Evaluating the Prognostic Value of the Triglyceride–Glucose Index in Different Populations: A Critical Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohorts in the Study
2.2. Methods and Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, S.H.; Sobia, F.; Niazi, N.K.; Manzoor, S.M.; Fazal, N.; Ahmad, F. Metabolic clustering of risk factors: Evaluation of triglyceride-glucose index (TyG index) for evaluation of insulin resistance. Diabetol. Metab. Syndr. 2018, 10, 74. [Google Scholar] [PubMed]
- Hong, S.; Han, K.; Park, C.Y. The triglyceride glucose index is a simple and low-cost marker associated with atherosclerotic cardiovascular disease: A population-based study. BMC Med. 2020, 18, 361. [Google Scholar] [CrossRef] [PubMed]
- Alizargar, J.; Bai, C.H.; Hsieh, N.C.; Wu, S.V. Use of the triglyceride-glucose index (TyG) in cardiovascular disease patients. Cardiovasc. Diabetol. 2020, 19, 8. [Google Scholar]
- Lopez-Jaramillo, P.; Gomez-Arbelaez, D.; Martinez-Bello, D.; Abat, M.E.M.; Alhabib, K.F.; Avezum, Á.; Barbarash, O.; Chifamba, J.; Diaz, M.L.; Gulec, S.; et al. Association of the triglyceride glucose index as a measure of insulin resistance with mortality and cardiovascular disease in populations from five continents (PURE study): A prospective cohort study. Lancet Healthy Longev. 2023, 4, e23–e33. [Google Scholar]
- Available online: https://pubmed.ncbi.nlm.nih.gov/?term=triglyceride-glucose-index+and+2024 (accessed on 22 November 2024).
- Yao, Y.; Wang, B.; Geng, T.; Chen, J.; Chen, W.; Li, L. The association between TyG and all-cause/non-cardiovascular mortality in general patients with type 2 diabetes mellitus is modified by age: Results from the cohort study of NHANES 1999-2018. Cardiovasc. Diabetol. 2024, 23, 43. [Google Scholar]
- Alavi Tabatabaei, G.; Mohammadifard, N.; Rafiee, H.; Nouri, F.; Maghami Mehr, A.; Najafian, J.; Sadeghi, M.; Boshtam, M.; Roohafza, H.; Haghighatdoost, F.; et al. Association of the triglyceride glucose index with all-cause and cardiovascular mortality in a general population of Iranian adults. Cardiovasc. Diabetol. 2024, 23, 66. [Google Scholar]
- Yin, H.; Huang, W.; Yang, B. Association between METS-IR index and obstructive sleep apnea: Evidence from NHANES. Sci. Rep. 2025, 15, 6654. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Q.; Xu, L.; Yu, M. Associations of triglyceride glucose-body mass index with short-term mortality in critically ill patients with ischemic stroke. Cardiovasc. Diabetol. 2025, 24, 91. [Google Scholar]
- Zhang, P.; Mo, D.; Zeng, W.; Dai, H. Association between triglyceride-glucose related indices and all-cause and cardiovascular mortality among the population with cardiovascular-kidney-metabolic syndrome stage 0-3: A cohort study. Cardiovasc. Diabetol. 2025, 24, 92. [Google Scholar]
- Chen, W.; Ding, S.; Tu, J.; Xiao, G.; Chen, K.; Zhang, Y.; Huang, R.; Liao, Y. Association between the insulin resistance marker TyG index and subsequent adverse long-term cardiovascular events in young and middle-aged US adults based on obesity status. Lipids Health Dis. 2023, 22, 65. [Google Scholar]
- Folli, F.; Pontiroli, A.E.; Zakaria, A.S.; Centofanti, L.; Tagliabue, E.; La Sala, L. Alanine transferase levels (ALT) and triglyceride-glucose index are risk factors for type 2 diabetes mellitus in obese patients. Acta Diabetol. 2024, 61, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Pontiroli, A.E.; Centofanti, L.; Zakaria, A.S.; Cerutti, S.; Dei Cas, M.; Paroni, R.; La Sala, L.; Tagliabue, E.; Magnani, S.; Folli, F. The triglyceride-glucose index, blood glucose levels, and metabolic syndrome are associated with all-cause mortality in obesity. Diabetes Metab. Syndr. 2024, 18, 103146. [Google Scholar] [CrossRef]
- Grundy, S.M.; Brewer, H.B., Jr.; Cleeman, J.I.; Smith, S.C., Jr.; Lenfant, C.; American Heart Association; National Heart, Lung, and Blood Institute. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004, 109, 433–438. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Bo, M. Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC task force for the management of arterial hypertension. J. Hypertens. 2013, 31, 1925–1938. [Google Scholar]
- Tripepi, G.; Pannier, B.; D’Arrigo, G.; Mallamaci, F.; Zoccali, C.; London, G. Reappraisal in two European cohorts of the prognostic power of left ventricular mass index in chronic kidney failure. Kidney Int. 2017, 91, 704–710. [Google Scholar] [CrossRef]
- Tripepi, G.; D’Arrigo, G.; Mallamaci, F.; London, G.; Tangri, N.; Hsu, J.Y.; Feldman, H.I.; Zoccali, C. Prognostic values of left ventricular mass index in chronic kidney disease patients. Nephrol. Dial. Transplant. 2021, 36, 665–672. [Google Scholar] [CrossRef]
- Ciardullo, S.; Rea, F.; Perseghin, G. Glycated albumin is associated with all-cause and cardiovascular mortality among U.S. adults with and without diabetes: A retrospective cohort study. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2375–2382. [Google Scholar] [CrossRef] [PubMed]
- Pontiroli, A.E.; Morabito, A. Long-term prevention of mortality in morbid obesity through bariatric surgery. a systematic review and meta-analysis of trials performed with gastric banding and gastric bypass. Ann. Surg. 2011, 253, 484–487. [Google Scholar] [CrossRef]
- Pontiroli, A.E.; Ceriani, V.; Tagliabue, E.; Zakaria, A.S.; Veronelli, A.; Folli, F.; Zanoni, I. Bariatric surgery, compared to medical treatment, reduces morbidity at all ages but does not reduce mortality in patients aged < 43 years, especially if diabetes mellitus is present: A post hoc analysis of two retrospective cohort studies. Acta Diabetol. 2020, 57, 323–333. [Google Scholar]
- Harrell, F.E., Jr.; Califf, R.M.; Pryor, D.B.; Lee, K.L.; Rosati, R.A. Evaluating the yield of medical tests. JAMA 1982, 247, 2543–2546. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.S.; Kuriyakose, D.; Polisetty, L.D.; Patil, A.A.; Ameen, D.; Bonu, R.; Shetty, S.P.; Biswas, P.; Ulrich, M.T.; Letafatkar, N.; et al. Diagnostic and prognostic value of triglyceride glucose index: A comprehensive evaluation of meta-analysis. Cardiovasc. Diabetol. 2024, 23, 310. [Google Scholar] [CrossRef]
- Sun, Y.; Ji, H.; Sun, W.; An, X.; Lian, F. Triglyceride glucose (TyG) index: A promising biomarker for diagnosis and treatment of different diseases. Eur. J. Intern. Med. 2025, 131, 3–14. [Google Scholar] [PubMed]
- Du, L.; Xu, X.; Wu, Y.; Yao, H. Association between the triglyceride glucose index and cardiovascular mortality in obese population. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 107–111. [Google Scholar] [PubMed]
- Dang, K.; Wang, X.; Hu, J.; Zhang, Y.; Cheng, L.; Qi, X.; Liu, L.; Ming, Z.; Tao, X.; Li, Y. The association between triglyceride-glucose index and its combination with obesity indicators and cardiovascular disease: NHANES 2003-2018. Cardiovasc. Diabetol. 2024, 23, 8. [Google Scholar]
- Blicher, M.K.; Frary, C.; Pareek, M.; Stidsen, J.V.; Vishram-Nielsen, J.K.K.; Rasmussen, S.; Bonnema, S.J.; Højlund, K.; Olsen, M.H.; Olesen, T.B. Triglyceride-glucose index improves risk prediction beyond traditional risk factors and hypertension mediated organ damage in healthy adults. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 2446–2454. [Google Scholar]
- Velloso, L.A.; Folli, F.; Sun, X.J.; White, M.F.; Saad, M.J.; Kahn, C.R. Cross-talk between the insulin and angiotensin signaling systems. Proc. Natl. Acad. Sci. USA 1996, 93, 12490–12495. [Google Scholar]
- Ferrannini, E. A Journey in Diabetes: From Clinical Physiology to Novel Therapeutics: The 2020 Banting Medal for Scientific Achievement Lecture. Diabetes 2021, 70, 338–346. [Google Scholar]
- Wang, X.; Liu, J.; Yu, K.; Huang, Z.; Liu, H.; Li, X. Association between TyG-related parameters and NAFLD risk in J7panese non-obese population. Sci. Rep. 2025, 15, 7119. [Google Scholar]
- Ding, Y.; Li, F.; Zhu, J.; Jiao, X.; Liu, Z.; Liao, Y.; Tao, Q.; Hu, L.; Xiong, S.; Zhai, Z. Prognostic Value of Triglyceride-Glucose Index in Acute Myeloid Leukemia: A Retrospective Study. Blood 2024, 144 (Suppl. S1), 6151. [Google Scholar] [CrossRef]
- Chen, Y.; Zhong, Z.; Gue, Y.; Banach, M.; McDowell, G.; Mikhailidis, D.P.; Toth, P.P.; Penson, P.E.; Tomasik, T.; Windak, A.; et al. Impact of surrogates for insulin resistance on mortality and life expectancy in primary care: A nationwide cross-sectional study with registry linkage (LIPIDOGRAM2015). Lancet Reg. Health Eur. 2025, 50, 101245. [Google Scholar] [CrossRef] [PubMed]
- Dui, X.; Chen, X.; Zhu, L.; Han, X.; Ma, T.; Lv, L.; Huang, G.; Hu, L.; Xiao, J.; Dij, Z.; et al. The association between derived TyG index and the risk of heart failure in the elderly population: A prospective cohort study from 2017 to 2023. BMC Public Health 2025, 25, 863. [Google Scholar] [CrossRef] [PubMed]
- Mijangos-Trejo, A.; Gómez-Mendoza, R.; Ramos-Ostos, M.H.; Castro-Narro, G.; Uribe, M.; Juárez-Hernández, E.; López-Méndez, I. Diagnostic Accuracy of the Triglyceride-Glucose Index (TyG), TyG Body Mass Index, and TyG Waist Circumference Index for Liver Steatosis Detection. Diagnostics 2024, 14, 762. [Google Scholar] [CrossRef]
- Pan, L.; Gao, Y.; Han, J.; Li, L.; Wang, M.; Peng, H.; Liao, J.; Wan, H.; Xiang, G.; Han, Y. Comparison of longitudinal changes in four surrogate insulin resistance indexes for incident T2DM in middle-aged and elderly Chinese. Front. Public. Health 2022, 10, 1046223. [Google Scholar] [CrossRef]
- Xuan, W.; Liu, D.; Zhong, J.; Luo, H.; Zhang, X. Impacts of Triglyceride Glucose-Waist to Height Ratio on Diabetes Incidence: A Secondary Analysis of a Population-Based Longitudinal Data. Front. Endocrinol. 2022, 13, 949831. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Liu, J.; Gao, Y.; Zhu, Y.; Zhang, Y.; Ma, H. Stronger Associations of TyG Index with Diabetes Than TyG-Obesity-Related Parameters: More Pronounced in Young, Middle-Aged, and Women. Diabetes Metab. Syndr. Obes. 2023, 16, 3795–3805. [Google Scholar] [CrossRef]
- D’Arrigo, G.; El Hafeez, S.A.; Mezzatesta, S.; Abelardo, D.; Provenzano, F.P.; Vilasi, A.; Torino, C.; Tripepi, G. Common mistakes in biostatistics. Clin. Kidney J. 2024, 17, sfae197. [Google Scholar] [CrossRef]
Obese Cohort [13] | General Population Cohort [19] | ||
---|---|---|---|
Number (sex M/F) (% men) | 1359 (371/988) (27.3%) | Number (sex M/F) (% men) | 15,267 (7389/7878) (48.4%) |
Age (years) | 44.1 ± 12.6 | Age (years) | 47.1 ± 19.7 |
Body mass index (BMI, kg/m2) | 39.9 ± 5.2 | Body mass index (BMI, kg/m2) | 28.4 ± 6.5 |
Median duration of follow-up (years) | 13.9 | Median duration of follow-up (years) | 13.3 |
BG (mg/dL) | 118.1 ± 47.2 | BG (mg/dL) | 105.4 ± 35.5 |
TYG * | 8.9 ± 0.7 | TYG * | 8.7 ± 0.7 |
Cholesterol (mg/dL) | 212.8 ± 66.4 | Cholesterol (mg/dL) | 196.8 ± 43.2 |
HDL-cholesterol (mg/dL) | 50.0 ± 13.6 | HDL-cholesterol (mg/dL) | 53.4 ± 15.9 |
LDL-cholesterol (mg/dL) | 136.5 ± 64.3 | LDL-cholesterol (mg/dL) | 117.6 ± 36.2 |
Triglycerides (mg/dL) | 159.5 ± 133.2 | Triglycerides (mg/dL) | 140.7 ± 121.2 |
AST (U/L) | 25.9 ± 13.8 | AST (U/L) | 25.6 ± 0.2 |
ALT(U/L) | 35.2 ± 24.0 | ALT(U/L) | 28.9 ± 0.4 |
Creatinine (mg/dL) | 0.8 ± 0.2 | Creatinine (mg/dL) | 0.9 ± 0.42 |
Arterial hypertension (%) | 425 (31.3%) | Arterial hypertension (%) | 5487 (35.9%) |
Type 2 diabetes (%) | 131 (9.6%) | Type 2 diabetes (%) | 1863 (12.2%) |
Metabolic syndrome (%) | 717 (52.8%) | Metabolic syndrome (%) | 4990 (35.1%) |
Cardiovascular disease (%) | 51 (3.8%) | Cardiovascular disease (%) | 1130 (9.3%) |
All-cause mortality (sex M/F) (%) | 154 (59/95) (11.3%) | All-cause mortality (sex M/F) (%) | 3136 (1737/1399) (20.6%) |
A. Obese Cohort. | ||||
Basic Model | Model 1 | Model 2 | Model 3 | |
Variables (Units of Increase) | HR (95% C.I.), p Value | HR (95% C.I.), p Value | HR (95% C.I.), p Value | HR (95% C.I.), p Value |
Age (years) | 1.078 (1.060–1.096), p < 0.001 | 1.075 (1.057–1.094), p < 0.001 | 1.077 (1.059–1.095), p < 0.001 | 1.076 (1.058–1.094). p < 0.001 |
Sex (females versus males) | 0.535 (0.386–0.744), p < 0.001 | 0.539 (0.388–0.749), p < 0.001 | 0.561 (0.403–0.781), p = 0.001 | 0.560 (0.402–0.779), p = 0.001 |
Diabetes | 1.817 (1.314–2.512), p < 0.001 | 1.341 (0.802–2.244), p = 0.264 | 1.473 (1.009–2.150), p = 0.045 | 1.259 (0.747–2.124), p = 0.387 |
BGQ | 1.213 (0.935–1.574), p = 0.146 | 1.126 (0.855–1.483), p = 0.398 | ||
TYGQ | 1.210 (1.006–1.456), p = 0.043 | 1.176 (0.967–1.430), p = 0.103 | ||
Harrell’C index | 76.1% | 76.3% | 76.3% | 76.4% |
B. General Population Cohort. | ||||
Basic Model | Model 1 | Model 2 | Model 3 | |
Variables (Units of Increase) | HR (95% C.I.), p-Value | HR (95% C.I.), p-Value | HR (95% C.I.), p-Value | HR (95% C.I.), p-Value |
Age (years) | 1.094 (1.091–1.097), p < 0.001 | 1.094 (1.091–1.097), p < 0.001 | 1.094 (1.091–1.097), p < 0.001 | 1.094 (1.091–1.097), p < 0.001 |
Sex (females versus males) | 0.662 (0.617–0.711), p < 0.001 | 0.661 (0.615–0.709), p < 0.001 | 0.663 (0.617–0.711), p < 0.001 | 0.661 (0.615–0.710), p < 0.001 |
Diabetes | 1.487 (1.371–1.612), p < 0.001 | 1.505 (1.377–1.645), p < 0.001 | 1.501 (1.379–1.633), p < 0.001 | 1.510 (1.381–1.652), p < 0.001 |
BGQ | 0.988 (0.952–1.025), p = 0.528 | 0.992 (0.954–1.032), p = 0.689 | ||
TYGQ | 0.985 (0.947–1.024), p = 0.447 | 0.988 (0.948–1.029), p = 0.560 | ||
Harrell’C index | 86.0% | 86.0% | 86.0% | 86.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pontiroli, A.E.; La Sala, L.; Tagliabue, E.; D’Arrigo, G.; Ciardullo, S.; Perseghin, G.; Tripepi, G.L. Evaluating the Prognostic Value of the Triglyceride–Glucose Index in Different Populations: A Critical Analysis. Nutrients 2025, 17, 1124. https://doi.org/10.3390/nu17071124
Pontiroli AE, La Sala L, Tagliabue E, D’Arrigo G, Ciardullo S, Perseghin G, Tripepi GL. Evaluating the Prognostic Value of the Triglyceride–Glucose Index in Different Populations: A Critical Analysis. Nutrients. 2025; 17(7):1124. https://doi.org/10.3390/nu17071124
Chicago/Turabian StylePontiroli, Antonio E., Lucia La Sala, Elena Tagliabue, Graziella D’Arrigo, Stefano Ciardullo, Gianluca Perseghin, and Giovanni Luigi Tripepi. 2025. "Evaluating the Prognostic Value of the Triglyceride–Glucose Index in Different Populations: A Critical Analysis" Nutrients 17, no. 7: 1124. https://doi.org/10.3390/nu17071124
APA StylePontiroli, A. E., La Sala, L., Tagliabue, E., D’Arrigo, G., Ciardullo, S., Perseghin, G., & Tripepi, G. L. (2025). Evaluating the Prognostic Value of the Triglyceride–Glucose Index in Different Populations: A Critical Analysis. Nutrients, 17(7), 1124. https://doi.org/10.3390/nu17071124