweight Canadian children. Prev. Med. Rep. 2015, 14, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-J.; Wang, Y. Do weight status and television viewing influence children's subsequent dietary changes? A National Longitudinal Study in the United States. Int. J. Obes. (Lond) 2015, 39, 931–938. [Google Scholar] [CrossRef]
- Seral-Cortes, M.; Sabroso-Lasa, S.; Bailo-Aysa, A.; Gonzalez-Gross, M.; Molnár, D.; Censi, L.; Molina-Hidalgo, C.; Gottrand, F.; De Henauw, S.; Manios, Y.; et al. Mediterranean Diet, Screen-Time-Based Sedentary Behavior and Their Interaction Effect on Adiposity in European Adolescents: The HELENA Study. Nutrients 2021, 30, 474. [Google Scholar] [CrossRef]
- Mensink GB, M.; Schienkiewitz, A.; Rabenberg, M.; Borrmann, A.; Richter, A.; Haftenberger, M. Consumption of sugary soft drinks among children and adolescents in Germany. Results of the cross-sectional KiGGS Wave 2 study and trends. J. Health Monit. 2018, 3, 31–37. [Google Scholar] [PubMed]
- Kadel, P.; Schneider, S.; Mata, J. Soft drink consumption and mental health problems: Longitudinal relations in children and adolescents. Soc. Sci. Med. 2020, 258, 113123. [Google Scholar] [CrossRef]
- Schneider, S.; Schilling, L.; Osenbrügge, N. Determinants of soft drink consumption among children and adolescents in developed countries—A systematic review. Cent. Eur. J. Public. Health 2021, 29, 290–300. [Google Scholar] [CrossRef]
- Mrug, S.; Jones, L.C.; Elliott, M.N.; Tortolero, S.R.; Peskin, M.F.; Schuster, M.A. Soft Drink Consumption and Mental Health in Adolescents: A Longitudinal Examination. J. Adolesc. Health 2021, 68, 155–160. [Google Scholar] [CrossRef]
- Sanmarchi, F.; Masini, A.; Poli, C.; Kawalec, A.; Esposito, F.; Scrimaglia, S.; Scheier, L.; Dallolio, L.; Sacchetti, R. Cross-Sectional Analysis of Family Factors Associated with Lifestyle Habits in a Sample of Italian Primary School Children: The I-MOVE Project. Int. J. Environ. Res. Public. Health 2023, 20, 4240. [Google Scholar] [CrossRef]
- Morgan, E.; Schoonees, A.; Sriram, U.; Faure, M.; Fowler, R.S. Caregiver involvement in interventions for improving children's dietary intake and physical activity behaviors. Cochrane Database Syst. Rev. 2020, 1, CD012547. [Google Scholar] [CrossRef]
- Mahmood, L.; Barrantes, P.F.; Luis, A.M.; Manios, Y.; Gil, E.M.G. The Influence of Parental Dietary Behaviors and Practices on Children's Eating Habits. Nutrients 2021, 13, 1138. [Google Scholar] [CrossRef] [PubMed]
- Sylvetsky, A.C.; Visek, A.J.; Halberg, S.; Rhee, D.K.; Ongaro, Z.; Essel, K.D.; Dietz, W.H.; Sacheck, J. Beyond taste and easy access: Physical, cognitive, interpersonal, and emotional reasons for sugary drink consumption among children and adolescents. Appetite 2020, 1, 104826. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Song, J.; MacGregor, G.A.; He, F.J. Consumption of Soft Drinks and Overweight and Obesity Among Adolescents in 107 Countries and Regions. JAMA Netw. Open 2023, 6, e2325158. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.; Jarvis, S.E.; Tinajero, M.G.; Yu, J.; Chiavaroli, L.; Mejia, S.B.; Khan, T.A.; Tobias, D.K.; Willett, W.C.; Hu, F.B.; et al. Sugar-sweetened beverage consumption and weight gain in children and adults: A systematic review and meta-analysis of prospective cohort studies and randomized controlled trials. Am. J. Clin. Nutr. 2023, 117, 160–174. [Google Scholar] [CrossRef]
- Bleich, S.N.; Vercammen, K.A. The negative impact of sugar-sweetened beverages on children’s health: An update of the literature. BMC Obes. 2018, 20, 6. [Google Scholar] [CrossRef]
- Rousham, E.K.; Goudet, S.; Markey, O.; Griffiths, P.; Boxer, B.; Carroll, C.; Petherick, E.S.; Pradeilles, R. Unhealthy Food and Beverage Consumption in Children and Risk of Overweight and Obesity: A Systematic Review and Meta-Analysis. Adv. Nutr. 2022, 13, 1669–1696. [Google Scholar] [CrossRef]
- Rocka, A.; Jasielska, F.; Madras, D.; Krawiec, P.; Pac-Kożuchowska, E. The Impact of Digital Screen Time on Dietary Habits and Physical Activity in Children and Adolescents. Nutrients 2022, 14, 2985. [Google Scholar] [CrossRef]
- Myszkowska, R.J.; Harton, A.; Lange, E.; Laskowski, W.; Wawrzyniak, A.; Hamulka, J.; Gajewska, D. Reduced Screen Time is Associated with Healthy Dietary Behaviors but Not Body Weight Status among Polish Adolescents. Rep. Wise Nutr. Healthy Gener. Project. Nutr. 2020, 12, 1323. [Google Scholar]
- Bassul, C.; Corish, C.A.; Kearney, J.M. Associations between Home Environment, Children's and Parents' Characteristics and Children's TV Screen Time Behavior. Int. J. Environ. Res. Public Health 2021, 18, 1589. [Google Scholar] [CrossRef]
- Reyna-Vargas, M.E.; Parmar, A.; Lefebvre, D.L.; Azad, M.B.; Becker, A.B.; E Turvey, S.; Moraes, T.J.; Lou, W.; Subbarao, P.; Sears, M.R.; et al. Longitudinal Associations Between Sleep Habits, Screen Time and Overweight, Obesity in Preschool Children. Nat. Sci. Sleep 2022, 14, 1237–1247. [Google Scholar] [CrossRef]
- Tambalis, K.; Panagiotakos, D.; Psarra, G.; Sidossis, L. Insufficient Sleep Duration Is Associated with Dietary Habits, Screen Time, and Obesity in Children. J. Clin. Sleep Med. 2018, 14, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Kenney, E.L.; Gortmaker, S.L. United States Adolescents' Television, Computer, Videogame, Smartphone, and Tablet Use: Associations with Sugary Drinks, Sleep, Physical Activity, and Obesity. J. Pediatr. 2017, 182, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Wärnberg, J.; Pérez-Farinós, N.; Benavente-Marín, J.C.; Gómez, S.F.; Labayen, I.; GZapico, A.; Gusi, N.; Aznar, S.; Alcaraz, P.E.; González-Valeiro, M.; et al. Screen Time and Parents' Education Level Are Associated with Poor Adherence to the Mediterranean Diet in Spanish Children and Adolescents: The PASOS Study. J. Clin. Med. 2021, 10, 795. [Google Scholar] [CrossRef]
- Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Serra, M.L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez, R.C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Milias, G.A.; Pitsavos, C.; Stefanadis, C. MedDietScore: A computer program that evaluates the adherence to the Mediterranean dietary pattern and its relation to cardiovascular disease risk. Comput. Methods Programs Biomed. 2006, 83, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Papagianni, O.; Staramou, A.; Rigopoulos, N.; Dimou, C.; Koutelidakis, A. Development and Validation of a Functional Foods Frequency Questionnaire for Greek Adults. Curr. Top. Nutraceutical Res. 2021, 19, 373–381. [Google Scholar]
- Qi, J.; Yan, Y.; Yin, H. Screen time among school-aged children of aged 6–14: A systematic review. Glob. Health Res. Policy 2023, 19, 12. [Google Scholar] [CrossRef]
- Flegal, K.M.; Kit, B.K.; Graubard, B.I. Body mass index categories in observational studies of weight and risk of death Meta-Analysis. Am. J. Epidemiol. 2014, 180, 288–296. [Google Scholar] [CrossRef]
- Duarte, A.; Martins, J.; Silva, M.J.; Augusto, C.; Peixoto, S.M.; Rosário, R. The Role of Parental Adherence to the Mediterranean Diet and Family Time Together in Children’s Weight Status: The BeE-School Project. Nutrients 2024, 16, 916. [Google Scholar] [CrossRef]
- Kosti, R.I.; Kanellopoulou, A.; Fragkedaki, E.; Notara, V.; Giannakopoulou, S.P.; Antonogeorgos, G.; Rojas-Gil, A.P.; Kornilaki, E.N.; Lagiou, A.; Panagiotakos, D.B. The Influence of Adherence to the Mediterranean Diet among Children and Their Parents in Relation to Childhood Overweight/Obesity: A Cross-Sectional Study in Greece. Child. Obes. 2020, 16, 571–578. [Google Scholar] [CrossRef]
- Zhang, J.; Clayton, G.L.; Overvad, K.; Olsen, A.; Lawlor, D.A.; Dahm, C.C. Body mass index in parents and their adult offspring: A systematic review and meta-analysis. Obes. Rev. 2024, 25, e13644. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P.; Allison, D.B.; Fontana, L.; Harvie, M.; Longo, V.D.; Malaisse, W.J.; Mosley, M.; Notterpek, L.; Ravussin, E.; Scheer, F.A.; et al. Meal frequency and timing in health and disease. Proc. Natl. Acad. Sci. USA 2014, 111, 16647–16653. [Google Scholar] [CrossRef]
- Paoli, A.; Tinsley, G.; Bianco, A.; Moro, T. The Influence of Meal Frequency and Timing on Health in Humans: The Role of Fasting. Nutrients 2019, 11, 719. [Google Scholar] [CrossRef] [PubMed]
- Essa, M.M.; Bishir, M.; Bhat, A.; Chidambaram, S.B.; Balushi, B.A.; Hamdan, H.; Govindarajan, N.; Freidland, R.P.; Qoronfleh, M.W. Functional foods and their impact on health. J. Food Sci. Technol. 2023, 60, 820–834. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Farinós, N.; Villar-Villalba, C.; López Sobaler, A.M.; Dal Re Saavedra, M.Á.; Aparicio, A.; Santos Sanz, S.; Robledo de Dios, T.; Castrodeza-Sanz, J.J.; Ortega Anta, R.M. The relationship between hours of sleep, screen time and frequency of food and drink consumption in Spain in the 2011 and 2013 ALADINO: A cross-sectional study. BMC Public Health 2017, 17, 33. [Google Scholar] [CrossRef]
- Olafsdottir, S.; Eiben, G.; Prell, H.; Hense, S.; Lissner, L.; Mårild, S.; Reisch, L.; Berg, C. Young children’s screen habits are associated with consumption of sweetened beverages independently of parental norms. Int. J. Public Health 2014, 59, 67–75. [Google Scholar] [CrossRef]
- 38. Miguel-Berges, M.L.; Santaliestra-Pasias, A.M.; Mouratidou, T.; Androutsos, O.; de Craemer, M.; Pinket, A.S.; Birnbaum, J.; Koletzko, B.; Iotova, V.; Usheva, N.; et al. Associations between food and beverage consumption and different types of sedentary behaviours in European preschoolers: The ToyBox-study. Randomized Controlled Trial. Eur. J. Nutr. 2017, 56, 1939–1951. [Google Scholar] [CrossRef]
- Kanyinga, H.S.; Chaput, J.P. Consumption of sugar-sweetened beverages and energy drinks and adherence to physical activity and screen time recommendations among adolescents. Int. J. Adolesc. Med. Health 2016, 27, 29. [Google Scholar]
- Falbe, J.; Willett WC Rosner, B.; Gortmaker, S.L.; Sonneville, K.R.; Field, A.E. Longitudinal relations of television, electronic games, and digital versatile discs with changes in diet in adolescents. Am. J. Clin. Nutr. 2014, 100, 1173–1181. [Google Scholar] [CrossRef]
- Hueso, C.À.; Moyano, L.C.; Martín, S.J.C.; González, M.A.; Matilla, S.N.; Miró, Q.; Martínez, S.J.M. Association of screen time and sleep duration among Spanish 1-14 years old children. Paediatr. Perinat. Epidemiol. 2021, 35, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Hueso, A.C.; Marrón, A.G.; Moyano, C.L.; Palomo, E.G.; Sánchez, J.C.M.; Sánchez, J.M.M. Association between Leisure Screen Time and Junk Food Intake in a Nationwide Representative Sample of Spanish Children (1–14 Years): A Cross-Sectional Study. Healthcare 2021, 18, 228. [Google Scholar] [CrossRef] [PubMed]
- Börnhorst, C.; Wijnhoven, T.M.A.; Kunešová, M.; Yngve, A.; Rito, A.I.; Lissner, L.; Duleva, V.; Petrauskiene, A.; Breda, J. WHO European Childhood Obesity Surveillance Initiative: Associations between sleep duration, screen time and food consumption frequencies. BMC Public Health 2015, 30, 442. [Google Scholar] [CrossRef] [PubMed]
- Shqair, A.Q.; Pauli, L.A.; Costa VP, P.; Cenci, M.; Goettems, M.L. Screen time, dietary patterns and intake of potentially cariogenic food in children: A systematic review. J. Dent. 2019, 86, 17–26. [Google Scholar] [CrossRef]
- Jensen, M.L.; Carpentier, F.D.; Corvalán, C.; Popkin, B.M.; Evenson, K.R.; Adair, L.; Taillie, L.S. Television viewing and using screens while eating: Associations with dietary intake in children and adolescents. Appetite 2021, 168, 105670. [Google Scholar] [CrossRef]
- Fan, H.; Yan, J.; Yang, Z.; Liang, K.; Chen, S. Cross-sectional associations between screen time and the selected lifestyle behaviors in adolescents. Front. Public Health 2022, 10, 932017. [Google Scholar] [CrossRef]
- Tsujiguchi, H.; Hori, D.; Kambayashi, Y.; Hamagishi, T.; Asakura, H.; Mitoma, J.; Kitaoka, M.; Anyenda, E.O.; Nguyen, T.T.T.; Yamada, Y.; et al. Relationship between screen time and nutrient intake in Japanese children and adolescents: A cross-sectional observational study. Environ. Health Prev. Med. 2018, 23, 34. [Google Scholar] [CrossRef]
- Avery, A.; Anderson, C.; McCullough, F. Associations between children's diet quality and watching television during meal or snack consumption: A systematic review. Matern. Child. Nutr. 2017, 13, e12428. [Google Scholar] [CrossRef]
- Whiting, S.; Buoncristiano, M.; Gelius, P.; Abu, K.O.; Pattison, M.; Hyska, J.; Duleva, V.; Milanović, S.M.; Zamrazilová, H.; Hejgaard, T.; et al. Physical Activity, Screen Time, and Sleep Duration of Children Aged 6-9 Years in 25 Countries: An Analysis within the WHO European Childhood Obesity Surveillance Initiative (COSI) 2015-2017. Obes. Fact. 2021, 14, 32–44. [Google Scholar] [CrossRef]
- Buja, A.; Miatton, A.; Zanovello, A.; Brocadello, F.; Baldovin, T.; Muhiddin, M.N.; Spreghini, I. Media Usage and Adherence to the Mediterranean Diet in Children. Nutrients 2024, 16, 3481. [Google Scholar] [CrossRef]
- Kanellopoulou, A.; Giannakopoulou, S.P.; Notara, V.; Antonogeorgos, G.; Rojas GA, P.; Kornilaki, E.N.; Konstantinou, E.; Lagiou, A.; Panagiotakos, D.B. The association between adherence to the Mediterranean diet and childhood obesity; the role of family structure: Results from an epidemiological study in 1728 Greek students. Nutr Health 2021, 27, 39–47. [Google Scholar] [CrossRef]
- Tambalis, K.D.; Panagiotakos, D.B.; Sidossis, L.S. Dietary habits among 177,091 Greek schoolchildren by age, sex, weight status, region, and living area. A cross-sectional study. Hell. J. Cardiol. 2024. [Google Scholar] [CrossRef]
- Jacovides, C.; Pritsa, A.; Chrysafi, M.; Papadopoulou, S.K.; Kapetanou, M.G.; Lechouritis, E.; Mato, M.; Papadopoulou, V.G.; Tsourouflis, G.; Migdanis, A.; et al. Childhood Mediterranean Diet Compliance Is Associated with Lower Incidence of Childhood Obesity, Specific Sociodemographic, and Lifestyle Factors: A Cross-Sectional Study in Children Aged 6-9 Years. Pediatr. Rep. 2024, 16, 1207–1222. [Google Scholar] [CrossRef] [PubMed]
- Rutigliano, I.; Mansueto, M.L.; Canestrale, R.; Giorgio, R.; Sacco, M.; Pastore, M.R. Children's diet assessed with the Mediterranean Diet Index: The finding of new eating habits and their impact on a cohort of Italian children. Ann. Ist. Super. Sanita 2024, 60, 179–183. [Google Scholar] [PubMed]
- Suchert, V.; Hanewinkel, R.; Isensee, B. Screen time, weight status and the self-concept of physical attractiveness in adolescents. J. Adolesc. 2016, 48, 11–17. [Google Scholar] [CrossRef]
- Robinson, T.N.; Banda, J.A.; Hale, L.; Lu, A.S.; Fleming, F.M.; Calvert, S.L.; Wartella, E. Screen Media Exposure and Obesity in Children and Adolescents. Pediatrics 2017, 140, S97–S101. [Google Scholar] [CrossRef] [PubMed]
- Nagata, J.M.; Smith, N.; Alsamman, S.; Lee, C.M.; Dooley, E.E.; Kiss, O.; Ganson, K.T.; Wing, D.; Baker, F.C.; Gabriel, K.P. Association of Physical Activity and Screen Time with Body Mass Index Among US Adolescents. JAMA Netw. Open 2023, 6, e2255466. [Google Scholar] [CrossRef]
- Wu, Y.; Amirfakhraei, A.; Ebrahimzadeh, F.; Jahangiry, L.; Farhangi, M.A. Screen Time and Body Mass Index Among Children and Adolescents: A Systematic Review and Meta-Analysis. Front. Pediatr. 2022, 10, 822108. [Google Scholar] [CrossRef]
- Haghjoo, P.; Siri, G.; Soleimani, E.; Farhangi, M.A.; Alesaeidi, S. Screen time increases overweight and obesity risk among adolescents: A systematic review and dose-response meta-analysis Meta-Analysis. BMC Prim. Care 2022, 23, 161. [Google Scholar] [CrossRef]
- Fang, K.; Mu, M.; Liu, K.; He, Y. Screen time and childhood overweight/obesity: A systematic review and meta-analysis Meta-Analysis. Child. Care Health Dev. 2019, 45, 744–753. [Google Scholar] [CrossRef]
- Ryciak, J.M.; Harton, A.; Lange, E.; Laskowski, W.; Wawrzyniak, A.; Hamulka, J.; Gajewska, D. Reduced Screen Time is Associated with Healthy Dietary Behaviors but Not Body Weight Status among Polish Adolescents. Report from the Wise Nutrition—Healthy Generation. Proj. Nutr. 2020, 12, 1323. [Google Scholar]
- Ruzic-Baf, M.; Strnak, H.; Debeljuh, A. Online gaming preferences and young people. IJRES 2016, 2, 94–103. [Google Scholar] [CrossRef]
- Veltri, N.F.; Krasnova, H.; Baumann, A.; Kalayamthanam, N. Gender Differences in Online Gaming: A Literature Review. In Twentieth Americas Conference on Information Systems, Savannah. Social-Technical Issues and Social Inclusion; AMCIS: Montreal, QC, Canada, 2014. [Google Scholar]
- Leonhardt, M.; Overå, S. Are There Differences in Video Gaming and Use of Social Media among Boys and Girls?—A Mixed Methods Approach. Int. J. Environ. Res. Public Health 2021, 18, 6085. [Google Scholar] [CrossRef] [PubMed]
- Rathakrishnan, B.; Singh, S.B.; Yahaya, A. Gaming Preferences and Personality among School Students. Children 2023, 10, 428. [Google Scholar] [CrossRef]
- Cui, Z.; Zou, P.; Lin, Z.; Cao, Y.; Luo, Y. Gender Differences in Excessive Screen Time among Chinese High School Students in Henan Province. Int. J. Environ. Res. Public Health 2022, 20, 721. [Google Scholar] [CrossRef] [PubMed]
- Rotman, S.A.; Fowler, L.A.; Ray, M.K.; Stein, R.I.; Hayes, J.F.; Kolko, R.P.; Balantekin, K.N.; Engel, A.; Saelens, B.E.; Welch, R.R.; et al. Family Encouragement of Healthy Eating Predicts Child Dietary Intake and Weight Loss in Family-Based Behavioral Weight-Loss Treatment. Child Obes 2020, 16, 218–225. [Google Scholar] [CrossRef]
- Maia, C.; Braz, D.; Fernandes, H.M.; Sarmento, H.; Rodrigues, A.M.M. The Impact of Parental Behaviors on Children's Lifestyle, Dietary Habits, Screen Time, Sleep Patterns, Mental Health, and BMI: A Scoping Review. Rev. Child. 2025, 12, 203. [Google Scholar] [CrossRef]
- Coto, J.; Pulgaron, E.R.; Graziano, P.A.; Bagner, D.M.; Villa, M.; Malik, J.A.; Delamater, A.M. Parents as Role Models: Associations between Parent and Young Children’s Weight, Dietary Intake, and Physical Activity in a Minority Sample. Matern. Child Health J. 2019, 23, 943–950. [Google Scholar] [CrossRef]
Variables | Gender | Chi-Square Test of Association p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Total | Girl | Boy | ||||||
N | % | N | % | N | % | |||
Region | City (Thessaloniki) | 253 | 67.6% | 119 | 73.5% | 134 | 63.2% | 0.036 |
Island (Lemnos) | 121 | 32.4% | 43 | 26.5% | 78 | 36.8% | ||
Frequency of watching TV | none | 7 | 2.0% | 3 | 2.0% | 4 | 2.0% | 0.812 |
1–2 times/week | 73 | 20.7% | 32 | 21.3% | 41 | 20.3% | ||
3–4 times/week | 89 | 25.3% | 34 | 22.7% | 55 | 27.2% | ||
every day | 183 | 52.0% | 81 | 54.0% | 102 | 50.5% | ||
Watching TV (h/d) | none | 8 | 2.3% | 3 | 2.0% | 5 | 2.5% | 0.367 |
1 h | 190 | 54.4% | 74 | 49.3% | 116 | 58.3% | ||
2–3 h | 125 | 35.8% | 60 | 40.0% | 65 | 32.7% | ||
>4 h | 26 | 7.4% | 13 | 8.7% | 13 | 6.5% | ||
Screen time (laptop, computer, tablet, mobile phone) | 1–2 h/week | 69 | 19.4% | 26 | 17.0% | 43 | 21.2% | 0.067 |
3–4 h/week | 58 | 16.3% | 18 | 11.8% | 40 | 19.7% | ||
1–2 h/day | 138 | 38.8% | 62 | 40.5% | 76 | 37.4% | ||
>3 h/day | 91 | 25.6% | 47 | 30.7% | 44 | 21.7% | ||
Video gaming (h/d) | 0–1 h | 129 | 42.3% | 37 | 28.7% | 92 | 52.3% | <0.001 * |
2–3 h | 118 | 38.7% | 57 | 44.2% | 61 | 34.7% | ||
4 or more hours | 58 | 19.0% | 35 | 27.1% | 23 | 13.1% | ||
Breakfast consumption frequency | every day | 204 | 71.1% | 82 | 73.2% | 122 | 69.7% | 0.693 |
1–2 times/week | 38 | 13.2% | 15 | 13.4% | 23 | 13.1% | ||
3–5 times/week | 45 | 15.7% | 15 | 13.4% | 30 | 17.1% | ||
Beverage consumption | YES | 242 | 65.8% | 113 | 70.6% | 129 | 62.0% | |
NO | 126 | 34.2% | 47 | 29.4% | 79 | 38.0% | ||
Fast food consumption/ week | none | 87 | 23.5% | 34 | 21.3% | 53 | 25.2% | 0.437 |
every day | 21 | 5.7% | 11 | 6.9% | 10 | 4.8% | ||
1–2 times/week | 230 | 62.2% | 104 | 65.0% | 126 | 60.0% | ||
3–4 times/week | 32 | 8.6% | 11 | 6.9% | 21 | 10.0% | ||
KIDMED score (0–12) | poor score < 3 | 33 | 12.4% | 16 | 15.0% | 17 | 10.7% | 0.307 |
medium score 4–7 | 130 | 48.9% | 55 | 51.4% | 75 | 47.2% | ||
high score > 8 | 103 | 38.7% | 36 | 33.6% | 67 | 42.1% |
Variables | Hours/Day in Front of Screens (Laptop, Computer, Tablet, Mobile Phone) | Chi-Square Test of Association | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1–2 h/week | 3–4 h/week | 1–2 h/day | >3 h/day | |||||||||||
Ν | % | Ν | % | Ν | % | Ν | % | p-Value | ||||||
Cooking with parents | YES | 46 | 67.6% | 44 | 77.2% | 93 | 67.9% | 51 | 56% | 0.057 | ||||
NO | 22 | 32.4% | 13 | 22.8% | 44 | 32.1% | 40 | 44% | ||||||
Supermarket with parents | YES | 61 | 91% | 51 | 87.9% | 130 | 94.2% | 74 | 83.1% | 0.057 | ||||
NO | 6 | 9% | 7 | 12.1% | 8 | 5.8% | 15 | 16.9% | ||||||
Frequency of taking in school homemade snack | 1–2 times/week | 6 | 9.5% | 8 | 14.8% | 12 | 9.9% | 14 | 18.9% | 0.026 * | ||||
3–5 times/week | 7 | 11.1% | 13 | 24.1% | 30 | 24.8% | 23 | 31.1% | ||||||
every day | 50 | 79.4% | 33 | 61.1% | 79 | 65.3% | 37 | 50% | ||||||
Daily breakfast consumption | YES | 63 | 92.6% | 45 | 77.6% | 110 | 80.3% | 64 | 71.1% | 0.010 * | ||||
NO | 5 | 7.4% | 13 | 22.4% | 27 | 19.7% | 26 | 28.9% | ||||||
Beverage consumption | YES | 31 | 47% | 37 | 66.1% | 92 | 67.6% | 70 | 76.9% | 0.001 * | ||||
NO | 35 | 53% | 19 | 33.9% | 44 | 32.4% | 21 | 23.1% | ||||||
Fast food consumption per week | none | 44.8% | 15 | 26.3% | 22 | 16.2% | 11 | 12.1% | 0.011 * | |||||
1–2 times/week | 30 | 44.8% | 34 | 59.6% | 98 | 72.1% | 60 | 65.9% | ||||||
3–4 times/week | 4 | 6% | 5 | 8.8% | 9 | 6.6% | 13 | 14.3% | ||||||
every day | 3 | 4.5% | 3 | 5.3% | 7 | 5.1% | 7 | 7.7% | ||||||
Variables | Hours/Day of TV Viewing | Chi-Square Test of Association | ||||||||||||
0 | 1 h | 2–3 h | >3 h/day | |||||||||||
Ν | % | Ν | % | Ν | % | Ν | % | p-Value | ||||||
Cooking with parents | YES | 2 | 100% | 47 | 60.3% | 40 | 76.9% | 9 | 56.3% | 0.156 | ||||
NO | 0 | 0% | 31 | 39.7% | 12 | 23.1% | 7 | 43.8% | ||||||
Supermarket with parents | YES | 2 | 66.7% | 73 | 93.6% | 47 | 90.4% | 12 | 75% | 0.269 | ||||
NO | 1 | 33.3% | 5 | 6.4% | 5 | 9.6% | 4 | 25% | ||||||
Frequency of taking in school homemade snack | 1–2 times/week | 0 | 0% | 12 | 17.4% | 5 | 10.4% | 0 | 0% | 0.560 | ||||
3–5 times/week | 0 | 0% | 14 | 20.3% | 12 | 25.% | 3 | 21.4% | ||||||
every day | 2 | 100% | 43 | 62.3% | 31 | 64.6% | 11 | 78.6% | ||||||
Daily breakfast consumption | YES | 2 | 66.7% | 64 | 82.1% | 41 | 78.8% | 12 | 75% | 0.680 | ||||
NO | 1 | 33.3% | 14 | 17.9% | 11 | 21.2% | 4 | 25.% | ||||||
Beverage consumption | YES | 4 | 50% | 108 | 58.1% | 89 | 72.4% | 23 | 88.5% | 0.030 * | ||||
NO | 4 | 50% | 78 | 41.9% | 34 | 27.6% | 3 | 11.5% | ||||||
Fast food consumption per week | none | 2 | 25% | 54 | 29% | 21 | 16.9% | 3 | 11.5% | 0.024 * | ||||
1–2 times/week | 2 | 25% | 110 | 59.1% | 84 | 67.7% | 18 | 69.2% | ||||||
3–4 times/week | 2 | 25% | 12 | 6.5% | 14 | 11.3% | 3 | 11.5% | ||||||
every day | 2 | 25% | 10 | 5.4% | 5 | 4.0% | 2 | 7.7% | ||||||
Variables | Hours Video Gaming/day | |||||||||||||
0 | 1 | 2 | 3 | 4 | ≥5 h | |||||||||
Ν | % | Ν | % | Ν | % | Ν | % | Ν | % | Ν | % | p-Value | ||
Cooking with parents | YES | 37 | 78.7% | 62 | 76.5% | 51 | 66.2% | 24 | 58.5% | 18 | 60% | 14 | 50% | 0.035 * |
NO | 10 | 21.3% | 19 | 23.5% | 26 | 33.8% | 17 | 41.5% | 12 | 40% | 14 | 50% | ||
Supermarket with parents | YES | 45 | 95.7% | 74 | 92.5% | 72 | 93.5% | 37 | 90.2% | 26 | 86.7% | 23 | 82.1% | 0.269 |
NO | 2 | 4.3% | 6 | 7.5% | 5 | 6.5% | 4 | 9.8% | 4 | 13.3% | 5 | 17.9% | ||
Frequency of taking in school homemade snack | every day | 36 | 76.6% | 47 | 62.7% | 33 | 50.8% | 20 | 58.8% | 11 | 42.3% | 18 | 72% | 0.243 |
1–2 times/week | 1 | 2.1% | 10 | 13.3% | 14 | 21.5% | 3 | 8.8% | 8 | 30.8% | 2 | 8% | ||
3–5 times/week | 10 | 21.3% | 18 | 24% | 18 | 27.7% | 11 | 32.4% | 7 | 26.9% | 5 | 20% | ||
Daily breakfast consumption | YES | 38 | 80.9% | 68 | 84% | 59 | 76.6% | 30 | 73.2% | 21 | 72.4% | 18 | 64.3% | 0.680 |
NO | 9 | 19.1% | 13 | 16% | 18 | 23.4% | 11 | 26.8% | 8 | 27.6% | 10 | 35.7% | ||
Beverage consumption | YES | 25 | 54.3% | 50 | 62.5% | 53 | 69.7% | 29 | 70.7% | 26 | 86.7% | 27 | 96.4% | <0.001 * |
NO | 21 | 45.7% | 30 | 37.5% | 23 | 30.3% | 12 | 29.3% | 4 | 13.3% | 1 | 3.6% | ||
Fast food consumption per week | none | 14 | 29.8% | 18 | 22.5% | 15 | 19.7% | 5 | 12.5% | 3 | 10% | 1 | 3.6% | 0.028 * |
every day | 0 | 0% | 3 | 3.8% | 6 | 7.9% | 2 | 5% | 4 | 13.3% | 2 | 7.1% | ||
1–2 times/week | 29 | 61.7% | 51 | 63.7% | 49 | 64.5% | 30 | 75% | 17 | 56.7% | 23 | 82.1% | ||
3–4 times/week | 4 | 8.5% | 8 | 10% | 6 | 7.9% | 3 | 7.5% | 6 | 20% | 2 | 7.1% |
Variables | Hours/Day in Front of Screens (Laptop, Computer, Tablet, Mobile Phone) | N | ΜO | ΤA | F | p-Value |
---|---|---|---|---|---|---|
KIDMED score | 1–2 h/week | 66 | 7.6212 | 2.42275 | 7.937 | <0.001 * |
3–4 h/week | 55 | 6.7455 | 2.44357 | |||
1–2 h/day | 133 | 6.7594 | 2.38731 | |||
>3 h/day | 82 | 5.6585 | 2.63977 | |||
Natural Functional Foods consumption | 1–2 h/week | 69 | 3.4695 | 0.7738 | 7.227 | <0.001 * |
3–4 h/week | 58 | 3.368 | 0.75888 | |||
1–2 h/day | 138 | 3.1833 | 0.73704 | |||
>3 h/day | 91 | 2.9504 | 0.7612 | |||
TV viewing frequency | N | ΜO | ΤA | F | p-value | |
KIDMED score | none | 7 | 5.43 | 4.35 | 5.4 | 0.001 * |
1–2 times/week | 72 | 7.40 | 2.54 | |||
3–4 times/week | 83 | 6.92 | 2.35 | |||
Every day | 172 | 6.15 | 2.43 | |||
Natural Functional Foods consumption | none | 7 | 3.27 | 0.84 | 9.4 | <0.001 * |
1–2 times/week | 73 | 3.44 | 0.78 | |||
3–4 times/week | 89 | 3.40 | 0.65 | |||
Every day | 183 | 3.00 | 0.76 | |||
Hours of video gaming per day | N | ΜO | ΤA | F | p-value | |
KIDMED score | 0 | 47 | 7.0638 | 2.6817 | 2.95 | 0.013 * |
1 | 79 | 7.0253 | 2.48573 | |||
2 | 73 | 6.6712 | 2.53889 | |||
3 | 36 | 6.2222 | 2.36777 | |||
4 | 28 | 5.4286 | 2.39488 | |||
5 or more hours | 27 | 5.5926 | 2.76321 | |||
Natural Functional Foods consumption | 0 | 48 | 3.2804 | 0.79706 | 2.75 | 0.019 * |
1 | 81 | 3.3222 | 0.73073 | |||
2 | 77 | 3.2864 | 0.79241 | |||
3 | 41 | 3.0342 | 0.56362 | |||
4 | 30 | 3.0839 | 0.86578 | |||
5 or more hours | 28 | 2.8197 | 0.6679 |
Variables | Parents | Chi-Square Test of Association p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Total | Mothers | Fathers | ||||||
N | % | N | % | N | % | |||
Region | City (Thessaloniki) | 105 | 66% | 92 | 66.2% | 13 | 65% | 0.917 |
Island (Lemnos) | 54 | 34% | 47 | 33.8% | 7 | 35% | ||
Occupation type | private employee | 54 | 34% | 49 | 35.3% | 5 | 25% | 0.679 |
public employee | 52 | 32.7% | 44 | 31.7% | 8 | 40% | ||
freelancer/self-employed | 31 | 19.5% | 26 | 18.7% | 5 | 25% | ||
Unemployed/Household/other | 22 | 13.8% | 20 | 14.4% | 2 | 10% | ||
Education | Complete High School | 29 | 18.2% | 23 | 16.5% | 6 | 30% | 0.333 |
Institute of Vocational Training | 32 | 20.1% | 29 | 20.9% | 3 | 15% | ||
College-educated | 98 | 61.6% | 87 | 62.6% | 11 | 55% | ||
Annual income | <15,000€ | 50 | 31.4% | 47 | 33.8% | 3 | 15% | 0.207 |
15,000–30,000€ | 88 | 55.3% | 75 | 54.0% | 13 | 65% | ||
>30,000€ | 21 | 13.2% | 17 | 12.2% | 4 | 20% | ||
Smoking | YES | 60 | 37.7% | 53 | 38.1% | 7 | 35% | 0.787 |
NO | 99 | 62.3% | 86 | 61.9% | 13 | 65% | ||
Beverage consumption | YES | 53 | 33.3% | 42 | 30.2% | 11 | 55% | 0.028 * |
NO | 106 | 66.7% | 97 | 69.8% | 9 | 45% | ||
Fast food consumption/week | none | 62 | 39% | 57 | 41% | 5 | 25% | 0.612 |
1 time/ween | 73 | 45.9% | 62 | 44.6% | 11 | 55% | ||
2 times/week | 18 | 11.3% | 15 | 10.8% | 3 | 15% | ||
3–5 times/week | 2 | 1.3% | 2 | 1.4% | 0 | 0% | ||
every day | 4 | 2.5% | 3 | 2.2% | 1 | 5% | ||
Exercise/week | none | 45 | 28.3% | 37 | 26.6% | 8 | 40% | 0.427 |
1–2 times/week | 82 | 51.6% | 74 | 53.2% | 8 | 40% | ||
>3 times/week | 32 | 20.1% | 28 | 20.1% | 4 | 20% |
Variables | Gender | t-Test p-Value | |||||
---|---|---|---|---|---|---|---|
Total | Women/Girls | Men/Boys | |||||
M | SD | M | SD | M | SD | ||
Parents’ BMI | 24.75 | 4.70 | 24.35 | 4.73 | 27.67 | 3.27 | 0.004 * |
children’s BMI | 18.62 | 3.12 | 18.62 | 3.20 | 18.60 | 2.59 | 0.981 |
Parents’ MedDiet Score | 34.04 | 3.17 | 34.12 | 3.05 | 33.50 | 3.97 | 0.508 |
Variables | Children’s BMI | KIDMED Score |
---|---|---|
KIDMED score | −0.190 * | -- |
MedDiet score | −0.029 | 0.144 |
Parents’ BMI | 0.314 ** | −0.118 |
Variables | Total Sample (N = 137) | Family Clusters (Parent-Child Dyads) | ||||
---|---|---|---|---|---|---|
1st Cluster—Families with Healthier Eating Habits (n = 70) | 2nd Cluster—Families with Less Healthy Eating Habits (n = 67) | |||||
M | SD | M | SD | M | SD | |
Parents’ BMI | 24.68 | 4.67 | 22.98a | 3.73 | 26.47b | 4.92 |
Children’s BMI | 18.61 | 3.00 | 17.51a | 2.17 | 19.77b | 3.31 |
MedDiet score | 33.96 | 3.10 | 35.49a | 2.89 | 32.36b | 2.44 |
Parents’ consumption of modified Functional Foods | 3.04 | 0.96 | 3.20a | 1.03 | 2.88b | 0.85 |
Parents’ consumption of natural Functional Foods | 3.18 | 0.53 | 3.42a | 0.51 | 2.92b | 0.43 |
KIDMED score | 6.64 | 2.45 | 7.76a | 2.10 | 5.46b | 2.25 |
Children’s consumption of natural Functional Foods | 3.19 | 0.69 | 3.41a | 0.71 | 2.96b | 0.58 |
Number of meals children eat per day | 4.58 | 1.13 | 4.89a | 0.96 | 4.25b | 1.21 |
Variables | Family Clusters | |||||
---|---|---|---|---|---|---|
Families with Healthier Eating Habits (n = 70) | Families with Less Healthy Eating Habits (n = 67) | Chi-Square Test of Association p-Value | ||||
N | % | N | % | |||
Parents’ fitness program/week | none | 13 | 18.6% | 22 | 32.8% | 0.068 |
1–2 times/week | 39 | 55.7% | 36 | 53.7% | ||
>3 times/week | 18 | 25.7% | 9 | 13.4% | ||
Watching TV | YES | 68 | 97.1% | 65 | 97% | 0.674 |
NO | 2 | 2.9% | 2 | 3% | ||
TV viewing frequency | none | 1 | 1.5% | 2 | 3% | 0.708 |
1–2 times/week | 18 | 26.5% | 13 | 19.4% | ||
3–4 times/week | 15 | 22.1% | 14 | 20.9% | ||
every day | 34 | 50% | 38 | 56.7% | ||
TV viewing hours | none | 1 | 1.5% | 2 | 3.1% | 0.197 |
1 h | 40 | 59.7% | 28 | 43.1% | ||
2–3 h | 22 | 32.8% | 26 | 40% | ||
>4 h | 4 | 6% | 9 | 13.8% | ||
Hours/day in front of screens (laptop, PC, tablet, mobile phone) | none | 0 | 0% | 0 | 0% | 0.065 |
1–2 h/week | 17 | 24.6% | 8 | 12.7% | ||
3–4 h/week | 15 | 21.7% | 16 | 25.4% | ||
1–2 h/day | 29 | 42.0% | 22 | 34.9% | ||
>3 h/day | 8 | 11.6% | 17 | 27.0% | ||
Supermarket with parents | YES | 64 | 91.4% | 59 | 88.1% | 0.515 |
NO | 6 | 8.6% | 8 | 11.9% | ||
Cooking with parents | YES | 51 | 72.9% | 42 | 63.6% | 0.273 |
NO | 19 | 27.1% | 24 | 36.4% | ||
Videogaming hours/day | 0 h | 11 | 19% | 9 | 15.8% | 0.720 |
1 h | 18 | 31% | 17 | 29.8% | ||
2 h | 17 | 29.3% | 12 | 21.1% | ||
3 h | 6 | 10.3% | 8 | 14% | ||
4 h | 3 | 5.2% | 5 | 8.8% | ||
≥5 h | 3 | 5.2% | 6 | 10.5% | ||
Frequency of Breakfast consumption in children | every day | 45 | 75% | 37 | 74% | 0.758 |
1–2 times/week | 6 | 10% | 7 | 14% | ||
3–5 times/week | 9 | 15% | 6 | 12% | ||
Frequency of Fast Food consumption in parents | none | 30 | 42.9% | 25 | 37.3% | 0.802 |
1–2 times/week | 38 | 54.3% | 40 | 59.7% | ||
≥3 times/week | 2 | 2.9% | 2 | 3% | ||
Frequency of Fast-Food consumption in children | none | 21 | 30% | 19 | 28.4% | 0.049 * |
1–2 times/week | 45 | 64.3% | 35 | 52.2% | ||
≥3 times/week | 4 | 5.7% | 13 | 19.4% | ||
Children’s Beverage consumption | YES | 43 | 63.2% | 46 | 68.7% | 0.506 |
NO | 25 | 36.8% | 21 | 31.3% | ||
Sweet consumption/week | none | 6 | 8.6% | 1 | 1.5% | 0.231 |
every day | 13 | 18.6% | 17 | 25.4% | ||
1–2 times/week | 31 | 44.3% | 32 | 47.8% | ||
3–4 times/week | 20 | 28.6% | 17 | 25.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Votsi, I.C.; Koutelidakis, A.Ε. How Screen Time Affects Greek Schoolchildren’s Eating Habits and Functional Food Consumption?—A Cross-Sectional Study. Nutrients 2025, 17, 1311. https://doi.org/10.3390/nu17081311
Votsi IC, Koutelidakis AΕ. How Screen Time Affects Greek Schoolchildren’s Eating Habits and Functional Food Consumption?—A Cross-Sectional Study. Nutrients. 2025; 17(8):1311. https://doi.org/10.3390/nu17081311
Chicago/Turabian StyleVotsi, Irene Chrysovalantou, and Antonios Ε. Koutelidakis. 2025. "How Screen Time Affects Greek Schoolchildren’s Eating Habits and Functional Food Consumption?—A Cross-Sectional Study" Nutrients 17, no. 8: 1311. https://doi.org/10.3390/nu17081311
APA StyleVotsi, I. C., & Koutelidakis, A. Ε. (2025). How Screen Time Affects Greek Schoolchildren’s Eating Habits and Functional Food Consumption?—A Cross-Sectional Study. Nutrients, 17(8), 1311. https://doi.org/10.3390/nu17081311