Association Between Alcohol Consumption and the Risk of Incident Chronic Kidney Disease: A Korean Nationwide Study of Community-Dwelling Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Exposure: Alcohol Intake Patterns
2.3. Baseline Data Collection
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Association Between Alcohol Intake and Risks of Incident Chronic Kidney Disease
3.3. Subgroup Analysis of the Risks of Chronic Kidney Disease Based on Age and Amounts of Alcohol Consumption
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mandayam, S.; Jamal, M.M.; Morgan, T.R. Epidemiology of alcoholic liver disease. Semin. Liver Dis. 2004, 24, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Bagnardi, V.; Rota, M.; Botteri, E.; Tramacere, I.; Islami, F.; Fedirko, V.; Scotti, L.; Jenab, M.; Turati, F.; Pasquali, E.; et al. Alcohol consumption and site-specific cancer risk: A comprehensive dose-response meta-analysis. Br. J. Cancer 2015, 112, 580–593. [Google Scholar] [CrossRef] [PubMed]
- Ronksley, P.E.; Brien, S.E.; Turner, B.J.; Mukamal, K.J.; Ghali, W.A. Association of alcohol consumption with selected cardiovascular disease outcomes: A systematic review and meta-analysis. BMJ 2011, 342, d671. [Google Scholar] [CrossRef]
- Baliunas, D.O.; Taylor, B.J.; Irving, H.; Roerecke, M.; Patra, J.; Mohapatra, S.; Rehm, J. Alcohol as a risk factor for type 2 diabetes: A systematic review and meta-analysis. Diabetes Care 2009, 32, 2123–2132. [Google Scholar] [CrossRef] [PubMed]
- Seidu, S.; Abdool, M.; Almaqhawi, A.; Wilkinson, T.J.; Kunutsor, S.K.; Khunti, K.; Yates, T. Physical activity and risk of chronic kidney disease: Systematic review and meta-analysis of 12 cohort studies involving 1,281,727 participants. Eur. J. Epidemiol. 2023, 38, 267–280. [Google Scholar] [CrossRef]
- Xia, J.; Wang, L.; Ma, Z.; Zhong, L.; Wang, Y.; Gao, Y.; He, L.; Su, X. Cigarette smoking and chronic kidney disease in the general population: A systematic review and meta-analysis of prospective cohort studies. Nephrol. Dial. Transpl. 2017, 32, 475–487. [Google Scholar] [CrossRef]
- Joshi, S.; Kalantar-Zadeh, K.; Chauveau, P.; Carrero, J.J. Risks and Benefits of Different Dietary Patterns in CKD. Am. J. Kidney Dis. 2023, 81, 352–360. [Google Scholar] [CrossRef]
- Koning, S.H.; Gansevoort, R.T.; Mukamal, K.J.; Rimm, E.B.; Bakker, S.J.L.; Joosten, M.M. Alcohol consumption is inversely associated with the risk of developing chronic kidney disease. Kidney Int. 2015, 87, 1009–1016. [Google Scholar] [CrossRef]
- Sato, K.K.; Hayashi, T.; Uehara, S.; Kinuhata, S.; Oue, K.; Endo, G.; Kambe, H.; Fukuda, K. Drinking pattern and risk of chronic kidney disease: The kansai healthcare study. Am. J. Nephrol. 2014, 40, 516–522. [Google Scholar] [CrossRef]
- Hsu, Y.-H.; Pai, H.-C.; Chang, Y.-M.; Liu, W.-H.; Hsu, C.-C. Alcohol consumption is inversely associated with stage 3 chronic kidney disease in middle-aged Taiwanese men. BMC Nephrol. 2013, 14, 254. [Google Scholar] [CrossRef]
- White, S.L.; Polkinghorne, K.R.; Cass, A.; Shaw, J.E.; Atkins, R.C.; Chadban, S.J. Alcohol consumption and 5-year onset of chronic kidney disease: The AusDiab study. Nephrol. Dial. Transpl. 2009, 24, 2464–2472. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Cho, S.; Kim, S.R. Effect of alcohol consumption on kidney function: Population-based cohort study. Sci. Rep. 2021, 11, 2381. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Lee, S.M.; Yoon, H.J. Association between alcohol intake and measures of incident CKD: An analysis of nationwide health screening data. PLoS ONE 2019, 14, e0222123. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Yamamoto, R.; Shinzawa, M.; Isaka, Y.; Iseki, K.; Yamagata, K.; Tsuruya, K.; Yoshida, H.; Fujimoto, S.; Asahi, K.; et al. Alcohol consumption and incidence of proteinuria: A retrospective cohort study. Clin. Exp. Nephrol. 2018, 22, 1133–1142. [Google Scholar] [CrossRef]
- Uehara, S.; Hayashi, T.; Kogawa Sato, K.; Kinuhata, S.; Shibata, M.; Oue, K.; Kambe, H.; Hashimoto, K. Relationship Between Alcohol Drinking Pattern and Risk of Proteinuria: The Kansai Healthcare Study. J. Epidemiol. 2016, 26, 464–470. [Google Scholar] [CrossRef]
- Foster, M.C.; Hwang, S.J.; Massaro, J.M.; Jacques, P.F.; Fox, C.S.; Chu, A.Y. Lifestyle factors and indices of kidney function in the Framingham Heart Study. Am. J. Nephrol. 2015, 41, 267–274. [Google Scholar] [CrossRef]
- Knight, E.L.; Stampfer, M.J.; Rimm, E.B.; Hankinson, S.E.; Curhan, G.C. Moderate alcohol intake and renal function decline in women: A prospective study. Nephrol. Dial. Transpl. 2003, 18, 1549–1554. [Google Scholar] [CrossRef]
- Yamamoto, R.; Li, Q.; Otsuki, N.; Shinzawa, M.; Yamaguchi, M.; Wakasugi, M.; Nagasawa, Y.; Isaka, Y. A Dose-Dependent Association between Alcohol Consumption and Incidence of Proteinuria and Low Glomerular Filtration Rate: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients 2023, 15, 1592. [Google Scholar] [CrossRef]
- Yuan, H.C.; Yu, Q.T.; Bai, H.; Xu, H.Z.; Gu, P.; Chen, L.Y. Alcohol intake and the risk of chronic kidney disease: Results from a systematic review and dose-response meta-analysis. Eur. J. Clin. Nutr. 2021, 75, 1555–1567. [Google Scholar] [CrossRef]
- Li, D.; Xu, J.; Liu, F.; Wang, X.; Yang, H.; Li, X. Alcohol Drinking and the Risk of Chronic Kidney Damage: A Meta-Analysis of 15 Prospective Cohort Studies. Alcohol. Clin. Exp. Res. 2019, 43, 1360–1372. [Google Scholar] [CrossRef]
- O’Sullivan, E.D.; Hughes, J.; Ferenbach, D.A. Renal Aging: Causes and Consequences. J. Am. Soc. Nephrol. 2017, 28, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Reid, M.C.; Anderson, P.A. Geriatric substance use disorders. Med. Clin. N. Am. 1997, 81, 999–1016. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.I.; Kim, Y.Y.; Yoon, J.L.; Won, C.W.; Ha, S.; Cho, K.D.; Park, B.R.; Bae, S.; Lee, E.J.; Park, S.Y.; et al. Cohort Profile: National health insurance service-senior (NHIS-senior) cohort in Korea. BMJ Open 2019, 9, e024344. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A. Estimating GFR using the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation: More accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. Am. J. Kidney Dis. 2010, 55, 622–627. [Google Scholar] [CrossRef]
- Buja, A.; Scafato, E.; Baggio, B.; Sergi, G.; Maggi, S.; Rausa, G.; Basile, A.; Manzato, E.; Ghirini, S.; Perissinotto, E. Renal impairment and moderate alcohol consumption in the elderly. Results from the Italian Longitudinal Study on Aging (ILSA). Public Health Nutr. 2011, 14, 1907–1918. [Google Scholar] [CrossRef]
- Menon, V.; Katz, R.; Mukamal, K.; Kestenbaum, B.; de Boer, I.H.; Siscovick, D.S.; Sarnak, M.J.; Shlipak, M.G. Alcohol consumption and kidney function decline in the elderly: Alcohol and kidney disease. Nephrol. Dial. Transpl. 2010, 25, 3301–3307. [Google Scholar] [CrossRef]
- Li, X.; Hur, J.; Cao, Y.; Song, M.; Smith-Warner, S.A.; Liang, L.; Mukamal, K.J.; Rimm, E.B.; Giovannucci, E.L. Moderate alcohol consumption, types of beverages and drinking pattern with cardiometabolic biomarkers in three cohorts of US men and women. Eur. J. Epidemiol. 2023, 38, 1185–1196. [Google Scholar] [CrossRef]
- Huang, S.; Li, J.; Shearer, G.C.; Lichtenstein, A.H.; Zheng, X.; Wu, Y.; Jin, C.; Wu, S.; Gao, X. Longitudinal study of alcohol consumption and HDL concentrations: A community-based study. Am. J. Clin. Nutr. 2017, 105, 905–912. [Google Scholar] [CrossRef]
- Badia, R.R.; Pradhan, R.V.; Ayers, C.R.; Chandra, A.; Rohatgi, A. The Relationship of Alcohol Consumption and HDL Metabolism in the Multiethnic Dallas Heart Study. J. Clin. Lipidol. 2023, 17, 124–130. [Google Scholar] [CrossRef]
- Nova, E.; San Mauro-Martín, I.; Díaz-Prieto, L.E.; Marcos, A. Wine and beer within a moderate alcohol intake is associated with higher levels of HDL-c and adiponectin. Nutr. Res. 2019, 63, 42–50. [Google Scholar] [CrossRef]
- Khodja, Y.; Samuels, M.E. Ethanol-mediated upregulation of APOA1 gene expression in HepG2 cells is independent of de novo lipid biosynthesis. Lipids Health Dis. 2020, 19, 144. [Google Scholar] [CrossRef] [PubMed]
- Tolstrup, J.S.; Grønbaek, M.; Nordestgaard, B.G. Alcohol intake, myocardial infarction, biochemical risk factors, and alcohol dehydrogenase genotypes. Circ. Cardiovasc. Genet. 2009, 2, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Hong, S.; Han, S.; Zeng, L.; Liu, F.; Ding, G.; Kang, Y.; Mao, J.; Cai, M.; Zhu, Y.; et al. Preconditioning with physiological levels of ethanol protect kidney against ischemia/reperfusion injury by modulating oxidative stress. PLoS ONE 2011, 6, e25811. [Google Scholar] [CrossRef]
- Verma, S.; Singh, P.; Khurana, S.; Ganguly, N.K.; Kukreti, R.; Saso, L.; Rana, D.S.; Taneja, V.; Bhargava, V. Implications of oxidative stress in chronic kidney disease: A review on current concepts and therapies. Kidney Res. Clin. Pr. 2021, 40, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Moisi, M.I.; Rus, M.; Bungau, S.; Zaha, D.C.; Uivarosan, D.; Fratila, O.; Tit, D.M.; Endres, L.; Nistor-Cseppento, D.C.; Popescu, M.I. Acute Coronary Syndromes in Chronic Kidney Disease: Clinical and Therapeutic Characteristics. Medicina 2020, 56, 118. [Google Scholar] [CrossRef]
- Schrieks, I.C.; van den Berg, R.; Sierksma, A.; Beulens, J.W.J.; Vaes, W.H.J.; Hendriks, H.F.J. Effect of Red Wine Consumption on Biomarkers of Oxidative Stress. Alcohol Alcohol. 2012, 48, 153–159. [Google Scholar] [CrossRef]
- Arranz, S.; Chiva-Blanch, G.; Valderas-Martínez, P.; Medina-Remón, A.; Lamuela-Raventós, R.M.; Estruch, R. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 2012, 4, 759–781. [Google Scholar] [CrossRef]
- Park, H.S.; Lim, J.H.; Kim, M.Y.; Kim, Y.; Hong, Y.A.; Choi, S.R.; Chung, S.; Kim, H.W.; Choi, B.S.; Kim, Y.S.; et al. Resveratrol increases AdipoR1 and AdipoR2 expression in type 2 diabetic nephropathy. J. Transl. Med. 2016, 14, 176. [Google Scholar] [CrossRef]
- Kim, M.Y.; Lim, J.H.; Youn, H.H.; Hong, Y.A.; Yang, K.S.; Park, H.S.; Chung, S.; Ko, S.H.; Shin, S.J.; Choi, B.S.; et al. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1α axis in db/db mice. Diabetologia 2013, 56, 204–217. [Google Scholar] [CrossRef]
- McCarthy, E.T.; Zhou, J.; Eckert, R.; Genochio, D.; Sharma, R.; Oni, O.; De, A.; Srivastava, T.; Sharma, R.; Savin, V.J.; et al. Ethanol at low concentrations protects glomerular podocytes through alcohol dehydrogenase and 20-HETE. Prostaglandins Other Lipid Mediat. 2015, 116–117, 88–98. [Google Scholar] [CrossRef]
- Kim, H.; Ko, M.J.; Lim, C.Y.; Bae, E.; Hyun, Y.Y.; Chung, S.; Kwon, S.H.; Cho, J.H.; Yoo, K.D.; Park, W.Y.; et al. Association between physical activity and risk of renal function decline and mortality in community-dwelling older adults: A nationwide population-based cohort study. BMC Geriatr. 2022, 22, 973. [Google Scholar] [CrossRef] [PubMed]
- Kwo, P.Y.; Ramchandani, V.A.; O’Connor, S.; Amann, D.; Carr, L.G.; Sandrasegaran, K.; Kopecky, K.K.; Li, T.K. Gender differences in alcohol metabolism: Relationship to liver volume and effect of adjusting for body mass. Gastroenterology 1998, 115, 1552–1557. [Google Scholar] [CrossRef] [PubMed]
- Thomasson, H.R. Gender differences in alcohol metabolism. Physiological responses to ethanol. Recent Dev. Alcohol. 1995, 12, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.A.; Whiteman, E.J.; Ward, K.T. Risks of combined alcohol/medication use in older adults. Am. J. Geriatr. Pharmacother. 2007, 5, 64–74. [Google Scholar] [CrossRef]
- Ojeda, M.L.; Barrero, M.J.; Nogales, F.; Murillo, M.L.; Carreras, O. Oxidative effects of chronic ethanol consumption on the functions of heart and kidney: Folic acid supplementation. Alcohol Alcohol. 2012, 47, 404–412. [Google Scholar] [CrossRef]
- Kim, S.D.; Bieniarz, T.; Esser, K.A.; Piano, M.R. Cardiac structure and function after short-term ethanol consumption in rats. Alcohol 2003, 29, 21–29. [Google Scholar] [CrossRef]
- Madaan, P.; Behl, T.; Sehgal, A.; Singh, S.; Sharma, N.; Yadav, S.; Kaur, S.; Bhatia, S.; Al-Harrasi, A.; Abdellatif, A.A.H.; et al. Exploring the Therapeutic Potential of Targeting Purinergic and Orexinergic Receptors in Alcoholic Neuropathy. Neurotox. Res. 2022, 40, 646–669. [Google Scholar] [CrossRef]
Average Daily Alcohol Consumption | |||||
---|---|---|---|---|---|
None (n = 99,081) | Mild (n = 14,842) | Moderate (n = 4257) | Heavy (n = 4139) | ||
Age (year) | 70.5 ± 4.0 | 69.9 ± 3.8 | 69.6 ± 3.7 | 69.7 ± 3.6 | |
Age groups (year, n (%)) | 65–69 | 44,417 (44.8) | 7638 (51.5) | 2311 (54.3) | 2193 (53.0) |
70–74 | 38,987 (39.4) | 5474 (36.8) | 1527 (35.9) | 1524 (36.8) | |
75– | 15,677 (15.8) | 1730 (11.7) | 419 (9.8) | 422 (10.2) | |
Sex (male, n (%)) | 16,759 (16.9) | 9166 (61.8) | 3837 (90.1) | 3945 (95.3) | |
BMI (kg/m2) | 24.2 ± 9.3 | 23.8 ± 3.0 | 23.5 ± 3.0 | 23.3 ± 2.9 | |
SBP (mmHg) | 129.6 ± 15.9 | 129.8 ± 15.6 | 131.7 ± 15.7 | 132.8 ± 16.7 | |
DBP (mmHg) | 77.8 ± 9.8 | 78.3 ± 9.8 | 79.4 ± 9.8 | 79.7 ± 10.0 | |
Smoking (n (%)) | Non-smoker | 88,868 (89.8) | 8612 (58.2) | 1573 (37.0) | 1364 (33.0) |
Ex-smoker | 5336 (5.4) | 3560 (24.0) | 1335 (31.4) | 1199 (29.0) | |
Current smoker | 4770 (4.8) | 2637 (17.8) | 1339 (31.5) | 1573 (38.0) | |
CVA (n (%)) | 2310 (3.1) | 243 (2.3) | 67 (2.2) | 62 (2.1) | |
Heart disease (n (%)) | 6017 (8.1) | 717 (6.8) | 194 (6.3) | 127 (4.4) | |
Hypertension (n (%)) | 42,302 (54.8) | 5543 (50.5) | 1670 (51.8) | 1482 (49.2) | |
Diabetes (n (%)) | 13,322 (17.8) | 1631 (15.3) | 507 (16.2) | 484 (16.4) | |
Dyslipidemia (n (%)) | 6291 (8.5) | 636 (6.0) | 164 (5.3) | 124 (4.3) | |
Regular exercise (n (%)) | 14,253 (14.4) | 3131 (21.1) | 1039 (24.4) | 852 (20.6) | |
Creatinine (mg/dL) | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.8 ± 0.1 | |
eGFR CKD-EPI (Cr) (mL/min/1.73 m2) | 80.9 ± 11.1 | 82.5 ± 9.1 | 83.5 ± 7.5 | 83.7 ± 7.2 | |
Fasting glucose (mg/dL) | 101.3 ± 24.0 | 102.1 ± 24.4 | 104.4 ± 25.5 | 105.6 ± 26.9 | |
Total cholesterol (mg/dL) | 201.1 ± 42.1 | 195.3 ± 40.4 | 190.2 ± 35.5 | 187.9 ± 40.3 | |
Triglyceride (mg/dL) | 137.1 ± 86.0 | 131.5 ± 80.3 | 142.9 ± 105.9 | 151.6 ± 115.8 | |
HDL-C (mg/dL) | 54.6 ± 29.0 | 55.9 ± 26.2 | 58.1 ± 35.2 | 60.0 ± 39.6 | |
LDL-C (mg/dL) | 121.3 ± 52.2 | 115.2 ± 52.3 | 107.8 ± 55.6 | 101.0 ± 45.7 | |
AST (IU/L) | 25.4 ± 17.4 | 26.8 ± 24.3 | 29.4 ± 19.0 | 33.6 ± 27.0 | |
ALT (IU/L) | 21.9 ± 19.6 | 23.0 ± 18.5 | 24.9 ± 17.6 | 26.6 ± 20.2 | |
Low income, (n (%)) | <20% | 16,519 (16.7) | 2744 (18.5) | 765 (18.0) | 663 (16.0) |
Observed | Events (%) | Person-Years | Incidence Rates/1000 Person-Years | p Value | |
---|---|---|---|---|---|
All | |||||
None | 19,796 | 20.0 | 732,110.58 | 27.04 | <0.001 |
Mild | 4636 | 31.2 | 112,149.39 | 41.34 | |
Moderate | 1696 | 39.8 | 32,059.44 | 52.90 | |
Heavy | 1695 | 41.0 | 30,680.75 | 55.25 | |
Male | |||||
None | 7322 | 43.7 | 123,175.67 | 59.44 | 0.216 |
Mild | 3903 | 42.6 | 69,260.00 | 56.35 | |
Moderate | 1634 | 42.6 | 28,924.25 | 56.50 | |
Heavy | 1675 | 42.5 | 29,269.61 | 57.23 | |
Female | |||||
None | 12,474 | 15.2 | 608,934.91 | 20.50 | <0.001 |
Mild | 733 | 13.0 | 42,889.39 | 17.10 | |
Moderate | 62 | 14.8 | 3135.19 | 19.80 | |
Heavy | 20 | 10.3 | 1411.14 | 14.20 |
Crude | Model 1 | Model 2 | Model 3 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p Value 1 | HR | 95% CI | p Value 1 | HR | 95% CI | p Value 1 | HR | 95% CI | p Value 1 | |||||
Lower | Upper | Lower | Upper | Lower | Upper | Lower | Upper | |||||||||
All | ||||||||||||||||
None (Ref) | 1 | 1 | 1 | 1 | ||||||||||||
Mild | 1.45 | 1.40 | 1.70 | <0.001 | 0.92 | 0.89 | 0.95 | <0.001 | 0.90 | 0.87 | 0.94 | <0.001 | 0.90 | 0.87 | 0.94 | <0.001 |
Moderate | 1.88 | 1.79 | 1.98 | <0.001 | 0.96 | 0.91 | 1.01 | 0.108 | 0.90 | 0.85 | 0.96 | 0.001 | 0.89 | 0.84 | 0.95 | <0.001 |
Heavy | 2.03 | 1.93 | 2.13 | <0.001 | 1.00 | 0.95 | 1.05 | 0.888 | 0.94 | 0.88 | 1.00 | 0.041 | 0.93 | 0.88 | 0.99 | 0.027 |
Male | ||||||||||||||||
None (Ref) | 1 | 1 | 1 | 1 | ||||||||||||
Mild | 0.90 | 0.87 | 0.94 | <0.001 | 0.936 | 0.900 | 0.973 | 0.001 | 0.93 | 0.88 | 0.97 | 0.001 | 0.92 | 0.88 | 0.97 | 0.001 |
Moderate | 0.90 | 0.85 | 0.95 | <0.001 | 0.946 | 0.896 | 0.998 | 0.042 | 0.89 | 0.84 | 0.95 | 0.001 | 0.89 | 0.84 | 0.95 | <0.001 |
Heavy | 0.95 | 0.90 | 1.00 | 0.042 | 0.991 | 0.939 | 1.045 | 0.727 | 0.94 | 0.88 | 1.00 | 0.047 | 0.93 | 0.87 | 0.99 | 0.031 |
Female | ||||||||||||||||
None (Ref) | 1 | 1 | 1 | 1 | ||||||||||||
Mild | 0.78 | 0.72 | 0.84 | <0.001 | 0.80 | 0.74 | 0.86 | <0.001 | 0.79 | 0.73 | 0.86 | <0.001 | 0.81 | 0.74 | 0.88 | <0.001 |
Moderate | 0.96 | 0.75 | 1.23 | 0.721 | 1.00 | 0.78 | 1.28 | 0.985 | 0.85 | 0.62 | 1.16 | 0.304 | 0.85 | 0.62 | 1.16 | 0.306 |
Heavy | 0.69 | 0.45 | 1.07 | 0.097 | 0.74 | 0.48 | 1.15 | 0.187 | 0.81 | 0.50 | 1.31 | 0.392 | 0.87 | 0.54 | 1.39 | 0.553 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, I.O.; Lee, H.-S.; Lim, C.; Bae, E.; Hyun, Y.Y.; Chung, S.; Kwon, S.H.; Cho, J.-H.; Yoo, K.D.; Park, W.Y.; et al. Association Between Alcohol Consumption and the Risk of Incident Chronic Kidney Disease: A Korean Nationwide Study of Community-Dwelling Older Adults. Nutrients 2025, 17, 983. https://doi.org/10.3390/nu17060983
Sun IO, Lee H-S, Lim C, Bae E, Hyun YY, Chung S, Kwon SH, Cho J-H, Yoo KD, Park WY, et al. Association Between Alcohol Consumption and the Risk of Incident Chronic Kidney Disease: A Korean Nationwide Study of Community-Dwelling Older Adults. Nutrients. 2025; 17(6):983. https://doi.org/10.3390/nu17060983
Chicago/Turabian StyleSun, In O, Hui-Seung Lee, Chiyeon Lim, Eunjin Bae, Young Youl Hyun, Sungjin Chung, Soon Hyo Kwon, Jang-Hee Cho, Kyung Don Yoo, Woo Yeong Park, and et al. 2025. "Association Between Alcohol Consumption and the Risk of Incident Chronic Kidney Disease: A Korean Nationwide Study of Community-Dwelling Older Adults" Nutrients 17, no. 6: 983. https://doi.org/10.3390/nu17060983
APA StyleSun, I. O., Lee, H.-S., Lim, C., Bae, E., Hyun, Y. Y., Chung, S., Kwon, S. H., Cho, J.-H., Yoo, K. D., Park, W. Y., Kim, H., Yu, B. C., Ko, G.-J., Yang, J. W., Hwang, W. M., Song, S. H., Shin, S. J., & Hong, Y. A. (2025). Association Between Alcohol Consumption and the Risk of Incident Chronic Kidney Disease: A Korean Nationwide Study of Community-Dwelling Older Adults. Nutrients, 17(6), 983. https://doi.org/10.3390/nu17060983