The Association Between Lifestyle Interventions and Trimethylamine N-Oxide: A Systematic-Narrative Hybrid Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Question
2.2. Search Strategy
2.3. Study Selection
2.4. Data Extraction
3. Results
3.1. Studies Including Exercise-Based Interventions
3.2. Studies Including Nutrition-Based Interventions
3.2.1. Positive Effect on TMAO Concentration
3.2.2. Negative Effect on TMAO Concentration
3.2.3. Neutral Effect on TMAO Concentration
3.3. Studies Including Lifestyle Interventions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shanmugham, M.; Bellanger, S.; Leo, C.H. Gut-Derived Metabolite, Trimethylamine-N-Oxide (TMAO) in Cardio-Metabolic Diseases: Detection, Mechanism, and Potential Therapeutics. Pharmaceuticals 2023, 16, 504. [Google Scholar] [CrossRef]
- Yang, S.; Li, X.; Yang, F.; Zhao, R.; Pan, X.; Liang, J.; Tian, L.; Li, X.; Liu, L.; Xing, Y.; et al. Gut Microbiota-Dependent Marker TMAO in Promoting Cardiovascular Disease: Inflammation Mechanism, Clinical Prognostic, and Potential as a Therapeutic Target. Front. Pharmacol. 2019, 10, 1360. [Google Scholar] [CrossRef]
- Chen, Y.M.; Liu, Y.; Zhou, R.F.; Chen, X.L.; Wang, C.; Tan, X.Y.; Wang, L.J.; Zheng, R.D.; Zhang, H.W.; Ling, W.H.; et al. Associations of Gut-Flora-Dependent Metabolite Trimethylamine-N-Oxide, Betaine and Choline with Non-Alcoholic Fatty Liver Disease in Adults. Sci. Rep. 2016, 6, 19076. [Google Scholar] [CrossRef]
- Barrea, L.; Annunziata, G.; Muscogiuri, G.; Laudisio, D.; Di Somma, C.; Maisto, M.; Tenore, G.C.; Colao, A.; Savastano, S. Trimethylamine N-Oxide, Mediterranean Diet, and Nutrition in Healthy, Normal-Weight Adults: Also a Matter of Sex? Nutrition 2019, 62, 7–17. [Google Scholar] [CrossRef]
- Iglesias-Carres, L.; Hughes, M.D.; Steele, C.N.; Ponder, M.A.; Davy, K.P.; Neilson, A.P. Use of Dietary Phytochemicals for Inhibition of Trimethylamine N-Oxide Formation. J. Nutr. Biochem. 2021, 91, 108600. [Google Scholar] [CrossRef]
- Brunt, V.E.; Casso, A.G.; Gioscia-Ryan, R.A.; Sapinsley, Z.J.; Ziemba, B.P.; Clayton, Z.S.; Bazzoni, A.E.; Vandongen, N.S.; Richey, J.J.; Hutton, D.A.; et al. Gut Microbiome-Derived Metabolite Trimethylamine N-Oxide Induces Aortic Stiffening and Increases Systolic Blood Pressure With Aging in Mice and Humans. Hypertension 2021, 78, 499–511. [Google Scholar] [CrossRef]
- Casso, A.G.; Gioscia-Ryan, R.A.; Sapinsley, Z.J.; Van Dongen, N.S.; Bazzoni, A.E.; Neilson, A.P.; Zigler, M.C.; Davy, K.P.; Seals, D.R.; Brunt, V.E. YI 1.4 Increases in Circulating Trimethylamine-N-Oxide Contribute to the Development of Age-Related Aortic Stiffness in Humans and Mice. Artery Res. 2020, 26, S4. [Google Scholar] [CrossRef]
- Mudimela, S.; Vishwanath, N.K.; Pillai, A.; Morales, R.; Marrelli, S.P.; Barichello, T.; Giridharan, V.V. Clinical Significance and Potential Role of Trimethylamine N-Oxide in Neurological and Neuropsychiatric Disorders. Drug Discov. Today 2022, 27, 103334. [Google Scholar] [CrossRef]
- Xiao, Y.L.; Gong, Y.; Qi, Y.J.; Shao, Z.M.; Jiang, Y.Z. Effects of Dietary Intervention on Human Diseases: Molecular Mechanisms and Therapeutic Potential. Signal Transduct. Target. Ther. 2024, 9, 59. [Google Scholar] [CrossRef]
- Costabile, G.; Vetrani, C.; Bozzetto, L.; Giacco, R.; Bresciani, L.; Del Rio, D.; Vitale, M.; Della Pepa, G.; Brighenti, F.; Riccardi, G.; et al. Plasma TMAO Increase after Healthy Diets: Results from 2 Randomized Controlled Trials with Dietary Fish, Polyphenols, and Whole-Grain Cereals. Am. J. Clin. Nutr. 2021, 114, 1342–1350. [Google Scholar] [CrossRef]
- Wang, Z.; Bergeron, N.; Levison, B.S.; Li, X.S.; Chiu, S.; Xun, J.; Koeth, R.A.; Lin, L.; Wu, Y.; Tang, W.H.W.; et al. Impact of Chronic Dietary Red Meat, White Meat, or Non-Meat Protein on Trimethylamine N-Oxide Metabolism and Renal Excretion in Healthy Men and Women. Eur. Heart J. 2019, 40, 583–594. [Google Scholar] [CrossRef]
- Fatani, A.M.N.; Suh, J.H.; Auger, J.; Alabasi, K.M.; Wang, Y.; Segal, M.S.; Dahl, W.J. Pea Hull Fiber Supplementation Does Not Modulate Uremic Metabolites in Adults Receiving Hemodialysis: A Randomized, Double-Blind, Controlled Trial. Front. Nutr. 2023, 10, 1179295. [Google Scholar] [CrossRef]
- Argyridou, S.; Bernieh, D.; Henson, J.; Edwardson, C.L.; Davies, M.J.; Khunti, K.; Suzuki, T.; Yates, T. Associations between Physical Activity and Trimethylamine N-Oxide in Those at Risk of Type 2 Diabetes. BMJ Open Diabetes Res. Care 2020, 8, e001359. [Google Scholar] [CrossRef]
- Turnbull, D.; Chugh, R.; Luck, J. Systematic-Narrative Hybrid Literature Review: A Strategy for Integrating a Concise Methodology into a Manuscript. Soc. Sci. Humanit. Open 2023, 7, 100381. [Google Scholar] [CrossRef]
- Argyridou, S.; Davies, M.J.; Biddle, G.J.H.; Bernieh, D.; Suzuki, T.; Dawkins, N.P.; Rowlands, A.V.; Khunti, K.; Smith, A.C.; Yates, T. Evaluation of an 8-Week Vegan Diet on Plasma Trimethylamine-N-Oxide and Postchallenge Glucose in Adults with Dysglycemia or Obesity. J. Nutr. 2021, 151, 1844–1853. [Google Scholar] [CrossRef]
- Chiu, T.H.T.; Kao, Y.C.; Wang, L.Y.; Chang, H.R.; Lin, C.L. A Dietitian-Led Vegan Program May Improve GlycA, and Other Novel and Traditional Cardiometabolic Risk Factors in Patients With Dyslipidemia: A Pilot Study. Front. Nutr. 2022, 9, 807810. [Google Scholar] [CrossRef]
- Diao, Z.; Molludi, J.; Latef Fateh, H.; Moradi, S. Comparison of the Low-Calorie DASH Diet and a Low-Calorie Diet on Serum TMAO Concentrations and Gut Microbiota Composition of Adults with Overweight/Obesity: A Randomized Control Trial. Int. J. Food Sci. Nutr. 2024, 75, 207–220. [Google Scholar] [CrossRef]
- O’Connor, L.E.; Paddon-Jones, D.; Wright, A.J.; Campbell, W.W. A Mediterranean-Style Eating Pattern with Lean, Unprocessed Red Meat Has Cardiometabolic Benefits for Adults Who Are Overweight or Obese in a Randomized, Crossover, Controlled Feeding Trial. Am. J. Clin. Nutr. 2018, 108, 33–40. [Google Scholar] [CrossRef]
- Krishnan, S.; O’Connor, L.E.; Wang, Y.; Gertz, E.R.; Campbell, W.W.; Bennett, B.J. Adopting a Mediterranean-Style Eating Pattern with Low, but Not Moderate, Unprocessed, Lean Red Meat Intake Reduces Fasting Serum Trimethylamine N-Oxide (TMAO) in Adults Who Are Overweight or Obese. Br. J. Nutr. 2021, 128, 1738–1746. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, T.; Zhang, L.; Ke, B.; Qin, J. Fasting Therapy Contributes to the Improvement of Endothelial Function and Decline in Vascular Injury-Related Markers in Overweight and Obese Individuals via Activating Autophagy of Endothelial Progenitor Cells. Evid. Based Complement. Alternat Med. 2020, 2020, 3576030. [Google Scholar] [CrossRef]
- Verde, L.; Cacciapuoti, S.; Caiazzo, G.; Megna, M.; Martora, F.; Cavaliere, A.; Mattera, M.; Maisto, M.; Tenore, G.C.; Colao, A.; et al. Very Low-Calorie Ketogenic Diet (VLCKD) in the Management of Hidradenitis Suppurativa (Acne Inversa): An Effective and Safe Tool for Improvement of the Clinical Severity of Disease. Results of a Pilot Study. J. Transl. Med. 2024, 22, 149. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Lorenzen, J.K.; Astrup, A.; Larsen, L.H.; Yde, C.C.; Clausen, M.R.; Bertram, H.C. Metabolic Effects of a 24-Week Energy-Restricted Intervention Combined with Low or High Dairy Intake in Overweight Women: An NMR-Based Metabolomics Investigation. Nutrients 2016, 8, 108. [Google Scholar] [CrossRef] [PubMed]
- Barton, S.; Navarro, S.L.; Buas, M.F.; Schwarz, Y.; Gu, H.; Djukovic, D.; Raftery, D.; Kratz, M.; Neuhouser, M.L.; Lampe, J.W. Targeted Plasma Metabolome Response to Variations in Dietary Glycemic Load in a Randomized, Controlled, Crossover Feeding Trial in Healthy Adults. Food Funct. 2015, 6, 2949–2956. [Google Scholar] [CrossRef]
- Bergeron, N.; Williams, P.T.; Lamendella, R.; Faghihnia, N.; Grube, A.; Li, X.; Wang, Z.; Knight, R.; Jansson, J.K.; Hazen, S.L.; et al. Diets High in Resistant Starch Increase Plasma Levels of Trimethylamine-N-Oxide, a Gut Microbiome Metabolite Associated with CVD Risk. Br. J. Nutr. 2016, 116, 2020–2029. [Google Scholar] [CrossRef]
- Boutagy, N.E.; Neilson, A.P.; Osterberg, K.L.; Smithson, A.T.; Englund, T.R.; Davy, B.M.; Hulver, M.W.; Davy, K.P. Short-Term High-Fat Diet Increases Postprandial Trimethylamine-N-Oxide in Humans. Nutr. Res. 2015, 35, 858–864. [Google Scholar] [CrossRef]
- Mitchell, S.M.; Milan, A.M.; Mitchell, C.J.; Gillies, N.A.; D’souza, R.F.; Zeng, N.; Ramzan, F.; Sharma, P.; Knowles, S.O.; Roy, N.C.; et al. Protein Intake at Twice the RDA in Older Men Increases Circulatory Concentrations of the Microbiome Metabolite Trimethylamine-N-Oxide (TMAO). Nutrients 2019, 11, 2207. [Google Scholar] [CrossRef]
- Park, J.E.; Miller, M.; Rhyne, J.; Wang, Z.; Hazen, S.L. Differential Effect of Short-Term Popular Diets on TMAO and Other Cardio-Metabolic Risk Markers. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 513–517. [Google Scholar] [CrossRef]
- Miller, M.; Beach, V.; Sorkin, J.D.; Mangano, C.; Dobmeier, C.; Novacic, D.; Rhyne, J.; Vogel, R.A. Comparative Effects of Three Popular Diets on Lipids, Endothelial Function, and C-Reactive Protein during Weight Maintenance. J. Am. Diet. Assoc. 2009, 109, 713–717. [Google Scholar] [CrossRef]
- Rasmussen, L.G.; Winning, H.; Savorani, F.; Toft, H.; Larsen, T.M.; Dragsted, L.O.; Astrup, A.; Engelsen, S.B. Assessment of the Effect of High or Low Protein Diet on the Human Urine Metabolome as Measured by NMR. Nutrients 2012, 4, 112–131. [Google Scholar] [CrossRef]
- Schmedes, M.; Balderas, C.; Aadland, E.K.; Jacques, H.; Lavigne, C.; Graff, I.E.; Eng, Ø.; Holthe, A.; Mellgren, G.; Young, J.F.; et al. The Effect of Lean-Seafood and Non-Seafood Diets on Fasting and Postprandial Serum Metabolites and Lipid Species: Results from a Randomized Crossover Intervention Study in Healthy Adults. Nutrients 2018, 10, 598. [Google Scholar] [CrossRef]
- Stella, C.; Beckwith-Hall, B.; Cloarec, O.; Holmes, E.; Lindon, J.C.; Powell, J.; Van Der Ouderaa, F.; Bingham, S.; Cross, A.J.; Nicholson, J.K. Susceptibility of Human Metabolic Phenotypes to Dietary Modulation. J. Proteome Res. 2006, 5, 2780–2788. [Google Scholar] [CrossRef] [PubMed]
- Tate, B.N.; Van Guilder, G.P.; Aly, M.; Spence, L.A.; Diaz-Rubio, M.E.; Le, H.H.; Johnson, E.L.; McFadden, J.W.; Perry, C.A. Changes in Choline Metabolites and Ceramides in Response to a DASH-Style Diet in Older Adults. Nutrients 2023, 15, 3687. [Google Scholar] [CrossRef] [PubMed]
- Genoni, A.; Lo, J.; Lyons-Wall, P.; Boyce, M.C.; Christophersen, C.T.; Bird, A.; Devine, A. A Paleolithic Diet Lowers Resistant Starch Intake but Does Not Affect Serum Trimethylamine-N-Oxide Concentrations in Healthy Women. Br. J. Nutr. 2019, 121, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Griffin, L.E.; Djuric, Z.; Angiletta, C.J.; Mitchell, C.M.; Baugh, M.E.; Davy, K.P.; Neilson, A.P. A Mediterranean Diet Does Not Alter Plasma Trimethylamine N-Oxide Concentrations in Healthy Adults at Risk for Colon Cancer. Food Funct. 2019, 10, 2138–2147. [Google Scholar] [CrossRef]
- Sacks, F.M.; Bray, G.A.; Carey, V.J.; Smith, S.R.; Ryan, D.H.; Anton, S.D.; McManus, K.; Champagne, C.M.; Bishop, L.M.; Laranjo, N.; et al. Comparison of Weight-Loss Diets with Different Compositions of Fat, Protein, and Carbohydrates. N. Engl. J. Med. 2009, 360, 859–873. [Google Scholar] [CrossRef]
- Heianza, Y.; Sun, D.; Smith, S.R.; Bray, G.A.; Sacks, F.M.; Qi, L. Changes in Gut Microbiota-Related Metabolites and Long-Term Successful Weight Loss in Response to Weight-Loss Diets: The POUNDS Lost Trial. Diabetes Care 2018, 41, 413–419. [Google Scholar] [CrossRef]
- Videja, M.; Sevostjanovs, E.; Upmale-Engela, S.; Liepinsh, E.; Konrade, I.; Dambrova, M. Fasting-Mimicking Diet Reduces Trimethylamine N-Oxide Levels and Improves Serum Biochemical Parameters in Healthy Volunteers. Nutrients 2022, 14, 1093. [Google Scholar] [CrossRef]
- Wiese, G.N.; Biruete, A.; Stremke, E.R.; Lindemann, S.R.; Jannasch, A.; Moorthi, R.N.; Moe, S.M.; Swanson, K.S.; Cross, T.W.; Hill Gallant, K.M. Gut Microbiota and Uremic Retention Solutes in Adults With Moderate CKD: A 6-Day Controlled Feeding Study. J. Ren. Nutr. 2024, 34, 26–34. [Google Scholar] [CrossRef]
- Ahrens, A.P.; Culpepper, T.; Saldivar, B.; Anton, S.; Stoll, S.; Handberg, E.M.; Xu, K.; Pepine, C.; Triplett, E.W.; Aggarwal, M. A Six-Day, Lifestyle-Based Immersion Program Mitigates Cardiovascular Risk Factors and Induces Shifts in Gut Microbiota, Specifically Lachnospiraceae, Ruminococcaceae, Faecalibacterium Prausnitzii: A Pilot Study. Nutrients 2021, 13, 3459. [Google Scholar] [CrossRef]
- Battillo, D.J.; Malin, S.K. Impact of Caloric Restriction and Exercise on Trimethylamine N-Oxide Metabolism in Women with Obesity. Nutrients 2023, 15, 1455. [Google Scholar] [CrossRef]
- Erickson, M.L.; Malin, S.K.; Wang, Z.; Mark Brown, J.; Hazen, S.L.; Kirwan, J.P. Effects of Lifestyle Intervention on Plasma Trimethylamine N-Oxide in Obese Adults. Nutrients 2019, 11, 179. [Google Scholar] [CrossRef] [PubMed]
- Steele, C.N.; Baugh, M.E.; Griffin, L.E.; Neilson, A.P.; Davy, B.M.; Hulver, M.W.; Davy, K.P. Fasting and Postprandial Trimethylamine N-Oxide in Sedentary and Endurance-Trained Males Following a Short-Term High-Fat Diet. Physiol. Rep. 2021, 9, e14970. [Google Scholar] [CrossRef] [PubMed]
- Guedes, M.R.; da Silva Pontes, K.S.; Valença, D.C.T.; Oigman, W.; Neves, M.F.; Klein, M.R.S.T. Rationale and Design of a Randomized Controlled Trial to Evaluate the Effects of Probiotics during Energy Restriction on Blood Pressure, Body Composition, Metabolic Profile and Vascular Function in Obese Hypertensive Individuals. Artery Res. 2020, 26, 102–110. [Google Scholar] [CrossRef]
- Cho, C.E.; Caudill, M.A. Trimethylamine-N-Oxide: Friend, Foe, or Simply Caught in the Cross-Fire? Trends Endocrinol. Metab. 2017, 28, 121–130. [Google Scholar] [CrossRef]
- Nowiński, A.; Ufnal, M. Trimethylamine N-Oxide: A Harmful, Protective or Diagnostic Marker in Lifestyle Diseases? Nutrition 2018, 46, 7–12. [Google Scholar] [CrossRef]
- Zeisel, S.H.; Warrier, M. Trimethylamine N-Oxide, the Microbiome, and Heart and Kidney Disease. Annu. Rev. Nutr. 2017, 37, 157–181. [Google Scholar] [CrossRef]
- Kohlmeier, M.; Da Costa, K.A.; Fischer, L.M.; Zeisel, S.H. Genetic Variation of Folate-Mediated One-Carbon Transfer Pathway Predicts Susceptibility to Choline Deficiency in Humans. Proc. Natl. Acad. Sci. USA 2005, 102, 16025–16030. [Google Scholar] [CrossRef]
- Mohan, D.; Mente, A.; Dehghan, M.; Rangarajan, S.; O’Donnell, M.; Hu, W.; Dagenais, G.; Wielgosz, A.; Lear, S.; Wei, L.; et al. Associations of Fish Consumption With Risk of Cardiovascular Disease and Mortality Among Individuals With or Without Vascular Disease From 58 Countries. JAMA Intern. Med. 2021, 181, 631–649. [Google Scholar] [CrossRef]
- Drouin-Chartier, J.P.; Chen, S.; Li, Y.; Schwab, A.L.; Stampfer, M.J.; Sacks, F.M.; Rosner, B.; Willett, W.C.; Hu, F.B.; Bhupathiraju, S.N. Egg Consumption and Risk of Cardiovascular Disease: Three Large Prospective US Cohort Studies, Systematic Review, and Updated Meta-Analysis. BMJ 2020, 368, m513. [Google Scholar] [CrossRef]
- Wiese, G.N.; Biruete, A.; Moorthi, R.N.; Moe, S.M.; Lindemann, S.R.; Hill Gallant, K.M. Plant-Based Diets, the Gut Microbiota, and Trimethylamine N-Oxide Production in Chronic Kidney Disease: Therapeutic Potential and Methodological Considerations. J. Ren. Nutr. 2021, 31, 121–131. [Google Scholar] [CrossRef]
- O’Sullivan, O.; Cronin, O.; Clarke, S.F.; Murphy, E.F.; Molloy, M.G.; Shanahan, F.; Cotter, P.D. Exercise and the Microbiota. Gut Microbes 2015, 6, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Guo, Y.; Gui, Y.; Xu, D. Physical Exercise, Gut, Gut Microbiota, and Atherosclerotic Cardiovascular Diseases. Lipids Health Dis. 2018, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.R.; Hawley, J.A. Update on the Effects of Physical Activity on Insulin Sensitivity in Humans. BMJ Open Sport. Exerc. Med. 2017, 2. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The Anti-Inflammatory Effects of Exercise: Mechanisms and Implications for the Prevention and Treatment of Disease. Nat. Rev. Immunol. 2011, 11, 607–610. [Google Scholar] [CrossRef]
- Boulangé, C.L.; Neves, A.L.; Chilloux, J.; Nicholson, J.K.; Dumas, M.E. Impact of the Gut Microbiota on Inflammation, Obesity, and Metabolic Disease. Genome Med. 2016, 8, 42. [Google Scholar] [CrossRef]
- Yu, D.; Shu, X.O.; Rivera, E.S.; Zhang, X.; Cai, Q.; Calcutt, M.W.; Xiang, Y.B.; Li, H.; Gao, Y.T.; Wang, T.J.; et al. Urinary Levels of Trimethylamine-N-Oxide and Incident Coronary Heart Disease: A Prospective Investigation Among Urban Chinese Adults. J. Am. Heart Assoc. 2019, 8, e010606. [Google Scholar] [CrossRef]
- Han, J.M.; Guo, L.; Chen, X.H.; Xie, Q.; Song, X.Y.; Ma, Y.L. Relationship between Trimethylamine N-Oxide and the Risk of Hypertension in Patients with Cardiovascular Disease: A Meta-Analysis and Dose-Response Relationship Analysis. Medicine 2024, 103, E36784. [Google Scholar] [CrossRef]
- Kühn, T.; Rohrmann, S.; Sookthai, D.; Johnson, T.; Katzke, V.; Kaaks, R.; Von Eckardstein, A.; Müller, D. Intra-Individual Variation of Plasma Trimethylamine-N-Oxide (TMAO), Betaine and Choline over 1 Year. Clin. Chem. Lab. Med. 2017, 55, 261–268. [Google Scholar] [CrossRef]
- Bradley, E.; Haran, J. The Human Gut Microbiome and Aging. Gut Microbes 2024, 16, 2359677. [Google Scholar] [CrossRef]
- Yoon, K.; Kim, N. Roles of Sex Hormones and Gender in the Gut Microbiota. J. Neurogastroenterol. Motil. 2021, 27, 314–325. [Google Scholar] [CrossRef]
- Brooks, A.W.; Priya, S.; Blekhman, R.; Bordenstein, S.R. Gut Microbiota Diversity across Ethnicities in the United States. PLoS Biol. 2018, 16, e2006842. [Google Scholar] [CrossRef]
- Andrikopoulos, P.; Aron-Wisnewsky, J.; Chakaroun, R.; Myridakis, A.; Forslund, S.K.; Nielsen, T.; Adriouch, S.; Holmes, B.; Chilloux, J.; Vieira-Silva, S.; et al. Evidence of a Causal and Modifiable Relationship between Kidney Function and Circulating Trimethylamine N-Oxide. Nat. Commun. 2023, 14, 5843. [Google Scholar] [CrossRef] [PubMed]
- Missailidis, C.; Hällqvist, J.; Qureshi, A.R.; Barany, P.; Heimbürger, O.; Lindholm, B.; Stenvinkel, P.; Bergman, P. Serum Trimethylamine-N-Oxide Is Strongly Related to Renal Function and Predicts Outcome in Chronic Kidney Disease. PLoS ONE 2016, 11, e0141738. [Google Scholar] [CrossRef]
PICO Acronym Criteria | PICO Items Relevant to Eligibility Criteria |
---|---|
(P) Population | Adults |
(I) Intervention | Any lifestyle intervention, including dietary modifications and/or physical activity |
(C) Comparator | Any lifestyle intervention including control diet, other lifestyle intervention |
(O) Outcomes | TMAO concentrations in blood or urine |
Study ID | Study Design | Population | Interventions | Findings |
---|---|---|---|---|
Studies, including exercise-based intervention | ||||
Argyridou et al., 2020 [13] | Prospective observational data from a cluster RCT | P (Ν = 483) at high risk of T2DM, aged 63.5 ± 7.3 years | Arm 1: “Walking Away from Type 2 Diabetes” structured education program (increase of physical activity levels up to 3000 step/day over baseline levels) Arm 2: Control conditions | 30 min or SD difference in MVPA → 0.584 μmol/L and 0.456 μmol/L ↓ TMAO concentrations |
Studies including nutrition-based intervention | ||||
Argyridou et al., 2021 [15] | Single-center, interventional, single-group, prospective trial | P (N = 23) aged 57.8 ± 10.0 years with overweight and dysglycemia, or obesity | 8-week VD, followed by a 4-week UD | VD: ↓ TMAO levels by week 1, ↓ by week 8 UD: TMAO levels returned to baseline |
Chiu et al., 2022 [16] | One-arm pilot intervention study | P (N = 9) with dyslipidemia, aged 58.4 ± 10.0 years | Vegan diet | TMAO ↓ in previously non-vegetarians P & constant for vegetarians |
Diao et al., 2024 [17] | RCT | P (N = 120) with overweight or obesity, aged 41.68 ± 9.66, 44.12 ± 10.22, 41.73 ± 9.66 years in each arm, respectively | Arm 1: LCD DASH Arm 2: LCD Arm 3: Control diet | ↓ TMAO in LCD and LCD DASH compared to control |
Krishnan et al., 2022 [19] | Randomized, crossover, investigator-blinded, controlled feeding trial | P (N = 39) with overweight or obesity, aged between 30 and 69 years | Arm 1: Med-Red Arm 2: Med-Control | Med-Control ↓ TMAO concentrations compared to Med-Red |
Sun et al., 2020 [20] | Open-label, self-controlled pilot trial | P (N = 13) with overweight or obesity, aged 43.54 ± 10.60 years | 7-day fasting diet 1st day: <800 kcal/day 2nd–6th day: <200 kcal/day 7th day: 800–1000 kcal/day | ↓ TMAO after the intervention |
Verde et al., 2024 [21] | Pilot study | Treatment-naïve women (N = 12) with overweight or obesity, aged 21 to 54 years | VLCKD | ↓ in TMAO concentrations |
Zheng et al., 2016 [22] | RCT | Women (N = 38) with overweight or obesity, aged 45.2 ± 2.9, 41.3 ± 2.7 years in each arm, respectively | Arm 1: LD diet + ED of 500 kcal/day Arm 2: HD diet + ED of 500 kcal/day | HD diet → ↓ urinary TMAO excretion |
Barton et al., 2015 [23] | Randomized, controlled, crossover feeding trial | Healthy individuals (N = 19; men: 31.3 ± 9.2 years, women: 31.9 ± 9.5 years) | Arm 1: HGL Arm 2: LGL | TMAO showed the highest fold change between the diets TMAO 37% ↑ at the end of the LGL compared to the HGL intervention |
Bergeron et al., 2016 [24] | Crossover trial | P (N = 52) with normal BP and overweight or obesity, aged 44 ± 14 years | Baseline diet: 41% carbohydrates, 40% fat, 19% protein Arm 1: High-RS, HC diet Arm 2: High-RS, LC diet Arm 3: Low-RS, HC diet Arm 4: Low-RS, LC diet | ↑ TMAO levels following the high-RS diet in the lower-carbohydrate treatment group (p < 0.01) ⟷ in the higher-carbohydrate treatment group (p = 0.41) |
Boutagy et al., 2015 [25] | Controlled feeding trial | Hypertension and diabetes-free men (N = 10) aged 22.1 ± 0.5 years, with a normal lipidemic profile | 2-week EU control diet followed by a 5-day EU HFD | ↑ plasma TMAO following the high-fat diet |
Costabile et al., 2021 [10] | RCT | P (N = 78) with high cardiometabolic risk, aged 54 ± 9, 56 ± 8, 53 ± 9, 55 ± 9 years in each arm, respectively | Arm 1: control diet, low LCn3 + low PP Arm 2: high in LCn3 + low PP Arm 3: high PP + low LCn3 Arm 4: high PP + high LCn3 | Changes (↑) in TMAO for diets high in LCn3 (p = 0.007), no changes for diets high in PP (p = 0.905) or for their interaction (p = 0.655) |
Mitchell et al., 2019 [26] | RCT | Non-smoker males (N = 29), aged 74.7 ± 3.9, 73.7 ± 3.3 years in each arm, respectively | Arm 1: RDA group (0.8 g protein/kg body weight/day) Arm 2: 2RDA group (1.6 g/kg body weight per day) | Interaction effect of plasma TMAO (time x diet interaction, p = 0.002): RDA group ⟷ 2RDA group ↑ Interaction effect of TMAO in urine (time x diet interaction, p = 0.007): RDA group: ⟷ 2RDA group: ↑ |
Park et al., 2019 [27] | Randomized crossover study | P (N = 14) with normal lipidemic profile and BMI, absence of metabolic, liver, kidney, or systemic diseases, aged 30.6 ± 9.6 years (mean age refers to N = 18) | Arm 1: HF (Atkins) diet Arm 2: MD Arm 3: VLF diet | Atkins: ↑ TMAO compared to VLF and baseline ⟷ TMAO between Atkins and MD |
Rasmussen et al., 2012 [29] | Randomized controlled dietary intervention | P (N = 77) with obesity and absence of DM (HP diet: 43.9 ± 4.9 years, LP diet: 42 ± 5.1 years) | Arm 1: LP/LGI diet Arm 2: LP/HGI diet Arm 3: HP/LGI diet Arm 4: HP/HGI diet Arm 5: Control diet | HP: ↑ urinary TMAO levels (tendency) |
Schmedes et al., 2018 [30] | RCT | Healthy adults (N = 20), aged 50.6 ± 3.4 years | Arm 1: Non-seafood diet Arm 2: Lean-seafood diet | Diet x time x sampling time interaction for the postprandial serum concentration of TMAO (p = 0.008) ↑ TMAO concentrations after lean-seafood |
Stella et al., 2006 [31] | Randomized crossover design | Healthy male P (N = 12), aged between 25 and 74 years | Arm 1: Vegetarian diet Arm 2: Low meat diet Arm 3: High meat diet | High-meat diet → ↑ urinary TMAO concentrations |
Genoni et al., 2019 [33] | RCT | Healthy individuals (N = 39), aged 47 ± 13 years | Arm 1: Paleolithic diet Arm 2: AGHE | ⟷ TMAO concentrations between groups |
Griffin et al., 2019 [34] | Data from a previous RCT | Healthy subjects (N = 115 at baseline, 90 post-intervention) with BMI 18.5 to 35 kg/m2 and at risk of colon cancer, aged 52 ± 12 years | Arm 1: MD group Arm 2: HED | No impact on TMAO concentrations |
Heianza et al., 2018 [36] | RCT | P (N = 510) with overweight or obesity, aged 51.5 ± 9 years | Arm 1: low-fat average-protein diet Arm 2: low-fat high-protein diet Arm 3: high-fat average-protein diet Arm 4: high-fat high-protein diet | ⟷ in mean ΔTMAO across the diets |
Tate et al., 2023 [32] | Human-controlled feeding trial | P (N = 28) aged 65 years and older (65–84 years) | Arm 1: 3 oz beef as part of DASH diet Arm 2: 6 oz beef as part of DASH diet | 6 oz-portion ↑ TMAO compared to 3 oz-portion of beef ↑ TMAO from week 0 to week 12 Beef consumption interaction for TMAO (p = 0.01) |
Videja et al., 2022 [37] | Interventional study | Healthy omnivorous individuals (N = 43; FMD: 39 ± 2 years, CD: 37 ± 3 years) | Arm1: FMD Arm 2: CD | FMD: 8 out of 19 P → ↓ in TMAO concentrations, 11 P → ↑ in TMAO concentrations CD: ⟷ TMAO concentrations |
Wiese et al., 2024 [38] | Secondary analysis of a parallel-arm, controlled feeding study | P (N = 16) with CKD (mean age = 57 ± 14 years) and matched adults without CKD (mean age = 52 ± 13 years) | 3-day cycle menu with consistent nutrient content for macro- and some micronutrients | ⟷ TMAO concentrations between groups Urine TMAO concentrations ↑ in CKD P |
Studies including a combination of nutrition and exercise-based intervention | ||||
Ahrens et al., 2021 [39] | Lifestyle-based trial | Adults (N = 73) aged 46.89 ± 12.38 years | 1-week daily nutrition training program (constituted three meals/day, participation in daily exercise and yoga classes) | ⟷ TMAO after the intervention |
Battillo et al., 2023 [40] | Randomized clinical trial | Women (N = 23) with obesity and sedentary lifestyle, aged 48.4 ± 2.4 years | Arm 1: LCD group Arm 2: LCD + INT group | ⟷ TMAO concentrations between interventions ↑ baseline TMAO concentrations → ↑ reduction following either intervention |
Erickson et al., 2019 [41] | Post-hoc analysis of an RCT | Weight stable, physically inactive P (N = 16), aged 66.1 ± 4.4 years | Arm 1: EU diet + exercise training Arm 2: HYPO diet + exercise training | ⟷ TMAO concentrations within and between the groups |
Steele et al., 2021 [42] | Experimental study | Endurance-trained or sedentary individuals (N = 24; endurance trained: 22 ± 2 years, sedentary: 23 ± 3 years) | Arm 1: HFD + endurance physical activity program Arm 2: HFD + sedentary lifestyle | ⟷ TMAO concentrations between groups |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodoridis, X.; Papaemmanouil, A.; Papageorgiou, N.; Savopoulos, C.; Chourdakis, M.; Triantafyllou, A. The Association Between Lifestyle Interventions and Trimethylamine N-Oxide: A Systematic-Narrative Hybrid Literature Review. Nutrients 2025, 17, 1280. https://doi.org/10.3390/nu17071280
Theodoridis X, Papaemmanouil A, Papageorgiou N, Savopoulos C, Chourdakis M, Triantafyllou A. The Association Between Lifestyle Interventions and Trimethylamine N-Oxide: A Systematic-Narrative Hybrid Literature Review. Nutrients. 2025; 17(7):1280. https://doi.org/10.3390/nu17071280
Chicago/Turabian StyleTheodoridis, Xenophon, Androniki Papaemmanouil, Niki Papageorgiou, Christos Savopoulos, Michail Chourdakis, and Areti Triantafyllou. 2025. "The Association Between Lifestyle Interventions and Trimethylamine N-Oxide: A Systematic-Narrative Hybrid Literature Review" Nutrients 17, no. 7: 1280. https://doi.org/10.3390/nu17071280
APA StyleTheodoridis, X., Papaemmanouil, A., Papageorgiou, N., Savopoulos, C., Chourdakis, M., & Triantafyllou, A. (2025). The Association Between Lifestyle Interventions and Trimethylamine N-Oxide: A Systematic-Narrative Hybrid Literature Review. Nutrients, 17(7), 1280. https://doi.org/10.3390/nu17071280