Selected Nutrients to Oppose Muscle Disuse Following Arthroscopic Orthopedic Surgery: A Narrative Review
Abstract
:1. Introduction
2. Creatine
3. Vitamin D
4. Omega-3 Fatty Acids
5. Glutamine
6. Essential Amino Acids (EAA) and Branch Chain Amino Acids (BCAA)
7. β-Hydroxy-β-methylbutyrate (HMB)
8. Conclusions and Future Directions
Reference | Design | Nutrient of Interest | Dose | Surgical Procedure | Participants | Outcomes |
---|---|---|---|---|---|---|
Tyler et al. [23] | RCT | Creatine | 20 g/d for 7 days, followed by 5 g/d for a total of 12 weeks starting the day after surgery | ACL Reconstruction | N = 60; male, n = 33 and female, n = 27; age = 30.4 ± 1.0 years | No difference in muscle strength (knee extension, knee flexion, hip flexion, hip abduction and hip adduction) or power (knee extension and knee flexion) at 12 weeks post-surgery compared to placebo. No difference in the single-leg hop test and the Knee Outcome Score at 6 months post-surgery compared to the placebo. |
Roy et al. [24] | RCT | Creatine | Pre-surgery (10 g/d for 10 days), post-surgery (5 g/d for 30 days) | TKA | N = 37; placebo, n = 19; male, n = 8; female, n = 11; age = 63.3 ± 10.2 years. Creatine, n = 18; male, n = 9; female, n = 9; age = 63.7 ± 10.0 years | No difference in Δ body mass, Δ FM and Δ body fat compared to placebo. No difference in grip strength, dorsiflexion strength, knee extension strength, 30-ft walk and 4-step climb 30 days post-surgery compared to the placebo. No difference in muscle fiber area 30 days post-surgery compared to the placebo. Increased serum creatinine concentration 30 days post-surgery compared to the placebo. No difference in creatine kinase, gamma-glutamyltransferase and bilirubin. No difference in urine creatinine 30 days post-surgery compared to the placebo. No difference in intramuscular ATP, phosphocreatine, creatine and total creatine concentrations at 30 days post-surgery compared to the placebo. |
Barker et al. | Secondary analysis of an RCT | Vitamin D | N/A. Investigated outcomes in individuals with high (≥30 ng/mL) and low (<30 ng/mL) vitamin D concentrations | ACL Reconstruction | N = 18, all male; age = 32 ± 2 years. | Three months post-surgery plasma interferon-gamma concentrations are higher in individuals with higher vitamin D concentrations. Isometric peak force of the injured limb increased from 2 weeks pre-surgery to 3 months post-surgery in the high vitamin D group but not the low vitamin D group. |
Albright et al. [46] | Retrospective cohort study | Vitamin D | N/A. Identification of individuals diagnosed with vitamin D deficiency from the M151Ortho dataset. | ACL | N = 328,011, Female = 65.8%; age = 41.9 ± 12.6 years | Individuals with vitamin D deficiency are at an increased risk of ACL tears and revision ACL reconstruction compared to individuals who are not deficient in vitamin D. |
Ueyama et al. [98] | RCT | EAA | 9 g/d of EAA (threonine 4.5%, lysine 8.4%, isoleucine 6.7%, valine 6.7%, methionine 6.7%, tryptophan 2.3%, phenylalanine 4.5%, leucine 7.6%, histidine 3.5%, arginine 7%, glycine 12.1% or starch 30%) or placebo (lactose). | TKA | EAA group (n = 26, female, n = 19; age = 76.4 ± 8.3 years) and placebo group (n = 26, female, n = 23; age = 75.2 ± 5.5 years) | At 2 years post-surgery, there were no differences between groups for absolute values of rectus femoris muscle area or diameter, quadriceps muscle strength, knee pain, 6 m walk, knee range of motion or activities of daily living. Relative to baseline values, EAA supplementation resulted in greater rectus femoris muscle area and diameter 1-year and 2-years post-surgery, and greater quadriceps muscle strength 2-years post-surgery. |
Ikeda et al. [99] | RCT cross-over | BCAA | BCAA 3 g/d (leucine 40%, isoleucine, valine and lysine 60%) or 1.2 g/d placebo (starch) for 1 month with a 1-week wash-out period before crossover | Orthopedic surgery for a fracture or trauma, vertebral compression fracture spinal surgery and joint replacement | N = 30; early BCAA group, n = 18; female, n = 14; age = 75.7 ± 17.8 years. Late BCAA group, n = 12; female, n = 9; age = 76.1 ± 15.0 years. | Following supplementation with BCAA for 1 month in combination with exercise therapy, participants had greater echo intensity of the rectus femoris muscle compared to their placebo condition. There was no difference between conditions for muscle mass, knee extension or grip strength, timed up-and-go test or functional independence measure. |
Minetama et al. [100] | RCT | EAA/BCAA and Vitamin D | EAA/BCAA and Vitamin D (EAA 12 g/d (BCAA 5 g and leucine 2.8 g) non-EAA 10 g/d (glutamine 3.8 g) and vitamin D 40 μg/d) or placebo (vitamin D 2.5 μg/d) for 3 weeks starting the day after surgery | Lumbar surgery for lumbar stenosis | EAA/BCAA group, n = 40; female, n = 20; age = 69.8 ± 8.9 years. Placebo group, n = 40; female, n = 20; age = 71.1 ± 7.5 years. | The group that consumed EAA/BCAA and vitamin D had less muscle strength loss 2 weeks post-surgery and promoted improved strength of the knee extensor and flexor muscles by 12 weeks post-surgery, but did not influence physical function, symptom severity muscle mass loss timed-up and-go, maximal gait speed or grip strength. |
Nishizaki et al. [105] | RCT | HMB, L-Arginine and L-Glutamine | 2400 mg of HMB, 14,000 mg of L-glutamine, 14,000 mg of L-arginine/day consumed for 5 days before and 28 days after surgery | TKA | N = 23; female, n = 12; male, n = 11; age = 70.5 ± 5.4 years | Leg extension strength was maintained 14 days post-surgery with the supplement. Placebo condition had a decrease in leg extension strength. |
Author Contributions
Funding
Conflicts of Interest
References
- Demling, R.H. Nutrition, Anabolism, and the Wound Healing Process: An Overview. Eplasty 2009, 9, e9. [Google Scholar] [PubMed]
- Shrestha, A.; Dani, M.; Kemp, P.; Fertleman, M. Acute Sarcopenia after Elective and Emergency Surgery. Aging Dis. 2022, 13, 1759–1769. [Google Scholar] [CrossRef] [PubMed]
- Lepley, A.S.; Grooms, D.R.; Burland, J.P.; Davi, S.M.; Kinsella-Shaw, J.M.; Lepley, L.K. Quadriceps Muscle Function Following Anterior Cruciate Ligament Reconstruction: Systemic Differences in Neural and Morphological Characteristics. Exp. Brain Res. 2019, 237, 1267–1278. [Google Scholar] [CrossRef] [PubMed]
- Lepley, L.K. Deficits in Quadriceps Strength and Patient-Oriented Outcomes at Return to Activity After ACL Reconstruction: A Review of the Current Literature. Sports Health 2015, 7, 231–238. [Google Scholar] [CrossRef]
- Sartori, R.; Romanello, V.; Sandri, M. Mechanisms of Muscle Atrophy and Hypertrophy: Implications in Health and Disease. Nat. Commun. 2021, 12, 330. [Google Scholar] [CrossRef]
- Cartwright, M. The Metabolic Response to Stress: A Case of Complex Nutrition Support Management. Crit. Care Nurs. Clin. N. Am. 2004, 16, 467–487. [Google Scholar] [CrossRef]
- Hirsch, K.R.; Wolfe, R.R.; Ferrando, A.A. Pre- and Post-Surgical Nutrition for Preservation of Muscle Mass, Strength, and Functionality Following Orthopedic Surgery. Nutrients 2021, 13, 1675. [Google Scholar] [CrossRef]
- Gillis, C.; Carli, F. Promoting Perioperative Metabolic and Nutritional Care. Anesthesiology 2015, 123, 1455–1472. [Google Scholar] [CrossRef]
- Hemstock, R.; Mulhall, D.; Didyk, J.; Ogborn, D.; Lemmex, D. Postoperative Weight-Bearing Restrictions and Rehabilitation Protocols after Hip Arthroscopy for Femoroacetabular Impingement: A Systematic Review. J. Hip Preserv. Surg. 2023, 10, 220–227. [Google Scholar] [CrossRef]
- Freehill, M.T.; Murray, I.R.; Calvo, E.; Lädermann, A.; Srikumaran, U. Shoulder Surgery Postoperative Immobilization: An International Survey of Shoulder Surgeons. Biology 2023, 12, 291. [Google Scholar] [CrossRef]
- Wall, B.T.; Dirks, M.L.; Snijders, T.; Senden, J.M.G.; Dolmans, J.; van Loon, L.J.C. Substantial Skeletal Muscle Loss Occurs during Only 5 Days of Disuse. Acta Physiol. 2014, 210, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Wall, B.T.; Morton, J.P.; van Loon, L.J.C. Strategies to Maintain Skeletal Muscle Mass in the Injured Athlete: Nutritional Considerations and Exercise Mimetics. Eur. J. Sport Sci. 2015, 15, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, H.C.; Strycker, L.A.; Senesac, H.A.; Hocker, A.D.; Smolkowski, K.; Shah, S.N.; Jewett, B.A. Essential Amino Acid Supplementation in Patients Following Total Knee Arthroplasty. J. Clin. Investig. 2013, 123, 4654–4666. [Google Scholar] [CrossRef] [PubMed]
- Kilroe, S.P.; Fulford, J.; Jackman, S.R.; Van Loon, L.J.C.; Wall, B.T. Temporal Muscle-Specific Disuse Atrophy during One Week of Leg Immobilization. Med. Sci. Sports Exerc. 2020, 52, 944–954. [Google Scholar] [CrossRef]
- Kaye, A.D.; Urman, R.D.; Cornett, E.M.; Hart, B.M.; Chami, A.; Gayle, J.A.; Fox, C.J. Enhanced Recovery Pathways in Orthopedic Surgery. J. Anaesthesiol. Clin. Pharmacol. 2019, 35, S35–S39. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, T.W.; Chang, M.J.; Kang, S.-B.; Chang, C.B. Enhanced Recovery after Surgery for Major Orthopedic Surgery: A Narrative Review. Knee Surg. Relat. Res. 2022, 34, 8. [Google Scholar] [CrossRef]
- Dolan; Artioli; Pereira; Gualano Muscular Atrophy and Sarcopenia in the Elderly: Is There a Role for Creatine Supplementation? Biomolecules 2019, 9, 642. [CrossRef]
- Branch, J.D. Effect of Creatine Supplementation on Body Composition and Performance: A Meta-Analysis. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 198–226. [Google Scholar] [CrossRef]
- Chilibeck, P.; Kaviani, M.; Candow, D.; Zello, G.A. Effect of Creatine Supplementation during Resistance Training on Lean Tissue Mass and Muscular Strength in Older Adults: A Meta-Analysis. Open Access J. Sports Med. 2017, 8, 213–226. [Google Scholar] [CrossRef]
- Devries, M.C.; Phillips, S.M. Creatine Supplementation during Resistance Training in Older Adults—A Meta-Analysis. Med. Sci. Sports Exerc. 2014, 46, 1194–1203. [Google Scholar] [CrossRef]
- Forbes, S.C.; Candow, D.G.; Ostojic, S.M.; Roberts, M.D.; Chilibeck, P.D. Meta-Analysis Examining the Importance of Creatine Ingestion Strategies on Lean Tissue Mass and Strength in Older Adults. Nutrients 2021, 13, 1912. [Google Scholar] [CrossRef] [PubMed]
- Cordingley, D.M.; Cornish, S.M.; Candow, D.G. Anti-Inflammatory and Anti-Catabolic Effects of Creatine Supplementation: A Brief Review. Nutrients 2022, 14, 544. [Google Scholar] [CrossRef] [PubMed]
- Tyler, T.F.; Nicholas, S.J.; Hershman, E.B.; Glace, B.W.; Mullaney, M.J.; McHugh, M.P. The Effect of Creatine Supplementation on Strength Recovery after Anterior Cruciate Ligament (ACL) Reconstruction: A Randomized, Placebo-Controlled, Double-Blind Trial. Am. J. Sports Med. 2004, 32, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Roy, B.D.; de Beer, J.; Harvey, D.; Tarnopolsky, M.A. Creatine Monohydrate Supplementation Does Not Improve Functional Recovery after Total Knee Arthroplasty. Arch. Phys. Med. Rehabil. 2005, 86, 1293–1298. [Google Scholar] [CrossRef]
- Johnston, A.P.W.; Burke, D.G.; MacNeil, L.G.; Candow, D.G. Effect of Creatine Supplementation During Cast-Induced Immobilization on the Preservation of Muscle Mass, Strength, and Endurance. J. Strength Cond. Res. 2009, 23, 116–120. [Google Scholar] [CrossRef]
- Hespel, P.; Op’t Eijnde, B.; Leemputte, M.V.; Ursø, B.; Greenhaff, P.L.; Labarque, V.; Dymarkowski, S.; Hecke, P.V.; Richter, E.A. Oral Creatine Supplementation Facilitates the Rehabilitation of Disuse Atrophy and Alters the Expression of Muscle Myogenic Factors in Humans. J. Physiol. 2001, 536, 625–633. [Google Scholar] [CrossRef]
- Deldicque, L.; Louis, M.; Theisen, D.; Nielens, H.; Dehoux, M.; Thissen, J.-P.; Rennie, M.J.; Francaux, M. Increased IGF mRNA in Human Skeletal Muscle after Creatine Supplementation. Med. Sci. Sports Exerc. 2005, 37, 731–736. [Google Scholar] [CrossRef]
- Yoshida, T.; Delafontaine, P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020, 9, 1970. [Google Scholar] [CrossRef]
- Cornish, S.M.; Peeler, J.D. No Effect of Creatine Monohydrate Supplementation on Inflammatory and Cartilage Degradation Biomarkers in Individuals with Knee Osteoarthritis. Nutr. Res. 2018, 51, 57–66. [Google Scholar] [CrossRef]
- Hemati, F.; Rahmani, A.; Asadollahi, K.; Soleimannejad, K.; Khalighi, Z. Effects of Complementary Creatine Monohydrate and Physical Training on Inflammatory and Endothelial Dysfunction Markers Among Heart Failure Patients. Asian J. Sports Med. 2016, 7, e28578. [Google Scholar] [CrossRef]
- Jacobs, C.A.; Hunt, E.R.; Conley, C.E.-W.; Johnson, D.L.; Stone, A.V.; Huebner, J.L.; Kraus, V.B.; Lattermann, C. Dysregulated Inflammatory Response Related to Cartilage Degradation after ACL Injury. Med. Sci. Sports Exerc. 2020, 52, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Lattermann, C.; Conley, C.E.-W.; Johnson, D.L.; Reinke, E.K.; Huston, L.J.; Huebner, J.L.; Chou, C.-H.; Kraus, V.B.; Spindler, K.P.; Jacobs, C.A. Select Biomarkers on the Day of Anterior Cruciate Ligament Reconstruction Predict Poor Patient-Reported Outcomes at 2-Year Follow-Up: A Pilot Study. Biomed. Res. Int. 2018, 2018, 9387809. [Google Scholar] [CrossRef]
- Amano, K.; Huebner, J.L.; Stabler, T.V.; Tanaka, M.; McCulloch, C.E.; Lobach, I.; Lane, N.E.; Kraus, V.B.; Benjamin, C.; Li, X. Synovial Fluid Profile at the Time of Anterior Cruciate Ligament Reconstruction and Its Association With Cartilage Matrix Composition 3 Years After Surgery. Am. J. Sports Med. 2018, 46, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Fleet, J.C. The Role of Vitamin D in the Endocrinology Controlling Calcium Homeostasis. Mol. Cell Endocrinol. 2017, 453, 36–45. [Google Scholar] [CrossRef]
- Prietl, B.; Treiber, G.; Pieber, T.; Amrein, K. Vitamin D and Immune Function. Nutrients 2013, 5, 2502–2521. [Google Scholar] [CrossRef]
- Garcia, M.; Seelaender, M.; Sotiropoulos, A.; Coletti, D.; Lancha, A.H. Vitamin D, Muscle Recovery, Sarcopenia, Cachexia, and Muscle Atrophy. Nutrition 2019, 60, 66–69. [Google Scholar] [CrossRef]
- Agergaard, J.; Trøstrup, J.; Uth, J.; Iversen, J.V.; Boesen, A.; Andersen, J.L.; Schjerling, P.; Langberg, H. Does Vitamin-D Intake during Resistance Training Improve the Skeletal Muscle Hypertrophic and Strength Response in Young and Elderly Men?—A Randomized Controlled Trial. Nutr. Metab. 2015, 12, 32. [Google Scholar] [CrossRef]
- Antoniak, A.E.; Greig, C.A. The Effect of Combined Resistance Exercise Training and Vitamin D 3 Supplementation on Musculoskeletal Health and Function in Older Adults: A Systematic Review and Meta-Analysis. BMJ Open 2017, 7, e014619. [Google Scholar] [CrossRef]
- Owens, D.J.; Sharples, A.P.; Polydorou, I.; Alwan, N.; Donovan, T.; Tang, J.; Fraser, W.D.; Cooper, R.G.; Morton, J.P.; Stewart, C.; et al. A Systems-Based Investigation into Vitamin D and Skeletal Muscle Repair, Regeneration, and Hypertrophy. Am. J. Physiol.-Endocrinol. Metab. 2015, 309, E1019–E1031. [Google Scholar] [CrossRef]
- Romeu Montenegro, K.; Amarante Pufal, M.; Newsholme, P. Vitamin D Supplementation and Impact on Skeletal Muscle Function in Cell and Animal Models and an Aging Population: What Do We Know So Far? Nutrients 2021, 13, 1110. [Google Scholar] [CrossRef]
- Uchitomi, R.; Oyabu, M.; Kamei, Y. Vitamin D and Sarcopenia: Potential of Vitamin D Supplementation in Sarcopenia Prevention and Treatment. Nutrients 2020, 12, 3189. [Google Scholar] [CrossRef] [PubMed]
- Martens, P.-J.; Gysemans, C.; Verstuyf, A.; Mathieu, C. Vitamin D’s Effect on Immune Function. Nutrients 2020, 12, 1248. [Google Scholar] [CrossRef] [PubMed]
- Barker, T.; Martins, T.B.; Hill, H.R.; Kjeldsberg, C.R.; Trawick, R.H.; Weaver, L.K.; Traber, M.G. Low Vitamin D Impairs Strength Recovery After Anterior Cruciate Ligament Surgery. J. Evid.-Based Complement. Altern. Med. 2011, 16, 201–209. [Google Scholar] [CrossRef]
- Daher, M.; Covarrubias, O.; Lopez, R.; Boufadel, P.; Hachem, M.C.R.; Zalaquett, Z.; Fares, M.Y.; Abboud, J.A. The Role of Vitamin D in Shoulder Health: A Comprehensive Review of Its Impact on Rotator Cuff Tears and Surgical Results. Clin. Shoulder Elb. 2025, 28, 93–102. [Google Scholar] [CrossRef]
- Vivek, K.; Kamal, R.; Perera, E.; Gupte, C.M. Vitamin D Deficiency Leads to Poorer Health Outcomes and Greater Length of Stay After Total Knee Arthroplasty and Supplementation Improves Outcomes: A Systematic Review and Meta-Analysis. JBJS Rev. 2024, 12, e23. [Google Scholar] [CrossRef]
- Albright, J.A.; Chang, K.; Byrne, R.A.; Quinn, M.S.; Meghani, O.; Daniels, A.H.; Owens, B.D. A Diagnosis of Vitamin D Deficiency Is Associated With Increased Rates of Anterior Cruciate Ligament Tears and Reconstruction Failure. Arthrosc. J. Arthrosc. Relat. Surg. 2023, 39, 2477–2486. [Google Scholar] [CrossRef]
- Hassan, M.H.; Elsadek, A.A.M.; Mahmoud, M.A.; Elsadek, B.E.M. Vitamin D Receptor Gene Polymorphisms and Risk of Knee Osteoarthritis: Possible Correlations with TNF-α, Macrophage Migration Inhibitory Factor, and 25-Hydroxycholecalciferol Status. Biochem. Genet. 2022, 60, 611–628. [Google Scholar] [CrossRef]
- Nakamura, S.; Sato, Y.; Kobayashi, T.; Kaneko, Y.; Ito, E.; Soma, T.; Okada, H.; Miyamoto, K.; Oya, A.; Matsumoto, M.; et al. Vitamin D Protects against Immobilization-Induced Muscle Atrophy via Neural Crest-Derived Cells in Mice. Sci. Rep. 2020, 10, 12242. [Google Scholar] [CrossRef]
- Garcia, L.A.; King, K.K.; Ferrini, M.G.; Norris, K.C.; Artaza, J.N. 1,25(OH)2vitamin D3 Stimulates Myogenic Differentiation by Inhibiting Cell Proliferation and Modulating the Expression of Promyogenic Growth Factors and Myostatin in C2C12 Skeletal Muscle Cells. Endocrinology 2011, 152, 2976–2986. [Google Scholar] [CrossRef]
- Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 Fatty Acids EPA and DHA: Health Benefits Throughout Life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Marine Omega-3 Fatty Acids and Inflammatory Processes: Effects, Mechanisms and Clinical Relevance. Biochim. Biophys. Acta 2015, 1851, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Burdge, G.C.; Calder, P.C. Dietary Alpha-Linolenic Acid and Health-Related Outcomes: A Metabolic Perspective. Nutr. Res. Rev. 2006, 19, 26–52. [Google Scholar] [CrossRef] [PubMed]
- Richard, C.; Calder, P.C. Docosahexaenoic Acid. Adv. Nutr. 2016, 7, 1139–1141. [Google Scholar] [CrossRef]
- Wiktorowska-Owczarek, A.; Berezińska, M.; Nowak, J. PUFAs: Structures, Metabolism and Functions. Adv. Clin. Exp. Med. 2015, 24, 931–941. [Google Scholar] [CrossRef]
- Gerling, C.J.; Mukai, K.; Chabowski, A.; Heigenhauser, G.J.F.; Holloway, G.P.; Spriet, L.L.; Jannas-Vela, S. Incorporation of Omega-3 Fatty Acids Into Human Skeletal Muscle Sarcolemmal and Mitochondrial Membranes Following 12 Weeks of Fish Oil Supplementation. Front. Physiol. 2019, 10, 348. [Google Scholar] [CrossRef]
- Bruno, M.J.; Koeppe, R.E.; Andersen, O.S. Docosahexaenoic Acid Alters Bilayer Elastic Properties. Proc. Natl. Acad. Sci. USA 2007, 104, 9638–9643. [Google Scholar] [CrossRef]
- Ridone, P.; Grage, S.L.; Patkunarajah, A.; Battle, A.R.; Ulrich, A.S.; Martinac, B. “Force-from-Lipids” Gating of Mechanosensitive Channels Modulated by PUFAs. J. Mech. Behav. Biomed. Mater. 2018, 79, 158–167. [Google Scholar] [CrossRef]
- Carrillo-Tripp, M.; Feller, S.E. Evidence for a Mechanism by Which Omega-3 Polyunsaturated Lipids May Affect Membrane Protein Function. Biochemistry 2005, 44, 10164–10169. [Google Scholar] [CrossRef]
- Cordero-Morales, J.F.; Vásquez, V. How Lipids Contribute to Ion Channel Function, a Fat Perspective on Direct and Indirect Interactions. Curr. Opin. Struct. Biol. 2018, 51, 92–98. [Google Scholar] [CrossRef]
- Calder, P.C. N -3 Fatty Acids, Inflammation and Immunity: New Mechanisms to Explain Old Actions. Proc. Nutr. Soc. 2013, 72, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Albers, R.; Antoine, J.-M.; Blum, S.; Bourdet-Sicard, R.; Ferns, G.A.; Folkerts, G.; Friedmann, P.S.; Frost, G.S.; Guarner, F.; et al. Inflammatory Disease Processes and Interactions with Nutrition. Br. J. Nutr. 2009, 101, 1–45. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, A.N.; Tingö, L.; Brummer, R.J. The Potential Effects of Probiotics and ω-3 Fatty Acids on Chronic Low-Grade Inflammation. Nutrients 2020, 12, 2402. [Google Scholar] [CrossRef] [PubMed]
- Cornish, S.M.; Cordingley, D.M.; Shaw, K.A.; Forbes, S.C.; Leonhardt, T.; Bristol, A.; Candow, D.G.; Chilibeck, P.D. Effects of Omega-3 Supplementation Alone and Combined with Resistance Exercise on Skeletal Muscle in Older Adults: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 2221. [Google Scholar] [CrossRef]
- Rossato, L.T.; Schoenfeld, B.J.; de Oliveira, E.P. Is There Sufficient Evidence to Supplement Omega-3 Fatty Acids to Increase Muscle Mass and Strength in Young and Older Adults? Clin. Nutr. 2020, 39, 23–32. [Google Scholar] [CrossRef]
- Cornish, S.M.; Chilibeck, P.D. Alpha-Linolenic Acid Supplementation and Resistance Training in Older Adults. Appl. Physiol. Nutr. Metab. 2009, 34, 49–59. [Google Scholar] [CrossRef]
- Cornish, S.M.; Myrie, S.B.; Bugera, E.M.; Chase, J.E.; Turczyn, D.; Pinder, M. Omega-3 Supplementation with Resistance Training Does Not Improve Body Composition or Lower Biomarkers of Inflammation More so than Resistance Training Alone in Older Men. Nutr. Res. 2018, 60, 87–95. [Google Scholar] [CrossRef]
- Tipton, K.D. Nutritional Support for Exercise-Induced Injuries. Sports Med. 2015, 45, 93–104. [Google Scholar] [CrossRef]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Dietary Omega-3 Fatty Acid Supplementation Increases the Rate of Muscle Protein Synthesis in Older Adults: A Randomized Controlled Trial123. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Omega-3 Polyunsaturated Fatty Acids Augment the Muscle Protein Anabolic Response to Hyperaminoacidemia-Hyperinsulinemia in Healthy Young and Middle Aged Men and Women. Clin. Sci. 2011, 121, 267–278. [Google Scholar] [CrossRef]
- McGlory, C.; Gorissen, S.H.M.; Kamal, M.; Bahniwal, R.; Hector, A.J.; Baker, S.K.; Chabowski, A.; Phillips, S.M. Omega-3 Fatty Acid Supplementation Attenuates Skeletal Muscle Disuse Atrophy during Two Weeks of Unilateral Leg Immobilization in Healthy Young Women. FASEB J. 2019, 33, 4586–4597. [Google Scholar] [CrossRef] [PubMed]
- You, J.-S.; Park, M.-N.; Song, W.; Lee, Y.-S. Dietary Fish Oil Alleviates Soleus Atrophy during Immobilization in Association with Akt Signaling to P70s6k and E3 Ubiquitin Ligases in Rats. Appl. Physiol. Nutr. Metab. 2010, 35, 310–318. [Google Scholar] [CrossRef] [PubMed]
- You, J.-S.; Park, M.-N.; Lee, Y.-S. Dietary Fish Oil Inhibits the Early Stage of Recovery of Atrophied Soleus Muscle in Rats via Akt–P70s6k Signaling and PGF2α. J. Nutr. Biochem. 2010, 21, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Chiu, W.-C.; Hsu, Y.-P.; Lo, Y.-L.; Wang, Y.-H. Effects of Omega-3 Fatty Acids on Muscle Mass, Muscle Strength and Muscle Performance among the Elderly: A Meta-Analysis. Nutrients 2020, 12, 3739. [Google Scholar] [CrossRef]
- Hall, J.C.; Heel, K.; McCauley, R. Glutamine. J. Br. Surg. 1996, 83, 305–312. [Google Scholar] [CrossRef]
- Cruzat, V.; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef]
- Newsholme, P. Why Is L-Glutamine Metabolism Important to Cells of the Immune System in Health, Postinjury, Surgery or Infection? J. Nutr. 2001, 131, 2515S–2522S; discussion 2523S–2524S. [Google Scholar] [CrossRef]
- Cruzat, V.F.; Krause, M.; Newsholme, P. Amino Acid Supplementation and Impact on Immune Function in the Context of Exercise. J. Int. Soc. Sports Nutr. 2014, 11, 61. [Google Scholar] [CrossRef]
- Raizel, R.; Tirapegui, J. Role of Glutamine, as Free or Dipeptide Form, on Muscle Recovery from Resistance Training: A Review Study. Nutrire 2018, 43, 28. [Google Scholar] [CrossRef]
- Roth, E.; Funovics, J.; Mühlbacher, F.; Schemper, M.; Mauritz, W.; Sporn, P.; Fritsch, A. Metabolic Disorders in Severe Abdominal Sepsis: Glutamine Deficiency in Skeletal Muscle. Clin. Nutr. 1982, 1, 25–41. [Google Scholar] [CrossRef]
- Oudemans-van Straaten, H.M.; Bosman, R.J.; Treskes, M.; Van Der Spoel, H.J.I.; Zandstra, D.F. Plasma Glutamine Depletion and Patient Outcome in Acute ICU Admissions. Intensive Care Med. 2001, 27, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, T.; Yoshinaga, S.K.; Shibue, K.; Mak, T.W. Comorbidity-Associated Glutamine Deficiency Is a Predisposition to Severe COVID-19. Cell Death Differ. 2021, 28, 3199–3213. [Google Scholar] [CrossRef]
- Mok, E.; Eléouet-Da Violante, C.; Daubrosse, C.; Gottrand, F.; Rigal, O.; Fontan, J.-E.; Cuisset, J.-M.; Guilhot, J.; Hankard, R. Oral Glutamine and Amino Acid Supplementation Inhibit Whole-Body Protein Degradation in Children with Duchenne Muscular Dystrophy. Am. J. Clin. Nutr. 2006, 83, 823–828. [Google Scholar] [CrossRef] [PubMed]
- Negro, M.; Crisafulli, O.; D’Antona, G. Effects of Essential Amino Acid (EAA) and Glutamine Supplementation on Skeletal Muscle Wasting in Acute, Subacute, and Postacute Conditions. Clin. Nutr. ESPEN 2024, 62, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Lepley, L.K.; Davi, S.M.; Burland, J.P.; Lepley, A.S. Muscle Atrophy After ACL Injury: Implications for Clinical Practice. Sports Health 2020, 12, 579–586. [Google Scholar] [CrossRef]
- Zhao, Y.; Albrecht, E.; Stange, K.; Li, Z.; Schregel, J.; Sciascia, Q.L.; Metges, C.C.; Maak, S. Glutamine Supplementation Stimulates Cell Proliferation in Skeletal Muscle and Cultivated Myogenic Cells of Low Birth Weight Piglets. Sci. Rep. 2021, 11, 13432. [Google Scholar] [CrossRef]
- de Nóbrega, T.C.M.; da Silva, M.A.R.C.P.; Rampani, E.M.; Curi, R.; Bazotte, R.B. Tolerability of Glutamine Supplementation in Older Adults: A Double-Blind Placebo-Controlled Randomized Clinical Trial. Braz. J. Med. Biol. Res. 2024, 57, e13468. [Google Scholar] [CrossRef]
- Norouzi, M.; Nadjarzadeh, A.; Maleki, M.; Khayyatzadeh, S.S.; Hosseini, S.; Yaseri, M.; Fattahi, H. Evaluation of the Recovery after Heart Surgery Following Preoperative Supplementation with a Combination of Beta-Hydroxy-Beta-Methylbutyrate, L-Arginine, and L-Glutamine: A Double-Blind Randomized Placebo-Controlled Clinical Trial. Trials 2022, 23, 649. [Google Scholar] [CrossRef]
- Hou, Y.-C.; Wu, J.-M.; Chen, K.-Y.; Wu, M.-H.; Yang, P.-J.; Lee, P.-C.; Chen, P.-D.; Yeh, S.-L.; Lin, M.-T. Glutamine and Leucine Administration Attenuates Muscle Atrophy in Sepsis. Life Sci. 2023, 314, 121327. [Google Scholar] [CrossRef]
- Girven, M.; Dugdale, H.F.; Owens, D.J.; Hughes, D.C.; Stewart, C.E.; Sharples, A.P. L-Glutamine Improves Skeletal Muscle Cell Differentiation and Prevents Myotube Atrophy After Cytokine (TNF-α) Stress Via Reduced P38 MAPK Signal Transduction. J. Cell. Physiol. 2016, 231, 2720–2732. [Google Scholar] [CrossRef]
- de Vasconcelos, D.A.A.; Giesbertz, P.; de Souza, D.R.; Vitzel, K.F.; Abreu, P.; Marzuca-Nassr, G.N.; Fortes, M.A.S.; Murata, G.M.; Hirabara, S.M.; Curi, R.; et al. Oral L-Glutamine Pretreatment Attenuates Skeletal Muscle Atrophy Induced by 24-h Fasting in Mice. J. Nutr. Biochem. 2019, 70, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Blomstrand, E.; Eliasson, J.; Karlsson, H.K.R.; Köhnke, R. Branched-Chain Amino Acids Activate Key Enzymes in Protein Synthesis after Physical Exercise. J. Nutr. 2006, 136, 269S–273S. [Google Scholar] [CrossRef] [PubMed]
- Ferrando, A.A.; Wolfe, R.R.; Hirsch, K.R.; Church, D.D.; Kviatkovsky, S.A.; Roberts, M.D.; Stout, J.R.; Gonzalez, D.E.; Sowinski, R.J.; Kreider, R.B.; et al. International Society of Sports Nutrition Position Stand: Effects of Essential Amino Acid Supplementation on Exercise and Performance. J. Int. Soc. Sports Nutr. 2023, 20, 2263409. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, R.R. Branched-Chain Amino Acids and Muscle Protein Synthesis in Humans: Myth or Reality? J. Int. Soc. Sports Nutr. 2017, 14, 30. [Google Scholar] [CrossRef]
- Arentson-Lantz, E.J.; Fiebig, K.N.; Anderson-Catania, K.J.; Deer, R.R.; Wacher, A.; Fry, C.S.; Lamon, S.; Paddon-Jones, D. Countering Disuse Atrophy in Older Adults with Low-Volume Leucine Supplementation. J. Appl. Physiol. 2020, 128, 967–977. [Google Scholar] [CrossRef]
- Arentson-Lantz, E.J.; Mikovic, J.; Bhattarai, N.; Fry, C.S.; Lamon, S.; Porter, C.; Paddon-Jones, D. Leucine Augments Specific Skeletal Muscle Mitochondrial Respiratory Pathways during Recovery Following 7 Days of Physical Inactivity in Older Adults. J. Appl. Physiol. 2021, 130, 1522–1533. [Google Scholar] [CrossRef]
- Wandrag, L.; Brett, S.J.; Frost, G.; Hickson, M. Impact of Supplementation with Amino Acids or Their Metabolites on Muscle Wasting in Patients with Critical Illness or Other Muscle Wasting Illness: A Systematic Review. J. Hum. Nutr. Diet. 2015, 28, 313–330. [Google Scholar] [CrossRef]
- Ueyama, H.; Kanemoto, N.; Minoda, Y.; Taniguchi, Y.; Nakamura, H. Perioperative Essential Amino Acid Supplementation Facilitates Quadriceps Muscle Strength and Volume Recovery After TKA: A Double-Blinded Randomized Controlled Trial. J. Bone Jt. Surg. 2023, 105, 345–353. [Google Scholar] [CrossRef]
- Ikeda, T.; Suzuki, S.; Aimoto, K.; Kamono, A.; Matsunaga, Y.; Noguchi, Y.; Jinno, T.; Kanzaki, K. Effect and Feasibility of the Combination of Branched Chain Amino Acid and Exercise Therapy on Muscle Mass and Echo Intensity of Muscle in Orthopedic Patients in a Convalescent Rehabilitation Hospital: A Crossover Trial. Health Sci. Rep. 2023, 6, e1316. [Google Scholar] [CrossRef]
- Minetama, M.; Kawakami, M.; Teraguchi, M.; Enyo, Y.; Nakagawa, M.; Yamamoto, Y.; Sakon, N.; Matsuo, S.; Nakatani, T.; Nakagawa, R.; et al. Branched-Chain Amino Acids plus Vitamin D Supplementation Promote Increased Muscle Strength Following Lumbar Surgery for Lumbar Spinal Stenosis: A Randomized Trial. Spine J. 2023, 23, 962–972. [Google Scholar] [CrossRef]
- Holeček, M. Beta-hydroxy-beta-methylbutyrate Supplementation and Skeletal Muscle in Healthy and Muscle-wasting Conditions. J. Cachexia Sarcopenia Muscle 2017, 8, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Chen, P.; Li, T.; Wan, P.; Shi, R. Effects of Exercise with or without β-Hydroxy-β-Methylbutyrate Supplementation on Muscle Mass, Muscle Strength, and Physical Performance in Patients with Sarcopenia: A Systematic Review and Meta-Analysis. Front. Nutr. 2024, 11, 1460133. [Google Scholar] [CrossRef]
- Mendes, J.; Guerra, R.S.; Sousa, A.S. The Effect of β-Hydroxy-β-Methylbutyrate on Muscle Strength and Functional Outcomes in Older Adults: A Narrative Review. Top. Clin. Nutr. 2024, 39, 93–103. [Google Scholar] [CrossRef]
- Su, H.; Zhou, H.; Gong, Y.; Xiang, S.; Shao, W.; Zhao, X.; Ling, H.; Chen, G.; Tong, P.; Li, J. The Effects of β-Hydroxy-β-Methylbutyrate or HMB-Rich Nutritional Supplements on Sarcopenia Patients: A Systematic Review and Meta-Analysis. Front. Med. 2024, 11, 1348212. [Google Scholar] [CrossRef]
- Nishizaki, K.; Ikegami, H.; Tanaka, Y.; Imai, R.; Matsumura, H. Effects of Supplementation with a Combination of β-Hydroxy-β-Methyl Butyrate, L-Arginine, and L-Glutamine on Postoperative Recovery of Quadriceps Muscle Strength after Total Knee Arthroplasty. Asia Pac. J. Clin. Nutr. 2015, 24, 412–420. [Google Scholar] [CrossRef]
- Wittholz, K.; Fetterplace, K.; Karahalios, A.; Ali Abdelhamid, Y.; Beach, L.; Read, D.; Koopman, R.; Presneill, J.J.; Deane, A.M. Beta-Hydroxy-Beta-Methylbutyrate Supplementation and Functional Outcomes in Multitrauma Patients: A Pilot Randomized Controlled Trial. J. Parenter. Enter. Nutr. 2023, 47, 983–992. [Google Scholar] [CrossRef]
- Meza-Valderrama, D.; Sánchez-Rodríguez, D.; Messaggi-Sartor, M.; Muñoz-Redondo, E.; Morgado-Pérez, A.; Tejero-Sánchez, M.; De Jaime-Gil, E.; Leiva-Banuelos, N.; Marco, E. Supplementation with β-Hydroxy-β-Methylbutyrate after Resistance Training in Post-Acute Care Patients with Sarcopenia: A Randomized, Double-Blind Placebo-Controlled Trial. Arch. Gerontol. Geriatr. 2024, 119, 105323. [Google Scholar] [CrossRef]
- Standley, R.A.; Distefano, G.; Pereira, S.L.; Tian, M.; Kelly, O.J.; Coen, P.M.; Deutz, N.E.P.; Wolfe, R.R.; Goodpaster, B.H. Effects of β-Hydroxy-β-Methylbutyrate on Skeletal Muscle Mitochondrial Content and Dynamics, and Lipids after 10 Days of Bed Rest in Older Adults. J. Appl. Physiol. 2017, 123, 1092–1100. [Google Scholar] [CrossRef]
- Deutz, N.E.P.; Pereira, S.L.; Hays, N.P.; Oliver, J.S.; Edens, N.K.; Evans, C.M.; Wolfe, R.R. Effect of β-Hydroxy-β-Methylbutyrate (HMB) on Lean Body Mass during 10 Days of Bed Rest in Older Adults. Clin. Nutr. 2013, 32, 704–712. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordingley, D.M.; Taheri, M.; Fasihiyan, M.; Woodmass, J.M.; Cornish, S.M. Selected Nutrients to Oppose Muscle Disuse Following Arthroscopic Orthopedic Surgery: A Narrative Review. Nutrients 2025, 17, 1273. https://doi.org/10.3390/nu17071273
Cordingley DM, Taheri M, Fasihiyan M, Woodmass JM, Cornish SM. Selected Nutrients to Oppose Muscle Disuse Following Arthroscopic Orthopedic Surgery: A Narrative Review. Nutrients. 2025; 17(7):1273. https://doi.org/10.3390/nu17071273
Chicago/Turabian StyleCordingley, Dean M., Maryam Taheri, Moein Fasihiyan, Jarret M. Woodmass, and Stephen M. Cornish. 2025. "Selected Nutrients to Oppose Muscle Disuse Following Arthroscopic Orthopedic Surgery: A Narrative Review" Nutrients 17, no. 7: 1273. https://doi.org/10.3390/nu17071273
APA StyleCordingley, D. M., Taheri, M., Fasihiyan, M., Woodmass, J. M., & Cornish, S. M. (2025). Selected Nutrients to Oppose Muscle Disuse Following Arthroscopic Orthopedic Surgery: A Narrative Review. Nutrients, 17(7), 1273. https://doi.org/10.3390/nu17071273