Plant-Based Diet Indices with Greenhouse Gas Emissions and Risk of Cardiometabolic Diseases and All-Cause Mortality: Longitudinal China Cohort Study
Highlights
- A higher uPDI was associated with a higher risk of MI, T2DM, stroke and all-cause mortality;
- PDI, hPDI and uPDI scores were inversely associated with greenhouse gas emissions.
- Long-term adherence to unhealthy plant-based diets may be a risk factor for CMDs and premature death in Chinese adults.
- Food-based dietary guidelines, clinicians and dietitians should prioritize assessing the quality of plant-based dietary patterns before providing recommendations, both for healthy individuals and those at increased risk of cardiometabolic diseases.
Abstract
:1. Introduction
Aims
2. Materials and Methods
2.1. Study Population
2.2. Dietary Intake Assessment and Calculation of Indices for Plant-Based Dietary Patterns
2.3. Assessment of GHG Emissions
2.4. Ascertainment of CMDs and Death
2.5. Assessment of Covariates
2.6. Statistical Analysis
3. Results
3.1. Baseline Sociodemographic, Anthropometric, and Lifestyle Characteristics and Dietary Intakes of Study Participants
3.2. Associations Between Adherence to Overall, Healthy, and Unhealthy Plant-Based Dietary Patterns with Risk of New-Onset CMDs and All-Cause Mortality
3.3. Associations Between Adherence to Overall, Healthy, and Unhealthy Plant-Based Dietary Patterns with Amounts of GHG Emissions
3.4. Associations Between Adherence to Overall, Healthy, and Unhealthy Plant-Based Dietary Patterns with Risk of New-Onset CMDs and All-Cause Mortality on the Basis of Potential Effect Modifiers
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Writing Committee of the Report on Cardiovascular Health and Diseases. In China Report on Cardiovascular Health and Diseases in China 2022: An Updated Summary. Biomed. Environ. Sci. 2023, 36, 669–701. [Google Scholar] [CrossRef]
- GBD. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A.; et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet 2020, 395, 795–808. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Forray, A.I.; Coman, M.A.; Simonescu-Colan, R.; Mazga, A.I.; Cherecheș, R.M.; Borzan, C.M. The Global Burden of Type 2 Diabetes Attributable to Dietary Risks: Insights from the Global Burden of Disease Study 2019. Nutrients 2023, 15, 4613. [Google Scholar] [CrossRef]
- Zhang, B.; Pu, L.; Zhao, T.; Wang, L.; Shu, C.; Xu, S.; Sun, J.; Zhang, R.; Han, L. Global Burden of Cardiovascular Disease from 1990 to 2019 Attributable to Dietary Factors. J. Nutr. 2023, 153, 1730–1741. [Google Scholar] [CrossRef]
- Cangelosi, G.; Grappasonni, I.; Nguyen, C.T.T.; Acito, M.; Pantanetti, P.; Benni, A.; Petrelli, F. Mediterranean Diet (MedDiet) and Lifestyle Medicine (LM) for support and care of patients with type II diabetes in the COVID-19 era: A cross-observational study. Acta Biomed. 2023, 94 (Suppl. 3), e2023189. [Google Scholar] [CrossRef]
- Korol, J.; Hejna, A.; Burchart-Korol, D.; Wachowicz, J. Comparative Analysis of Carbon, Ecological, and Water Footprints of Polypropylene-Based Composites Filled with Cotton, Jute and Kenaf Fibers. Materials 2020, 13, 3541. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Hemler, E.C.; Hu, F.B. Plant-Based Diets for Personal, Population, and Planetary Health. Adv. Nutr. 2019, 10 (Suppl. 4), S275–S283. [Google Scholar] [CrossRef]
- Satija, A.; Bhupathiraju, S.N.; Rimm, E.B.; Spiegelman, D.; Chiuve, S.E.; Borgi, L.; Willett, W.C.; Manson, J.E.; Sun, Q.; Hu, F.B. Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort Studies. PLoS Med. 2016, 13, e1002039. [Google Scholar] [CrossRef] [PubMed]
- Meybeck, A.; Gitz, V. Sustainable diets within sustainable food systems. Proc. Nutr. Soc. 2017, 76, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Magkos, F.; Tetens, I.; Bügel, S.G.; Felby, C.; Schacht, S.R.; Hill, J.O.; Ravussin, E.; Astrup, A. A Perspective on the Transition to Plant-Based Diets: A Diet Change May Attenuate Climate Change, but Can It Also Attenuate Obesity and Chronic Disease Risk? Adv. Nutr. 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Caulfield, L.E.; Rebholz, C.M. Healthy Plant-Based Diets Are Associated with Lower Risk of All-Cause Mortality in US Adults. J. Nutr. 2018, 148, 624–631. [Google Scholar] [CrossRef]
- Satija, A.; Bhupathiraju, S.N.; Spiegelman, D.; Chiuve, S.E.; Manson, J.E.; Willett, W.; Rexrode, K.M.; Rimm, E.B.; Hu, F.B. Healthful and Unhealthful Plant-Based Diets and the Risk of Coronary Heart Disease in U.S. Adults. J. Am. Coll. Cardiol. 2017, 70, 411–422. [Google Scholar] [CrossRef]
- Li, Y.; Wang, D.D.; Nguyen, X.T.; Song, R.J.; Ho, Y.L.; Hu, F.B.; Willett, W.C.; Wilson, P.W.F.; Cho, K.; Gaziano, J.M.; et al. Plant-based diets and the incidence of cardiovascular disease: The Million Veteran Program. BMJ Nutr. Prev. Health 2023, 6, 212–220. [Google Scholar] [CrossRef]
- Lazarova, S.V.; Sutherland, J.M.; Jessri, M. Adherence to emerging plant-based dietary patterns and its association with cardiovascular disease risk in a nationally representative sample of Canadian adults. Am. J. Clin. Nutr. 2022, 116, 57–73. [Google Scholar] [CrossRef]
- Kim, H.; Caulfield, L.E.; Garcia-Larsen, V.; Steffen, L.M.; Coresh, J.; Rebholz, C.M. Plant-Based Diets Are Associated with a Lower Risk of Incident Cardiovascular Disease, Cardiovascular Disease Mortality, and All-Cause Mortality in a General Population of Middle-Aged Adults. J. Am. Heart Assoc. 2019, 8, e012865. [Google Scholar] [CrossRef]
- Wang, P.; Song, M.; Eliassen, A.H.; Wang, M.; Fung, T.T.; Clinton, S.K.; Rimm, E.B.; Hu, F.B.; Willett, W.C.; Tabung, F.K.; et al. Optimal dietary patterns for prevention of chronic disease. Nat. Med. 2023, 29, 719–728. [Google Scholar] [CrossRef]
- Thompson, A.S.; Tresserra-Rimbau, A.; Karavasiloglou, N.; Jennings, A.; Cantwell, M.; Hill, C.; Perez-Cornago, A.; Bondonno, N.P.; Murphy, N.; Rohrmann, S.; et al. Association of Healthful Plant-based Diet Adherence with Risk of Mortality and Major Chronic Diseases Among Adults in the UK. JAMA Netw. Open 2023, 6, e234714. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, Y.; Wang, J. Higher Adherence to Plant-Based Diet Lowers Type 2 Diabetes Risk among High and Non-High Cardiovascular Risk Populations: A Cross-Sectional Study in Shanxi, China. Nutrients 2023, 15, 786. [Google Scholar] [CrossRef] [PubMed]
- Heidarzadeh-Esfahani, N.; Darbandi, M.; Khamoushi, F.; Najafi, F.; Soleimani, D.; Moradi, M.; Shakiba, E.; Pasdar, Y. Association of plant-based dietary patterns with the risk of type 2 diabetes mellitus using cross-sectional results from RaNCD cohort. Sci. Rep. 2024, 14, 3814. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Drouin-Chartier, J.P.; Li, Y.; Baden, M.Y.; Manson, J.E.; Willett, W.C.; Voortman, T.; Hu, F.B.; Bhupathiraju, S.N. Changes in Plant-Based Diet Indices and Subsequent Risk of Type 2 Diabetes in Women and Men: Three U.S. Prospective Cohorts. Diabetes Care 2021, 44, 663–671. [Google Scholar] [CrossRef]
- Delgado-Velandia, M.; Maroto-Rodríguez, J.; Ortolá, R.; García-Esquinas, E.; Rodríguez-Artalejo, F.; Sotos-Prieto, M. Plant-Based Diets and All-cause and Cardiovascular Mortality in a Nationwide Cohort in Spain: The ENRICA Study. Mayo Clin. Proc. 2022, 97, 2005–2015. [Google Scholar] [CrossRef]
- Wang, D.D.; Li, Y.; Nguyen, X.T.; Song, R.J.; Ho, Y.L.; Hu, F.B.; Willett, W.C.; Wilson, P.W.F.; Cho, K.; Gaziano, J.M.; et al. Degree of Adherence to Based Diet and Total and Cause-Specific Mortality: Prospective Cohort Study in the Million Veteran Program. Public Health Nutr. 2022, 26, 381–392. [Google Scholar] [CrossRef]
- Li, H.; Zeng, X.; Wang, Y.; Zhang, Z.; Zhu, Y.; Li, X.; Hu, A.; Zhao, Q.; Yang, W. A prospective study of healthful and unhealthful plant-based diet and risk of overall and cause-specific mortality. Eur. J. Nutr. 2022, 61, 387–398. [Google Scholar] [CrossRef]
- Chen, H.; Shen, J.; Xuan, J.; Zhu, A.; Ji, J.S.; Liu, X.; Cao, Y.; Zong, G.; Zeng, Y.; Wang, X.; et al. Plant-based dietary patterns in relation to mortality among older adults in China. Nat. Aging 2022, 2, 224–230. [Google Scholar] [CrossRef]
- Thompson, A.S.; Candussi, C.J.; Tresserra-Rimbau, A.; Jennings, A.; Bondonno, N.P.; Hill, C.; Sowah, S.A.; Cassidy, A.; Kühn, T. A healthful plant-based diet is associated with lower type 2 diabetes risk via improved metabolic state and organ function: A prospective cohort study. Diabetes Metab. 2024, 50, 101499. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Ji, J.S.; Huang, L.; Qi, Y.; Wu, Y.; He, P.; Li, Y.; Bodirsky, B.L.; Müller, C.; et al. Plant-based and planetary-health diets, environmental burden, and risk of mortality: A prospective cohort study of middle-aged and older adults in China. Lancet Planet Health 2024, 8, e545–e553. [Google Scholar] [CrossRef]
- Weston, L.J.; Kim, H.; Talegawkar, S.A.; Tucker, K.L.; Correa, A.; Rebholz, C.M. Plant-based diets and incident cardiovascular disease and all-cause mortality in African Americans: A cohort study. PLoS Med. 2022, 19, e1003863. [Google Scholar] [CrossRef]
- Heianza, Y.; Zhou, T.; Sun, D.; Hu, F.B.; Manson, J.E.; Qi, L. Genetic susceptibility, plant-based dietary patterns, and risk of cardiovascular disease. Am. J. Clin. Nutr. 2020, 112, 220–228. [Google Scholar] [CrossRef]
- Sullivan, V.K.; Kim, H.; Caulfield, L.E.; Steffen, L.M.; Selvin, E.; Rebholz, C.M. Plant-Based Dietary Patterns and Incident Diabetes in the Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care 2024, 47, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Flores, A.C.; Heron, C.; Kim, J.I.; Martin, B.; Al-Shaar, L.; Tucker, K.L.; Gao, X. Prospective Study of Plant-Based Dietary Patterns and Diabetes in Puerto Rican Adults. J. Nutr. 2021, 151, 3795–3800. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Giovannucci, E. Healthful Plant-Based Diet and Incidence of Type 2 Diabetes in Asian Population. Nutrients 2022, 14, 3078. [Google Scholar] [CrossRef]
- Laouali, N.; Shah, S.; MacDonald, C.J.; Mahamat-Saleh, Y.; El Fatouhi, D.; Mancini, F.; Fagherazzi, G.; Boutron-Ruault, M.C. BMI in the Associations of Plant-Based Diets with Type 2 Diabetes and Hypertension Risks in Women: The E3N Prospective Cohort Study. J. Nutr. 2021, 151, 2731–2740. [Google Scholar] [CrossRef] [PubMed]
- Baden, M.Y.; Shan, Z.; Wang, F.; Li, Y.; Manson, J.E.; Rimm, E.B.; Willett, W.C.; Hu, F.B.; Rexrode, K.M. Quality of Plant-Based Diet and Risk of Total, Ischemic, and Hemorrhagic Stroke. Neurology 2021, 96, e1940–e1953. [Google Scholar] [CrossRef]
- Anyene, I.C.; Ergas, I.J.; Kwan, M.L.; Roh, J.M.; Ambrosone, C.B.; Kushi, L.H.; Cespedes Feliciano, E.M. Plant-Based Dietary Patterns and Breast Cancer Recurrence and Survival in the Pathways Study. Nutrients 2021, 13, 3374. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Wang, C.; Mao, Z.; Chen, Y.; Ren, P.; Fan, M.; Cui, S.; Niu, K.; Gu, R.; et al. Association of plant-based diet and type 2 diabetes mellitus in Chinese rural adults: The Henan Rural Cohort Study. J. Diabetes Investig. 2021, 12, 1569–1576. [Google Scholar] [CrossRef]
- Chen, B.; Zeng, J.; Qin, M.; Xu, W.; Zhang, Z.; Li, X.; Xu, S. The Association Between Plant-Based Diet Indices and Obesity and Metabolic Diseases in Chinese Adults: Longitudinal Analyses from the China Health and Nutrition Survey. Front. Nutr. 2022, 9, 881901. [Google Scholar] [CrossRef]
- Wu, M.; Li, S.; Lv, Y.; Liu, K.; Wang, Y.; Cui, Z.; Wang, X.; Meng, H. Associations between the inflammatory potential of diets with adherence to plant-based dietary patterns and the risk of new-onset cardiometabolic diseases in Chinese adults: Findings from a nation-wide prospective cohort study. Food Funct. 2023, 14, 9018–9034. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Zhang, B.; Popkin, B.M.; Du, S. Elevated Fat Intake Increases Body Weight and the Risk of Overweight and Obesity among Chinese Adults: 1991-2015 Trends. Nutrients 2020, 12, 3272. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zuo, L.; Sun, J.; Su, C.; Wang, H. Trends and Urban-Rural Disparities of Energy Intake and Macronutrient Composition among Chinese Children: Findings from the China Health and Nutrition Survey (1991 to 2015). Nutrients 2021, 13, 1933. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Zhang, X.; Xiang, Y.B.; Yang, G.; Li, H.; Gao, Y.T.; Zheng, W.; Shu, X.O. Adherence to dietary guidelines and mortality: A report from prospective cohort studies of 134,000 Chinese adults in urban Shanghai. Am. J. Clin. Nutr. 2014, 100, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Stampfer, M.J.; Rimm, E.; Ascherio, A.; Rosner, B.A.; Spiegelman, D.; Willett, W.C. Dietary fat and coronary heart disease: A comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. Am. J. Epidemiol. 1999, 149, 531–540. [Google Scholar] [CrossRef]
- He, P.; Baiocchi, G.; Hubacek, K.; Feng, K.; Yu, Y. The environmental impacts of rapidly changing diets and their nutritional quality in China. Nat. Sustain. 2018, 1, 122–127. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, G.; Li, X.; Zhang, H.; Wang, C.; Liu, Q.; Chen, X.; Cui, Z.; Shen, J.; Jiang, R.; et al. Closing yield gaps in China by empowering smallholder farmers. Nature 2016, 537, 671–674. [Google Scholar] [CrossRef]
- IFA; IFADATA. International Fertilizer Industry Association. 2011. Available online: https://www.fertilizer.org/resource/ifadata-statistics (accessed on 10 February 2025).
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Zhai, F.Y.; Du, S.F.; Wang, Z.H.; Zhang, J.G.; Du, W.W.; Popkin, B.M. Dynamics of the Chinese diet and the role of urbanicity, 1991-2011. Obes. Rev. 2014, 15 (Suppl. 1), 16–26. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Hu, Y.; Li, M.; Wu, J.; Wang, R.; Mao, D.; Chen, J.; Li, W.; Yang, Y.; Piao, J.; Yang, L.; et al. Prevalence and Risk Factors for Anemia in Non-pregnant Childbearing Women from the Chinese Fifth National Health and Nutrition Survey. Int. J. Environ. Res. Public Health 2019, 16, 1290. [Google Scholar] [CrossRef]
- Popkin, B.M.; Du, S.; Zhai, F.; Zhang, B. Cohort Profile: The China Health and Nutrition Survey--monitoring and understanding socio-economic and health change in China, 1989-2011. Int. J. Epidemiol. 2010, 39, 1435–1440. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Siega-Riz, A.M.; Gordon-Larsen, P.; Cai, J.; Adair, L.S.; Zhang, B.; Popkin, B.M. Diet quality and its association with type 2 diabetes and major cardiometabolic risk factors among adults in China. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 987–1001. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Yu, Y. Associations between Cholesterol Intake, Food Sources and Cardiovascular Disease in Chinese Residents. Nutrients 2024, 16, 716. [Google Scholar] [CrossRef]
- Chen, X.; Jiao, J.; Zhuang, P.; Wu, F.; Mao, L.; Zhang, Y.; Zhang, Y. Current intake levels of potatoes and all-cause mortality in China: A population-based nationwide study. Nutrition 2021, 81, 110902. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, B.; Zeng, J.; Fan, M.; Xu, W.; Li, X.; Xing, Y.; Xu, S. Associations between Consumption of Dietary Fibers and the Risk of Type 2 Diabetes, Hypertension, Obesity, Cardiovascular Diseases, and Mortality in Chinese Adults: Longitudinal Analyses from the China Health and Nutrition Survey. Nutrients 2022, 14, 2650. [Google Scholar] [CrossRef]
- Ng, S.W.; Norton, E.C.; Popkin, B.M. Why have physical activity levels declined among Chinese adults? Findings from the 1991-2006 China Health and Nutrition Surveys. Soc. Sci. Med. 2009, 68, 1305–1314. [Google Scholar] [CrossRef]
- Yuan, X.; Wei, Y.; Jiang, H.; Wang, H.; Wang, Z.; Dong, M.; Dong, X.; Zhang, J. Longitudinal Relationship between the Percentage of Energy Intake from Macronutrients and Overweight/Obesity among Chinese Adults from 1991 to 2018. Nutrients 2024, 16, 666. [Google Scholar] [CrossRef]
- Bechthold, A.; Boeing, H.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Iqbal, K.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; Schlesinger, S.; et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 1071–1090. [Google Scholar] [CrossRef]
- Neuenschwander, M.; Ballon, A.; Weber, K.S.; Norat, T.; Aune, D.; Schwingshackl, L.; Schlesinger, S. Role of diet in type 2 diabetes incidence: Umbrella review of meta-analyses of prospective observational studies. BMJ 2019, 366, l2368. [Google Scholar] [CrossRef]
- Teramoto, M.; Muraki, I.; Yamagishi, K.; Tamakoshi, A.; Iso, H. Green Tea and Coffee Consumption and All-Cause Mortality Among Persons with and Without Stroke or Myocardial Infarction. Stroke 2021, 52, 957–965. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Lampousi, A.M.; Knüppel, S.; Iqbal, K.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of all-cause mortality: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2017, 105, 1462–1473. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Fogelholm, M.; Poppitt, S.D.; Silvestre, M.P.; Møller, G.; Huttunen-Lenz, M.; Stratton, G.; Sundvall, J.; Råman, L.; Jalo, E.; et al. Adherence to a Plant-Based Diet and Consumption of Specific Plant Foods-Associations with 3-Year Weight-Loss Maintenance and Cardiometabolic Risk Factors: A Secondary Analysis of the PREVIEW Intervention Study. Nutrients 2021, 13, 3916. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Fu, L.; Pan, D.; Lu, Y.; Yang, C.; Wang, Y.; Wang, S.; Sun, G. Role of Whole Grain Consumption in Glycaemic Control of Diabetic Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 14, 109. [Google Scholar] [CrossRef]
- Malaguti, M.; Dinelli, G.; Leoncini, E.; Bregola, V.; Bosi, S.; Cicero, A.F.; Hrelia, S. Bioactive peptides in cereals and legumes: Agronomical, biochemical and clinical aspects. Int. J. Mol. Sci. 2014, 15, 21120–21135. [Google Scholar] [CrossRef]
- Cassidy, A.; Rogers, G.; Peterson, J.J.; Dwyer, J.T.; Lin, H.; Jacques, P.F. Higher dietary anthocyanin and flavonol intakes are associated with anti-inflammatory effects in a population of US adults. Am. J. Clin. Nutr. 2015, 102, 172–181. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Wu, J.H. Omega-3 fatty acids and cardiovascular disease: Effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef]
- Zou, X.; Xu, X.; Chao, Z.; Jiang, X.; Zheng, L.; Jiang, B. Properties of plant-derived soluble dietary fibers for fiber-enriched foods: A comparative evaluation. Int. J. Biol. Macromol. 2022, 223 Pt A, 1196–1207. [Google Scholar] [CrossRef]
- Miao, Z.; Du, W.; Xiao, C.; Su, C.; Gou, W.; Shen, L.; Zhang, J.; Fu, Y.; Jiang, Z.; Wang, Z.; et al. Gut microbiota signatures of long-term and short-term plant-based dietary pattern and cardiometabolic health: A prospective cohort study. BMC Med. 2022, 20, 204. [Google Scholar] [CrossRef]
- Nogal, A.; Valdes, A.M.; Menni, C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes 2021, 13, 1–24. [Google Scholar] [CrossRef]
- Li, Y.J.; Chen, X.; Kwan, T.K.; Loh, Y.W.; Singer, J.; Liu, Y.; Ma, J.; Tan, J.; Macia, L.; Mackay, C.R.; et al. Dietary Fiber Protects against Diabetic Nephropathy through Short-Chain Fatty Acid-Mediated Activation of G Protein-Coupled Receptors GPR43 and GPR109A. J. Am. Soc. Nephrol. 2020, 31, 1267–1281. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.Y.N.; Appleby, P.N.; Bradbury, K.E.; Perez-Cornago, A.; Travis, R.C.; Clarke, R.; Key, T.J. Risks of ischaemic heart disease and stroke in meat eaters, fish eaters, and vegetarians over 18 years of follow-up: Results from the prospective EPIC-Oxford study. BMJ 2019, 366, l4897. [Google Scholar] [CrossRef] [PubMed]
- Quan, W.; Jiao, Y.; Xue, C.; Li, Y.; Wang, Z.; Zeng, M.; Qin, F.; He, Z.; Chen, J. Processed potatoes intake and risk of type 2 diabetes: A systematic review and meta-analysis of nine prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2022, 62, 1417–1425. [Google Scholar] [CrossRef]
- Swaminathan, S.; Dehghan, M.; Raj, J.M.; Thomas, T.; Rangarajan, S.; Jenkins, D.; Mony, P.; Mohan, V.; Lear, S.A.; Avezum, A.; et al. Associations of cereal grains intake with cardiovascular disease and mortality across 21 countries in Prospective Urban and Rural Epidemiology study: Prospective cohort study. BMJ 2021, 372, m4948. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xiong, B.; Zhu, M.; Ren, Y.; Lan, Y.; Hu, T.; Wang, Y.; Yang, H.; Liao, Z.; Xiao, K.; et al. Associations of starchy and non-starchy vegetables with risk of metabolic syndrome: Evidence from the NHANES 1999-2018. Nutr. Metab. 2023, 20, 36. [Google Scholar] [CrossRef]
- Chen, M.; Li, J.; Li, W.; Sun, X.-C.; Shu, H.-m. Dietary refined grain intake could increase the coronary heart disease risk: Evidence from a meta-analysis. Trends Cardiovasc. Med. 2017, 10, 12749–12755. [Google Scholar]
- Stępień, M.; Stępień, A.; Wlazeł, R.N.; Paradowski, M.; Banach, M.; Rysz, J. Obesity indices and inflammatory markers in obese non-diabetic normo- and hypertensive patients: A comparative pilot study. Lipids Health Dis. 2014, 13, 29. [Google Scholar] [CrossRef]
- Amin, M.N.; Hussain, M.S.; Sarwar, M.S.; Rahman Moghal, M.M.; Das, A.; Hossain, M.Z.; Chowdhury, J.A.; Millat, M.S.; Islam, M.S. How the association between obesity and inflammation may lead to insulin resistance and cancer. Diabetes Metab. Syndr. 2019, 13, 1213–1224. [Google Scholar] [CrossRef]
- Liu, C.; Feng, X.; Li, Q.; Wang, Y.; Li, Q.; Hua, M. Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: A systematic review and meta-analysis. Cytokine 2016, 86, 100–109. [Google Scholar] [CrossRef]
- Lv, J.; Yu, C.; Guo, Y.; Bian, Z.; Yang, L.; Chen, Y.; Tang, X.; Zhang, W.; Qian, Y.; Huang, Y.; et al. Adherence to Healthy Lifestyle and Cardiovascular Diseases in the Chinese Population. J. Am. Coll. Cardiol. 2017, 69, 1116–1125. [Google Scholar] [CrossRef]
- Tang, D.; Bu, T.; Feng, Q.; Liu, Y.; Dong, X. Differences in Overweight and Obesity between the North and South of China. Am. J. Health Behav. 2020, 44, 780–793. [Google Scholar] [CrossRef] [PubMed]
- Musicus, A.A.; Wang, D.D.; Janiszewski, M.; Eshel, G.; Blondin, S.A.; Willett, W.; Stampfer, M.J. Health and environmental impacts of plant-rich dietary patterns: A US prospective cohort study. Lancet Planet Health 2022, 6, e892–e900. [Google Scholar] [CrossRef]
- Springmann, M.; Wiebe, K.; Mason-D’Croz, D.; Sulser, T.B.; Rayner, M.; Scarborough, P. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: A global modelling analysis with country-level detail. Lancet Planet Health 2018, 2, e451–e461. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.X.; Kjaerulf, F.; Turner, S.; Cohen, L.; Donnelly, P.D.; Muggah, R.; Davis, R.; Realini, A.; Kieselbach, B.; MacGregor, L.S.; et al. Transforming Our World: Implementing the 2030 Agenda Through Sustainable Development Goal Indicators. J. Public Health Policy 2016, 37 (Suppl. 1), 13–31. [Google Scholar] [CrossRef] [PubMed]
Variables | All | Quintiles of PDI | p b | Quintiles of hPDI | p b | Quintiles of uPDI | p b | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q3 | Q5 | Q1 | Q3 | Q5 | Q1 | Q3 | Q5 | |||||
N | 14,652 | 2381 | 2890 | 2986 | 2678 | 3281 | 3629 | 2882 | 2838 | 3513 | |||
PDI | 47 (43, 52) | 39 (37, 40) | 47 (46, 48) | 56 (54, 58) | <0.001 | 49 (44, 54) | 45 (41, 51) | 48 (46, 51) | <0.001 | 45 (41, 49) | 47 (43, 51) | 50 (47, 55) | <0.001 |
hPDI | 53 (48, 57) | 51 (48, 54) | 56 (50, 59) | 50 (46, 55) | <0.001 | 43 (41, 45) | 53 (52, 54) | 60 (59, 62) | <0.001 | 56 (52, 60) | 53 (48, 57) | 50 (45, 54) | <0.001 |
uPDI | 52 (48, 56) | 49 (45, 53) | 52 (48, 56) | 51 (55, 59) | <0.001 | 55 (52, 59) | 52 (48, 56) | 50 (46, 53) | <0.001 | 43 (41, 45) | 52 (51, 53) | 59 (58, 62) | <0.001 |
Age, years | 45 ± 15 | 46 ± 16 | 45 ± 15 | 43 ± 14 | <0.001 | 41 ± 13 | 45 ± 15 | 48 ± 16 | <0.001 | 48 ± 15 | 45 ± 15 | 42 ± 14 | <0.001 |
Female, N (%) | 7224 (49.3) | 1295 (54.4) | 1536 (53.1) | 1081 (36.2) | <0.001 | 811 (30.3) | 1591 (48.5) | 2309 (63.6) | <0.001 | 1741 (60.4) | 1354 (47.7) | 1473 (41.9) | <0.001 |
BMI, kg/m2 | 22.5 (20.5, 25.0) | 22.5 (20.4, 24.8) | 22.6 (20.5, 25.0) | 22.5 (20.6, 25.0) | 0.45 | 22.1 (20.3, 24.5) | 22.5 (20.6, 24.9) | 22.9 (20.7, 25.4) | <0.001 | 23.4 (21.2, 25.6) | 22.4 (20.5, 24.9) | 21.8 (20.1, 24.0) | <0.001 |
SBP, mmHg | 120.0 (110.0, 130.0) | 120.0 (110.0, 130.0) | 120.0 (110.0, 130.0) | 120.0 (110.0, 130.0) | 0.31 | 118.7 (109.3, 126.7) | 120.0 (110.0, 130.0) | 120.0 (110.0, 130.7) | <0.001 | 120.0 (110.0, 130.7) | 120.0 (110.0, 130.0) | 119.3 (110.0, 126.7) | <0.001 |
DBP, mmHg | 78.7 (70.0, 83.3) | 78.3 (70.0, 83.0) | 78.7 (70.0, 83.3) | 80.0 (70.0, 84.9) | 0.21 | 78.0 (70.0, 83.3) | 78.7 (70.0, 83.0) | 79.3 (70.0, 84.7) | 0.001 | 79.3 (70.7, 83.3) | 78.7 (70.0, 83.3) | 78.3 (70.0, 82.0) | <0.001 |
Education level, N (%) | <0.001 | <0.001 | <0.001 | ||||||||||
Primary | 6883 (47.0) | 993 (41.7) | 1365 (47.2) | 1455 (48.7) | 1203 (44.9) | 1490 (45.4) | 1814 (50.0) | 804 (27.9) | 1332 (46.9) | 2105 (59.9) | |||
Middle | 4166 (28.4) | 640 (26.9) | 817 (28.3) | 949 (31.8) | 867 (32.4) | 944 (28.8) | 960 (26.4) | 800 (27.8) | 820 (28.9) | 997 (28.4) | |||
High | 3603 (24.6) | 748 (31.4) | 708 (24.5) | 582 (19.5) | 6088 (22.7) | 847 (25.8) | 855 (23.6) | 1278 (44.3) | 686 (24.2) | 411 (11.7) | |||
Urbanization index, N (%) | <0.001 | <0.001 | <0.001 | ||||||||||
Low | 4859 (33.2) | 373 (15.7) | 943 (32.6) | 1468 (49.2) | 1065 (39.8) | 1061 (32.3) | 1108 (30.5) | 175 (6.1) | 883 (31.1) | 2207 (62.8) | |||
Medium | 4899 (33.4) | 997 (41.9) | 1006 (34.8) | 810 (27.1) | 978 (36.5) | 1088 (33.2) | 1135 (31.3) | 679 (23.5) | 1172 (41.3) | 960 (27.4) | |||
High | 4894 (33.4) | 1011 (42.5) | 941 (32.6) | 708 (23.7) | 635 (23.7) | 1132 (34.5) | 1386 (38.2) | 2028 (70.4) | 783 (27.6) | 346 (9.8) | |||
Region, N (%) | <0.001 | <0.001 | <0.001 | ||||||||||
Southern | 8551 (58.4) | 1801 (75.6) | 1676 (58.0) | 1304 (43.7) | 1810 (67.6) | 1969 (60.0) | 1813 (50.0) | 1828 (63.4) | 1740 (61.3) | 1735 (49.4) | |||
Northern | 6101 (41.6) | 580 (24.4) | 1214 (42.0) | 1682 (56.3) | 868 (32.4) | 1312 (40.0) | 1816 (50.0) | 1054 (36.6) | 1098 (38.7) | 1778 (50.6) | |||
Currently smoking, N (%) | 4648 (31.7) | 665 (27.9) | 843 (29.2) | 1208 (40.5) | <0.001 | 1180 (44.1) | 1052 (32.1) | 825 (22.7) | <0.001 | 644 (22.3) | 919 (32.4) | 1354 (38.5) | <0.001 |
Currently drinking alcohol, N (%) | 5401 (36.9) | 777 (32.6) | 971 (33.6) | 1371 (45.9) | <0.001 | 1287 (48.1) | 1235 (37.6) | 1004 (27.7) | <0.001 | 971 (33.7) | 1058 (37.3) | 1391 (39.6) | <0.001 |
Physical activity status, N (%) | <0.001 | <0.001 | <0.001 | ||||||||||
Low | 4676 (31.9) | 871 (36.6) | 935 (32.4) | 735 (24.6) | 639 (23.9) | 1025 (31.2) | 1489 (41.0) | 1220 (42.3) | 893 (31.5) | 719 (20.5) | |||
Medium | 5232 (35.7) | 1020 (42.8) | 1052 (36.4) | 914 (30.6) | 872 (32.5) | 1210 (36.9) | 1269 (35.0) | 1279 (44.4) | 1078 (38.0) | 889 (25.3) | |||
High | 4744 (32.4) | 490 (20.6) | 903 (31.2) | 1337 (44.8) | 1167 (43.6) | 1046 (31.9) | 872 (24.0) | 383 (13.3) | 867 (30.5) | 1905 (54.2) |
Variables | All | Quintiles of PDI | p b | Quintiles of hPDI | p b | Quintiles of uPDI | p b | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q3 | Q5 | Q1 | Q3 | Q5 | Q1 | Q3 | Q5 | |||||
Grains, g | 425.3 ± 165.7 | 329.5 ± 103.1 | 403.2 ± 132.7 | 570.6 ± 193.5 | <0.001 | 556.3 ± 181.3 | 420.4 ± 141.3 | 340.7 ± 122.6 | <0.001 | 304.6 ± 101.3 | 411.2 ± 135.7 | 562.2 ± 166.8 | <0.001 |
Whole grains, g | 19.6 ± 57.7 | 4.5 ± 25.2 | 14.8 ± 41.0 | 47.0 ± 97.6 | <0.001 | 9.7 ± 42.7 | 20.1 ± 64.1 | 26.1 ± 52.9 | <0.001 | 15.9 ± 38.4 | 17.2 ± 47.0 | 24.0 ± 70.1 | <0.001 |
Fruits, g | 26.5 ± 70.6 | 17.8 ± 58.8 | 26.1 ± 70.7 | 33.9 ± 83.0 | <0.001 | 14.7 ± 54.2 | 24.5 ± 70.1 | 38.8 ± 80.2 | <0.001 | 69.5 ± 95.5 | 18.4 ± 67.2 | 5.1 ± 29.4 | <0.001 |
Vegetables, g | 272.3 ± 149.4 | 218.9 ± 114.0 | 263.5 ± 141.0 | 334.0 ± 171.6 | <0.001 | 294.1 ± 155.8 | 262.7 ± 149.8 | 270.4 ± 140.9 | <0.001 | 277.8 ± 134.9 | 274.0 ± 148.8 | 265.2 ± 163.2 | <0.001 |
Nuts, g | 3.2 ± 12.3 | 1.5 ± 7.7 | 2.7 ± 10.4 | 5.7 ± 17.7 | <0.001 | 1.9 ± 12.1 | 3.4 ± 11.9 | 3.9 ± 12.3 | <0.001 | 6.6 ± 15.3 | 2.7 ± 11.3 | 0.9 ± 7.7 | <0.001 |
Legumes, g | 49.0 ± 67.5 | 29.1 ± 46.8 | 45.5 ± 60.7 | 75.9 ± 91.0 | <0.001 | 49.8 ± 69.7 | 47.3 ± 70.1 | 52.7 ± 66.2 | <0.001 | 61.7 ± 68.7 | 49.8 ± 68.8 | 34.4 ± 63.2 | <0.001 |
Vegetable oils, g | 31.9 ± 29.1 | 21.5 ± 20.9 | 28.8 ± 25.9 | 45.7 ± 35.8 | <0.001 | 29.7 ± 36.2 | 32.6 ± 28.7 | 31.7 ± 21.3 | <0.001 | 34.8 ± 24.3 | 33.2 ± 33.2 | 26.1 ± 26.4 | <0.001 |
Tea and coffee, g | 1.3 ± 25.0 | 0.2 ± 9.7 | 1.4 ± 29.3 | 2.3 ± 35.2 | <0.001 | 0.3 ± 7.6 | 1.1 ± 22.6 | 1.7 ± 29.7 | 0.007 | 4.6 ± 45.6 | 0.6 ± 15.5 | 0 ± 2.5 | <0.001 |
Fruit juices, g | 0.2 ± 5.6 | 0 ± 0.8 | 0.1 ± 2.3 | 0.1 ± 2.9 | 0.50 | 0.2 ± 6.6 | 0.2 ± 5.3 | 0 ± 0 | 0.033 | 0.3 ± 5.9 | 0.2 ± 8.4 | 0.1 ± 5.6 | 0.06 |
Refined grains, g | 405.7 ± 158.9 | 325.0 ± 103.2 | 388.4 ± 134.9 | 523.6 ± 190.1 | <0.001 | 546.7 ± 175.2 | 400.3 ± 127.3 | 314.7 ± 116.8 | <0.001 | 288.7 ± 95.4 | 394.0 ± 129.4 | 538.2 ± 162.8 | <0.001 |
Potatoes and starch, g | 33.6 ± 63.3 | 11.8 ± 29.1 | 27.4 ± 51.2 | 67.3 ± 93.0 | <0.001 | 54.8 ± 88.3 | 30.8 ± 56.6 | 21.9 ± 47.0 | <0.001 | 15.6 ± 30.8 | 25.1 ± 45.2 | 65.7 ± 94.2 | <0.001 |
Sugar-sweetened beverages, g | 1.6 ± 19.3 | 0.4 ± 10.1 | 2.2 ± 26.1 | 2.5 ± 22.2 | <0.001 | 2.6 ± 27.6 | 1.1 ± 12.2 | 0.3 ± 7.1 | <0.001 | 2.6 ± 24.7 | 2.2 ± 23.2 | 0.6 ± 11.1 | <0.001 |
Sweets and desserts, g | 0.8 ± 7.1 | 0.3 ± 4.1 | 0.6 ± 5.6 | 1.7 ± 11.8 | <0.001 | 1.5 ± 11.7 | 0.9 ± 7.0 | 0.3 ± 3.1 | <0.001 | 0.9 ± 5.4 | 1.0 ± 7.9 | 0.4 ± 3.9 | <0.001 |
Animal fat, g | 6.8 ± 18.7 | 11.7 ± 21.2 | 6.6 ± 18.7 | 3.6 ± 12.6 | <0.001 | 20.5 ± 32.7 | 4.2 ± 12.0 | 1.7 ± 7.4 | <0.001 | 3.6 ± 12.1 | 9.2 ± 21.9 | 6.1 ± 17.8 | <0.001 |
Dairy, g | 14.8 ± 53.7 | 33.7 ± 77.5 | 10.9 ± 48.1 | 8.2 ± 41.8 | <0.001 | 12.7 ± 50.5 | 19.4 ± 59.7 | 8.5 ± 40.9 | <0.001 | 54.1 ± 91.7 | 5.2 ± 32.4 | 0.6 ± 11.7 | <0.001 |
Eggs, g | 23.2 ± 31.4 | 33.6 ± 35.3 | 20.9 ± 28.9 | 18.4 ± 29.8 | <0.001 | 28.1 ± 36.2 | 25.4 ± 30.8 | 16.7 ± 26.4 | <0.001 | 36.8 ± 32.1 | 23.2 ± 31.1 | 10.9 ± 23.4 | <0.001 |
Fish or seafood, g | 19.1 ± 34.2 | 34.6 ± 38.9 | 16.5 ± 30.7 | 11.0 ± 30.0 | <0.001 | 25.4 ± 42.4 | 21.6 ± 33.0 | 10.3 ± 25.1 | <0.001 | 36.0 ± 40.0 | 17.7 ± 31.9 | 6.3 ± 19.7 | <0.001 |
Meat, g | 76.5 ± 77.0 | 108.9 ± 68.2 | 75.4 ± 78.3 | 50.8 ± 73.0 | <0.001 | 112.3 ± 100.7 | 75.5 ± 69.6 | 49.6 ± 55.0 | <0.001 | 103.2 ± 69.9 | 85.6 ± 77.3 | 35.3 ± 55.6 | <0.001 |
Variables | Quintiles | p-Trend | ||||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | ||
PDI | ||||||
MI | ||||||
Median (range) | 37 (23, 40) | 43 (41, 45) | 48 (46, 50) | 53 (51, 55) | 59 (56, 72) | |
Cases (rate, %) | 48 (1.75) | 46 (1.61) | 69 (2.24) | 58 (2.13) | 59 (1.82) | |
Person year | 28,559 | 31,043 | 33,075 | 26,868 | 27,638 | |
Model 1 | 1.00 (Ref) | 0.78 (0.52–1.16) | 1.01 (0.70–1.46) | 0.90 (0.61–1.33) | 0.85 (0.57–1.27) | 0.69 |
Model 2 | 1.00 (Ref) | 0.71 (0.47–1.07) | 0.83 (0.56–1.25) | 0.67 (0.42–1.08) | 0.48 (0.28–0.85) | 0.031 |
T2D | ||||||
Median (range) | 37 (23, 40) | 43 (41, 45) | 48 (46, 50) | 53 (51, 55) | 59 (56, 72) | |
Cases (rate, %) | 225 (8.15) | 206 (7.23) | 223 (7.21) | 190 (7.00) | 207 (6.40) | |
Person year | 28,060 | 30,331 | 32,482 | 26,214 | 26,761 | |
Model 1 | 1.00 (Ref) | 0.79 (0.65–0.95) | 0.75 (0.62–0.90) | 0.74 (0.61–0.90) | 0.79 (0.65–0.97) | 0.020 |
Model 2 | 1.00 (Ref) | 0.71 (0.58–0.86) | 0.57 (0.46–0.70) | 0.46 (0.36–0.58) | 0.34 (0.26–0.46) | <0.001 |
Stroke | ||||||
Median (range) | 37 (23, 40) | 43 (41, 45) | 48 (46, 50) | 53 (51, 55) | 59 (56, 72) | |
Cases (rate, %) | 60 (2.20) | 75 (2.62) | 99 (3.21) | 81 (2.97) | 89 (2.74) | |
Person year | 28,391 | 31,175 | 33,109 | 26,693 | 27,614 | |
Model 1 | 1.00 (Ref) | 1.02 (0.73–1.44) | 1.23 (0.89–1.70) | 1.18 (0.84–1.67) | 1.25 (0.89–1.76) | 0.14 |
Model 2 | 1.00 (Ref) | 0.91 (0.65–1.29) | 0.94 (0.66–1.33) | 0.78 (0.52–1.17) | 0.65 (0.40–1.04) | 0.08 |
All-cause mortality | ||||||
Median (range) | 38 (25, 41) | 44 (42, 45) | 48 (46, 50) | 53 (51, 56) | 60 (57, 75) | |
Cases (rate, %) | 213 (7.27) | 216 (7.99) | 288 (8.48) | 319 (9.89) | 307 (10.01) | |
Person year | 30,524 | 29,734 | 37,540 | 31,833 | 24,854 | |
Model 1 | 1.00 (Ref) | 0.97 (0.80–1.17) | 0.89 (0.75–1.06) | 0.95 (0.80–1.14) | 1.00 (0.83–1.20) | 0.91 |
Model 2 | 1.00 (Ref) | 0.93 (0.77–1.13) | 0.85 (0.70–1.02) | 0.74 (0.59–0.92) | 0.57 (0.44–0.74) | <0.001 |
hPDI | ||||||
MI | ||||||
Median (range) | 45 (32, 47) | 49 (48, 50) | 52 (51, 53) | 55 (54, 56) | 59 (57, 71) | |
Cases (rate, %) | 49 (1.91) | 48 (1.79) | 60 (1.81) | 58 (1.95) | 65 (2.09) | |
Person year | 21,222 | 26,176 | 34,347 | 32,070 | 33,369 | |
Model 1 | 1.00 (Ref) | 0.75 (0.50–1.11) | 0.72 (0.50–1.06) | 0.78 (0.53–1.14) | 0.83 (0.57–1.20) | 0.52 |
Model 2 | 1.00 (Ref) | 0.71 (0.48–1.06) | 0.66 (0.45–0.97) | 0.68 (0.46–1.01) | 0.63 (0.42–0.95) | 0.05 |
T2D | ||||||
Median (range) | 45 (32, 47) | 49 (48, 50) | 52 (51, 53) | 55 (54, 56) | 59 (57, 71) | |
Cases (rate, %) | 169 (6.52) | 198 (7.37) | 217 (6.60) | 217 (7.24) | 250 (8.09) | |
Person year | 21,053 | 25,452 | 33,394 | 31,488 | 32,462 | |
Model 1 | 1.00 (Ref) | 0.90 (0.73–1.10) | 0.75 (0.61–0.92) | 0.80 (0.65–0.97) | 0.88 (0.72–1.07) | 0.18 |
Model 2 | 1.00 (Ref) | 0.89 (0.72–1.09) | 0.73 (0.59–0.89) | 0.76 (0.62–0.94) | 0.81 (0.65–0.99) | 0.039 |
Stroke | ||||||
Median (range) | 45 (32, 47) | 49 (48, 50) | 52 (51, 53) | 55 (54, 56) | 59 (57, 73) | |
Cases (rate, %) | 46 (1.79) | 71 (2.63) | 91 (2.77) | 87 (2.92) | 109 (3.51) | |
Person year | 21,208 | 26,213 | 34,095 | 32,157 | 33,309 | |
Model 1 | 1.00 (Ref) | 1.19 (0.82–1.72) | 1.18 (0.83–1.69) | 1.25 (0.88–1.80) | 1.49 (1.06–2.11) | 0.019 |
Model 2 | 1.00 (Ref) | 1.15 (0.79–1.68) | 1.22 (0.85–1.75) | 1.32 (0.91–1.92) | 1.44 (1.00–2.09) | 0.038 |
All-cause mortality | ||||||
Median (range) | 46 (35, 48) | 50 (49, 51) | 53 (52, 54) | 55 (55, 56) | 59 (57, 72) | |
Cases (rate, %) | 212 (8.19) | 254 (9.14) | 323 (8.55) | 218 (9.45) | 336 (8.69) | |
Person year | 21,651 | 27,288 | 39,715 | 24,694 | 41,138 | |
Model 1 | 1.00 (Ref) | 0.88 (0.73–1.05) | 0.89 (0.75–1.06) | 0.96 (0.80–1.16) | 0.85 (0.71–1.01) | 0.15 |
Model 2 | 1.00 (Ref) | 0.96 (0.80–1.15) | 0.97 (0.81–1.15) | 1.10 (0.90–1.33) | 1.01 (0.84–1.21) | 0.61 |
uPDI | ||||||
MI | ||||||
Median (range) | 43 (25, 45) | 48 (46, 49) | 51 (50, 52) | 54 (53, 56) | 59 (57, 73) | |
Cases (rate, %) | 44 (1.59) | 43 (1.50) | 61 (2.31) | 64 (1.99) | 68 (2.15) | |
Person year | 29,429 | 29,651 | 26,643 | 32,487 | 28,973 | |
Model 1 | 1.00 (Ref) | 1.25 (0.79–1.99) | 2.29 (1.34–3.92) | 2.30 (1.18–4.46) | 3.14 (1.43–6.90) | 0.003 |
Model 2 | 1.00 (Ref) | 1.62 (1.01–2.60) | 3.34 (1.92–5.81) | 3.92 (1.97–7.80) | 5.90 (2.59–13.48) | <0.001 |
T2D | ||||||
Median (range) | 43 (25, 45) | 48 (46, 49) | 51 (50, 52) | 54 (53, 56) | 59 (57, 72) | |
Cases (rate, %) | 182 (6.66) | 201 (6.99) | 188 (7.06) | 228 (7.15) | 252 (7.90) | |
Person year | 28,333 | 29,121 | 26,328 | 31,431 | 28,636 | |
Model 1 | 1.00 (Ref) | 1.11 (0.91–1.36) | 1.12 (0.92–1.38) | 1.12 (0.92–1.36) | 1.35 (1.11–1.63) | 0.003 |
Model 2 | 1.00 (Ref) | 1.32 (1.07–1.62) | 1.50 (1.21–1.85) | 1.70 (1.38–2.10) | 2.18 (1.75–2.73) | <0.001 |
Stroke | ||||||
Median (range) | 43 (25, 45) | 48 (46, 49) | 51 (50, 52) | 54 (53, 56) | 59 (57, 73) | |
Cases (rate, %) | 48 (1.73) | 75 (2.60) | 76 (2.88) | 99 (3.11) | 106 (3.34) | |
Person year | 29,384 | 29,900 | 26,631 | 32,005 | 29,063 | |
Model 1 | 1.00 (Ref) | 1.81 (1.22–2.68) | 2.32 (1.45–3.70) | 2.79 (1.60–4.89) | 3.44 (1.78–6.65) | <0.001 |
Model 2 | 1.00 (Ref) | 2.21 (1.48–3.31) | 3.15 (1.92–5.16) | 4.53 (2.47–8.29) | 5.96 (2.86–12.42) | <0.001 |
All-cause mortality | ||||||
Median (range) | 44 (26, 46) | 49 (47, 50) | 52 (51, 53) | 55 (54, 57) | 61 (58, 75) | |
Cases (rate, %) | 136 (4.72) | 168 (5.54) | 201 (7.40) | 287 (9.00) | 551 (15.75) | |
Person year | 30,806 | 32,263 | 28,582 | 32,757 | 30,078 | |
Model 1 | 1.00 (Ref) | 1.53 (1.21–1.95) | 2.29 (1.76–2.98) | 3.06 (2.28–4.12) | 5.74 (4.13–7.99) | <0.001 |
Model 2 | 1.00 (Ref) | 1.51 (1.18–1.93) | 2.37 (1.79–3.15) | 3.44 (2.49–4.77) | 6.87 (4.70–10.03) | <0.001 |
Variables | Quintiles | p-Trend | ||||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | ||
PDI | ||||||
GHG emissions in MI outcome | ||||||
Model 1 | 7980.34 (7823.34–8140.48) a | 5786.53 (5676.29–5898.90) b | 4654.57 (4570.18–4740.52) c | 4070.74 (3995.01–4147.89) d | 3063.62 (3010.60–3117.56) e | <0.001 |
Model 2 | 7145.21 (6991.87–7301.90) a | 5601.27 (5490.96–5713.80) b | 4699.55 (4615.28–4785.37) c | 4102.50 (4025.23–4181.24) d | 3169.91 (3102.78–3238.49) e | <0.001 |
GHG emissions in T2D outcome | ||||||
Model 1 | 7992.61 (7835.11–8153.28) a | 5776.38 (5665.57–5889.36) b | 4641.00 (4556.80–4726.76) c | 4053.05 (3977.02–4130.53) d | 3059.68 (3006.32–3113.99) e | <0.001 |
Model 2 | 7161.55 (7007.87–7318.60) a | 5592.20 (5481.71–5704.92) b | 4683.85 (4599.93–4769.30) c | 4081.68 (4004.32–4160.53) d | 3152.77 (3085.42–3221.60) e | <0.001 |
GHG emissions in Stroke outcome | ||||||
Model 1 | 7984.09 (7826.72–8144.62) a | 5779.23 (5669.24–5891.34) b | 4665.25 (4580.76–4751.30) c | 4065.69 (3990.00–4142.81) d | 3058.42 (3005.46–3112.31) e | <0.001 |
Model 2 | 7138.02 (6984.94–7294.46) a | 5588.53 (5478.80–5700.46) b | 4707.44 (4623.36–4793.05) c | 4097.52 (4020.38–4176.14) d | 3164.76 (3097.68–3233.28) e | <0.001 |
GHG emissions in All-cause mortality outcome | ||||||
Model 1 | 7572.38 (7438.85–7708.32) a | 5575.73 (5473.39–5679.97) b | 4398.30 (4326.22–4471.58) c | 3878.67 (3813.46–3945.00) d | 2908.85 (2858.70–2959.88) e | <0.001 |
Model 2 | 6869.88 (6715.92–7027.38) a | 5554.91 (5437.02–5675.35) b | 4600.12 (4512.89–4689.04) c | 3984.27 (3908.03–4062.00) d | 2967.33 (2898.21–3038.10) e | <0.001 |
hPDI | ||||||
GHG emissions in MI outcome | ||||||
Model 1 | 5492.48 (5368.88–5618.93) a | 4964.66 (4854.97–5076.83) b | 4604.88 (4510.72–4700.99) c | 4305.64 (4213.29–4400.02) d | 3859.02 (3778.72–3941.03) e | <0.001 |
Model 2 | 5890.06 (5770.33–6012.28) a | 5287.48 (5184.00–5393.02) b | 4735.65 (4649.49–4823.41) c | 4319.72 (4238.96–4402.02) d | 3772.93 (3703.69–3843.65) e | <0.001 |
GHG emissions in T2D outcome | ||||||
Model 1 | 5494.43 (5370.75–5620.96) a | 4969.94 (4859.69–5082.70) b | 4593.16 (4498.28–4690.04) c | 4326.26 (4233.63–4420.90) d | 3837.08 (3756.55–3919.35) e | <0.001 |
Model 2 | 5883.47 (5763.72–6005.71) a | 5284.92 (5181.13–5390.79) b | 4731.05 (4644.42–4819.29) c | 4328.31 (4247.44–4410.71) d | 3757.92 (3688.50–3828.65) e | <0.001 |
GHG emissions in Stroke outcome | ||||||
Model 1 | 5491.01 (5367.37–5617.48) a | 4939.59 (4830.59–5051.05) b | 4618.78 (4524.04–4715.50) c | 4310.81 (4218.45–4405.20) d | 3857.34 (3777.07–3939.31) e | <0.001 |
Model 2 | 5883.62 (5764.25–6005.47) a | 5272.63 (5169.79–5377.52) b | 4738.02 (4651.66–4825.98) c | 4324.43 (4243.92–4406.46) d | 3771.64 (3702.55–3842.01) e | <0.001 |
GHG emissions in All-cause mortality outcome | ||||||
Model 1 | 5649.64 (5527.32–5774.67) a | 5119.22 (5012.24–5228.48) b | 4640.30 (4557.01–4725.11) c | 4275.37 (4177.44–4375.60) d | 3720.16 (3654.15–3787.37) e | <0.001 |
Model 2 | 5652.94 (5531.43–5777.12) a | 5109.66 (5004.40–5217.14) b | 4620.38 (4533.98–4708.42) c | 4201.77 (4111.71–4293.81) d | 3729.58 (3661.81–3798.61) e | <0.001 |
uPDI | ||||||
GHG emissions in MI outcome | ||||||
Model 1 | 7010.53 (6882.53–7140.91) a | 5924.69 (5816.81–6034.56) b | 4939.79 (4846.91–5034.46) c | 3992.65 (3923.78–4062.73) d | 2771.25 (2723.58–2819.74) e | <0.001 |
Model 2 | 5934.54 (5821.30–6049.97) a | 5428.36 (5328.03–5530.59) b | 4837.28 (4746.71–4929.57) c | 4211.91 (4136.71–4288.48) d | 3322.78 (3260.61–3386.13) e | <0.001 |
GHG emissions in T2D outcome | ||||||
Model 1 | 7040.83 (6910.55–7173.58) a | 5941.05 (5832.66–6051.45) b | 4985.54 (4891.87–5081.00) c | 3991.14 (3921.68–4061.83) d | 2774.46 (2726.73–2823.01) e | <0.001 |
Model 2 | 5943.76 (5829.02–6060.76) a | 5429.03 (5328.53–5531.42) b | 4878.28 (4786.88–4971.43) c | 4200.06 (4124.76–4276.74) d | 3332.55 (3270.15–3396.15) e | <0.001 |
GHG emissions in Stroke outcome | ||||||
Model 1 | 7004.90 (6876.80–7135.38) a | 5905.85 (5798.67–6015.01) b | 4947.37 (4854.28–5042.24) c | 3998.63 (3929.23–4069.27) d | 2770.29 (2722.74–2818.68) e | <0.001 |
Model 2 | 5924.85 (5811.78–6040.12) a | 5410.90 (5311.23–5512.43) b | 4837.44 (4746.96–4929.64) c | 4216.54 (4141.04–4293.41) d | 3329.24 (3267.07–3392.60) e | <0.001 |
GHG emissions in All-cause mortality outcome | ||||||
Model 1 | 7061.19 (6938.46–7186.09) a | 5914.73 (5814.52–6016.67) b | 4878.86 (4791.53–4967.78) c | 3965.54 (3900.01–4032.17) d | 2741.25 (2697.98–2785.21) e | <0.001 |
Model 2 | 5733.02 (5616.85–5851.57) a | 5214.87 (5113.37–5318.39) b | 4617.22 (4524.76–4711.58) c | 4046.88 (3969.22–4126.06) d | 3156.06 (3091.97–3221.48) e | <0.001 |
Variables | Quintiles | p-Trend | ||||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | ||
PDI | ||||||
MI (N = 14,644) | ||||||
Median (range) | 37 (23, 40) | 43 (41, 45) | 48 (46, 50) | 53 (51, 55) | 59 (56, 72) | |
Cases (rate, %) | 47 (1.71) | 44 (1.54) | 68 (2.22) | 57 (2.09) | 56 (1.72) | |
Person year | 28,555 | 31,079 | 33,009 | 26,883 | 27,641 | |
Model 1 | 1.00 (Ref) | 0.76 (0.50–1.14) | 1.01 (0.70–1.47) | 0.90 (0.61–1.34) | 0.83 (0.55–1.25) | 0.64 |
Model 2 | 1.00 (Ref) | 0.69 (0.45–1.05) | 0.84 (0.56–1.25) | 0.68 (0.42–1.09) | 0.47 (0.27–0.84) | 0.032 |
T2D (N = 14,639) | ||||||
Median (range) | 37 (23, 40) | 43 (41, 45) | 48 (46, 50) | 53 (51, 55) | 59 (56, 72) | |
Cases (rate, %) | 223 (8.08) | 204 (7.17) | 219 (7.08) | 190 (7.01) | 202 (6.25) | |
Person year | 28,063 | 30,313 | 32,497 | 26,207 | 26,745 | |
Model 1 | 1.00 (Ref) | 0.79 (0.65–0.95) | 0.74 (0.62–0.90) | 0.75 (0.61–0.91) | 0.79 (0.64–0.96) | 0.018 |
Model 2 | 1.00 (Ref) | 0.71 (0.58–0.86) | 0.56 (0.46–0.69) | 0.46 (0.36–0.59) | 0.34 (0.25–0.45) | <0.001 |
Stroke (N = 14,642) | ||||||
Median (range) | 37 (23, 40) | 43 (41, 45) | 48 (46, 50) | 53 (51, 55) | 59 (56, 72) | |
Cases (rate, %) | 59 (2.16) | 73 (2.55) | 98 (3.18) | 78 (2.86) | 86 (2.65) | |
Person year | 28,390 | 31,153 | 33,116 | 26,696 | 27,608 | |
Model 1 | 1.00 (Ref) | 1.01 (0.72–1.42) | 1.24 (0.90–1.72) | 1.17 (0.83–1.65) | 1.24 (0.88–1.76) | 0.14 |
Model 2 | 1.00 (Ref) | 0.90 (0.63–1.28) | 0.93 (0.66–1.33) | 0.75 (0.50–1.13) | 0.62 (0.39–1.01) | 0.06 |
All-cause mortality (N = 15,293) | ||||||
Median (range) | 38 (25, 41) | 44 (42, 45) | 48 (46, 50) | 53 (51, 56) | 60 (57, 75) | |
Cases (rate, %) | 210 (7.18) | 211 (7.82) | 282 (8.32) | 313 (9.72) | 302 (9.87) | |
Person year | 30,520 | 29,729 | 37,533 | 31,827 | 24,849 | |
Model 1 | 1.00 (Ref) | 0.96 (0.79–1.16) | 0.88 (0.74–1.06) | 0.96 (0.80–1.14) | 1.01 (0.84–1.21) | 0.80 |
Model 2 | 1.00 (Ref) | 0.92 (0.76–1.12) | 0.84 (0.69–1.01) | 0.73 (0.59–0.92) | 0.57 (0.44–0.74) | <0.001 |
hPDI | ||||||
MI (N = 14,644) | ||||||
Median (range) | 45 (32, 47) | 49 (48, 50) | 52 (51, 53) | 55 (54, 56) | 59 (57, 71) | |
Cases (rate, %) | 48 (1.87) | 45 (1.68) | 59 (1.78) | 57 (1.92) | 63 (2.03) | |
Person year | 21,240 | 26,126 | 34,405 | 32,036 | 33,360 | |
Model 1 | 1.00 (Ref) | 0.71 (0.48–1.07) | 0.72 (0.49–1.05) | 0.77 (0.53–1.14) | 0.81 (0.56–1.18) | 0.52 |
Model 2 | 1.00 (Ref) | 0.68 (0.45–1.02) | 0.65 (0.44–0.96) | 0.67 (0.45–1.00) | 0.62 (0.41–0.93) | 0.05 |
T2D (N = 14,639) | ||||||
Median (range) | 45 (32, 47) | 49 (48, 50) | 52 (51, 53) | 55 (54, 56) | 59 (57, 71) | |
Cases (rate, %) | 167 (6.47) | 194 (7.20) | 215 (6.55) | 215 (7.17) | 240 (8.01) | |
Person year | 20,993 | 25,544 | 33,364 | 31,520 | 32,403 | |
Model 1 | 1.00 (Ref) | 0.88 (0.72–1.08) | 0.75 (0.61–0.92) | 0.79 (0.65–0.97) | 0.87 (0.72–1.06) | 0.19 |
Model 2 | 1.00 (Ref) | 0.87 (0.71–1.07) | 0.72 (0.59–0.89) | 0.75 (0.61–0.93) | 0.80 (0.65–0.99) | 0.040 |
Stroke (N = 14,642) | ||||||
Median (range) | 45 (32, 47) | 49 (48, 50) | 52 (51, 53) | 55 (54, 56) | 59 (57, 71) | |
Cases (rate, %) | 44 (1.71) | 69 (2.56) | 87 (2.64) | 88 (2.95) | 106 (3.41) | |
Person year | 21,178 | 26,195 | 34,139 | 32,131 | 33,320 | |
Model 1 | 1.00 (Ref) | 1.20 (0.82–1.75) | 1.17 (0.81–1.68) | 1.31 (0.91–1.88) | 1.50 (1.05–2.13) | 0.017 |
Model 2 | 1.00 (Ref) | 1.16 (0.80–1.70) | 1.20 (0.83–1.74) | 1.39 (0.96–2.03) | 1.46 (1.00–2.12) | 0.030 |
All-cause mortality (N = 15,293) | ||||||
Median (range) | 46 (35, 48) | 50 (49, 51) | 53 (52, 54) | 55 (55, 56) | 59 (57, 72) | |
Cases (rate, %) | 207 (8.02) | 249 (8.98) | 320 (8.48) | 212 (9.21) | 330 (8.55) | |
Person year | 21,647 | 27,281 | 39,713 | 24,688 | 41,131 | |
Model 1 | 1.00 (Ref) | 0.88 (0.73–1.06) | 0.90 (0.75–1.07) | 0.95 (0.79–1.15) | 0.85 (0.71–1.01) | 0.15 |
Model 2 | 1.00 (Ref) | 0.96 (0.80–1.16) | 0.98 (0.82–1.18) | 1.10 (0.90–1.34) | 1.03 (0.85–1.24) | 0.52 |
uPDI | ||||||
MI (N = 14,644) | ||||||
Median (range) | 43 (25, 45) | 48 (46, 49) | 51 (50, 52) | 54 (53, 56) | 59 (57, 73) | |
Cases (rate, %) | 43 (1.55) | 41 (1.43) | 58 (2.21) | 64 (1.99) | 66 (2.09) | |
Person year | 29,443 | 29,666 | 26,615 | 32,460 | 28,984 | |
Model 1 | 1.00 (Ref) | 1.30 (0.81–2.09) | 2.49 (1.42–4.36) | 2.79 (1.39–5.58) | 3.89 (1.70–8.91) | <0.001 |
Model 2 | 1.00 (Ref) | 1.65 (1.02–2.69) | 3.50 (1.97–6.24) | 4.60 (2.24–9.46) | 6.94 (2.92–16.53) | <0.001 |
T2D (N = 14,639) | ||||||
Median (range) | 43 (25, 45) | 48 (46, 49) | 51 (50, 52) | 54 (53, 56) | 59 (57, 72) | |
Cases (rate, %) | 179 (6.56) | 198 (6.89) | 185 (6.95) | 227 (7.12) | 249 (7.81) | |
Person year | 28,321 | 29,122 | 26,315 | 31,435 | 28,632 | |
Model 1 | 1.00 (Ref) | 1.11 (0.91–1.36) | 1.13 (0.92–1.38) | 1.14 (0.93–1.38) | 1.36 (1.12–1.65) | 0.003 |
Model 2 | 1.00 (Ref) | 1.32 (1.08–1.62) | 1.51 (1.22–1.87) | 1.73 (1.39–2.13) | 2.20 (1.76–2.76) | <0.001 |
Stroke (N = 14,642) | ||||||
Median (range) | 43 (25, 45) | 48 (46, 49) | 51 (50, 52) | 54 (53, 56) | 59 (57, 73) | |
Cases (rate, %) | 46 (1.66) | 73 (2.54) | 75 (2.84) | 97 (3.04) | 103 (3.25) | |
Person year | 29,405 | 29,861 | 26,638 | 32,005 | 29,054 | |
Model 1 | 1.00 (Ref) | 1.88 (1.26–2.81) | 2.49 (1.53–4.03) | 3.03 (1.69–5.43) | 3.78 (1.89–7.54) | <0.001 |
Model 2 | 1.00 (Ref) | 2.32 (1.54–3.51) | 3.45 (2.07–5.74) | 5.07 (2.70–9.52) | 6.80 (3.16–14.63) | <0.001 |
All-cause mortality (N = 15,293) | ||||||
Median (range) | 44 (26, 46) | 49 (47, 50) | 52 (51, 53) | 55 (54, 57) | 61 (58, 75) | |
Cases (rate, %) | 135 (4.69) | 163 (5.38) | 197 (7.27) | 281 (8.83) | 542 (15.53) | |
Person year | 30,805 | 32,258 | 28,578 | 32,750 | 30,068 | |
Model 1 | 1.00 (Ref) | 1.52 (1.19–1.93) | 2.31 (1.77–3.02) | 3.13 (2.31–4.24) | 5.99 (4.27–8.40) | <0.001 |
Model 2 | 1.00 (Ref) | 1.47 (1.15–1.89) | 2.32 (1.73–3.10) | 3.33 (2.36–4.71) | 6.65 (4.42–10.01) | <0.001 |
Variables | Quintiles | p-Trend | ||||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | ||
PDI | ||||||
Median (range) | 38 (25, 40) | 43 (41, 45) | 48 (46, 49) | 52 (50, 54) | 58 (55, 73) | |
Cases (rate, %) | 172 (6.86) | 257 (7.81) | 251 (9.11) | 255 (9.00) | 312 (9.49) | |
Person year | 26,490 | 36,741 | 30,157 | 28,155 | 28,706 | |
Model 1 | 1.00 (Ref) | 0.99 (0.82–1.20) | 1.01 (0.83–1.22) | 0.93 (0.77–1.14) | 0.98 (0.81–1.20) | 0.75 |
Model 2 | 1.00 (Ref) | 1.01 (0.82–1.23) | 0.95 (0.77–1.18) | 0.79 (0.63–1.00) | 0.67 (0.52–0.88) | <0.001 |
hPDI | ||||||
Median (range) | 44 (32, 46) | 48 (47, 49) | 51 (50, 52) | 54 (53, 55) | 58 (56, 71) | |
Cases (rate, %) | 209 (8.62) | 248 (9.59) | 278 (8.17) | 262 (8.27) | 250 (8.08) | |
Person year | 19,901 | 25,707 | 35,961 | 35,042 | 33,638 | |
Model 1 | 1.00 (Ref) | 0.90 (0.75–1.08) | 0.89 (0.75–1.07) | 0.88 (0.74–1.06) | 0.84 (0.70–1.01) | 0.08 |
Model 2 | 1.00 (Ref) | 0.93 (0.77–1.13) | 1.01 (0.84–1.22) | 1.04 (0.86–1.27) | 1.03 (0.84–1.25) | 0.50 |
uPDI | ||||||
Median (range) | 45 (28, 47) | 50 (48, 51) | 53 (52, 55) | 57 (56, 59) | 63 (60, 78) | |
Cases (rate, %) | 107 (4.21) | 133 (4.94) | 232 (7.11) | 257 (9.15) | 518 (15.37) | |
Person year | 27,722 | 29,516 | 34,994 | 29,276 | 28,741 | |
Model 1 | 1.00 (Ref) | 1.46 (1.11–1.90) | 2.44 (1.84–3.24) | 3.31 (2.38–4.61) | 6.08 (4.21–8.78) | <0.001 |
Model 2 | 1.00 (Ref) | 1.55 (1.17–2.04) | 2.77 (2.03–3.77) | 4.21 (2.89–6.12) | 8.93 (5.74–13.91) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Y.; Wu, M.; Liu, W.; Liu, K.; Wang, Y.; Cui, Z.; Ma, Q.; Meng, H. Plant-Based Diet Indices with Greenhouse Gas Emissions and Risk of Cardiometabolic Diseases and All-Cause Mortality: Longitudinal China Cohort Study. Nutrients 2025, 17, 1152. https://doi.org/10.3390/nu17071152
Lv Y, Wu M, Liu W, Liu K, Wang Y, Cui Z, Ma Q, Meng H. Plant-Based Diet Indices with Greenhouse Gas Emissions and Risk of Cardiometabolic Diseases and All-Cause Mortality: Longitudinal China Cohort Study. Nutrients. 2025; 17(7):1152. https://doi.org/10.3390/nu17071152
Chicago/Turabian StyleLv, Yiqian, Man Wu, Wenjing Liu, Ke Liu, Yin Wang, Zhixin Cui, Qishan Ma, and Huicui Meng. 2025. "Plant-Based Diet Indices with Greenhouse Gas Emissions and Risk of Cardiometabolic Diseases and All-Cause Mortality: Longitudinal China Cohort Study" Nutrients 17, no. 7: 1152. https://doi.org/10.3390/nu17071152
APA StyleLv, Y., Wu, M., Liu, W., Liu, K., Wang, Y., Cui, Z., Ma, Q., & Meng, H. (2025). Plant-Based Diet Indices with Greenhouse Gas Emissions and Risk of Cardiometabolic Diseases and All-Cause Mortality: Longitudinal China Cohort Study. Nutrients, 17(7), 1152. https://doi.org/10.3390/nu17071152