The Erythrocyte Fatty Acid Profile in Multiple Sclerosis Is Linked to the Disease Course, Lipid Peroxidation, and Dietary Influence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Analysis of the Fatty Acid Profile of Erythrocytes
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. The Fatty Acid Profile in Patients with RRMS and PMS
3.3. Relationship Between the Fatty Acid Profile and the Anthropometric, Clinical, and Molecular Parameters, According to the Course of MS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, H.; Bai, S.; Hao, Y.; Guan, Y. Fatty acids role in multiple sclerosis as “metabokines”. J. Neuroinflamm. 2022, 19, 157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bogie, J.F.J.; Haidar, M.; Kooij, G.; Hendriks, J.J.A. Fatty acid metabolism in the progression and resolution of CNS disorders. Adv. Drug Deliv. Rev. 2020, 159, 198–213. [Google Scholar] [CrossRef] [PubMed]
- Swank, R.L.; Lerstad, O.; Strøm, A.; Backer, J. Multiple sclerosis in rural Norway its geographic and occupational incidence in relation to nutrition. N. Engl. J. Med. 1952, 246, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.T.; Johnson, S.B.; Kokmen, E. Deficiencies of polyunsaturated fatty acids and replacement by nonessential fatty acids in plasma lipids in multiple sclerosis. Proc. Natl. Acad. Sci. USA 1989, 86, 4720–4724. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bazinet, R.P.; Layé, S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 2014, 15, 771–785. [Google Scholar] [CrossRef] [PubMed]
- Ouellet, M.; Emond, V.; Chen, C.T.; Julien, C.; Bourasset, F.; Oddo, S.; LaFerla, F.; Bazinet, R.P.; Calon, F. Diffusion of docosahexaenoic and eicosapentaenoic acids through the blood-brain barrier: An in situ cerebral perfusion study. Neurochem. Int. 2009, 55, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Hon, G.M.; Hassan, M.S.; van Rensburg, S.J.; Abel, S.; Erasmus, R.T.; Matsha, T. Membrane saturated fatty acids and disease progression in multiple sclerosis patients. Metab. Brain Dis. 2009, 24, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Haghikia, A.; Jörg, S.; Duscha, A.; Berg, J.; Manzel, A.; Waschbisch, A.; Hammer, A.; Lee, D.H.; May, C.; Wilck, N.; et al. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity 2015, 43, 817–829, Erratum in Immunity 2016, 44, 951–953. https://doi.org/10.1016/j.immuni.2016.04.006. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yosef, N.; Gaublomme, J.; Wu, C.; Lee, Y.; Clish, C.B.; Kaminski, J.; Xiao, S.; Zu Horste, G.M.; Pawlak, M.; et al. CD5L/AIM Regulates Lipid Biosynthesis and Restrains Th17 Cell Pathogenicity. Cell 2015, 163, 1413–1427. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matveeva, O.; Bogie, J.F.J.; Hendriks, J.J.A.; Linker, R.A.; Haghikia, A.; Kleinewietfeld, M. Western lifestyle and immunopathology of multiple sclerosis. Ann. N. Y. Acad. Sci. 2018, 1417, 71–86. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bjørnevik, K.; Chitnis, T.; Ascherio, A.; Munger, K.L. Polyunsaturated fatty acids and the risk of multiple sclerosis. Mult. Scler. 2017, 23, 1830–1838. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- AlAmmar, W.A.; Albeesh, F.H.; Ibrahim, L.M.; Algindan, Y.Y.; Yamani, L.Z.; Khattab, R.Y. Effect of omega-3 fatty acids and fish oil supplementation on multiple sclerosis: A systematic review. Nutr. Neurosci. 2021, 24, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Petrović-Oggiano, G.; Debeljak-Martačić, J.; Ranković, S.; Pokimica, B.; Mirić, A.; Glibetić, M.; Popović, T. The Effect of Walnut Consumption on n-3 Fatty Acid Profile of Healthy People Living in a Non-Mediterranean West Balkan Country, a Small Scale Randomized Study. Nutrients 2020, 12, 192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pokimica, B.; García-Conesa, M.T.; Zec, M.; Debeljak-Martačić, J.; Ranković, S.; Vidović, N.; Petrović-Oggiano, G.; Konić-Ristić, A.; Glibetić, M. Chokeberry Juice Containing Polyphenols Does Not Affect Cholesterol or Blood Pressure but Modifies the Composition of Plasma Phospholipids Fatty Acids in Individuals at Cardiovascular Risk. Nutrients 2019, 11, 850. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zec, M.M.; Krga, I.; Stojković, L.; Živković, M.; Pokimica, B.; Stanković, A.; Glibetic, M. Is There a FADS2-Modulated Link between Long-Chain Polyunsaturated Fatty Acids in Plasma Phospholipids and Polyphenol Intake in Adult Subjects Who Are Overweight? Nutrients 2021, 13, 296. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clarke, E.D.; Stanford, J.; Ferguson, J.J.A.; Wood, L.G.; Collins, C.E. Red Blood Cell Membrane Fatty Acid Composition, Dietary Fatty Acid Intake and Diet Quality as Predictors of Inflammation in a Group of Australian Adults. Nutrients 2023, 15, 2405. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Orr, S.K.; Trépanier, M.O.; Bazinet, R.P. n-3 Polyunsaturated fatty acids in animal models with neuroinflammation. Prostaglandins Leukot. Essent. Fat. Acids 2013, 88, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Layé, S.; Nadjar, A.; Joffre, C.; Bazinet, R.P. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharmacol. Rev. 2018, 70, 12–38. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Ramirez, V.; Macias-Islas, M.A.; Ortiz, G.G.; Pacheco-Moises, F.; Torres-Sanchez, E.D.; Sorto-Gomez, T.E.; Cruz-Ramos, J.A.; Orozco-Aviña, G.; de la Rosa, A.J.C. Efficacy of fish oil on serum of TNF α, IL-1 β, and IL-6 oxidative stress markers in multiple sclerosis treated with interferon beta-1b. Oxid. Med. Cell. Longev. 2013, 2013, 709493. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yan, Y.; Jiang, W.; Spinetti, T.; Tardivel, A.; Castillo, R.; Bourquin, C.; Guarda, G.; Tian, Z.; Tschopp, J.; Zhou, R. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 2013, 38, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.J.; Fan, Y.Y.; Monk, J.M.; Hou, T.Y.; Barhoumi, R.; McMurray, D.N.; Chapkin, R.S. n-3 PUFAs reduce T-helper 17 cell differentiation by decreasing responsiveness to interleukin-6 in isolated mouse splenic CD4⁺ T cells. J. Nutr. 2014, 144, 1306–1313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Adkins, Y.; Soulika, A.M.; Mackey, B.; Kelley, D.S. Docosahexaenoic acid (22:6n-3) Ameliorated the Onset and Severity of Experimental Autoimmune Encephalomyelitis in Mice. Lipids 2019, 54, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Unoda, K.; Doi, Y.; Nakajima, H.; Yamane, K.; Hosokawa, T.; Ishida, S.; Kimura, F.; Hanafusa, T. Eicosapentaenoic acid (EPA) induces peroxisome proliferator-activated receptors and ameliorates experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2013, 256, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Basil, M.C.; Levy, B.D. Specialized pro-resolving mediators: Endogenous regulators of infection and inflammation. Nat. Rev. Immunol. 2016, 16, 51–67. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Norris, P.C.; Skulas-Ray, A.C.; Riley, I.; Richter, C.K.; Kris-Etherton, P.M.; Jensen, G.L.; Serhan, C.N.; Maddipati, K.R. Identification of specialized pro-resolving mediator clusters from healthy adults after intravenous low-dose endotoxin and omega-3 supplementation: A methodological validation. Sci. Rep. 2018, 8, 18050, Erratum in Sci. Rep. 2019, 9, 19816. https://doi.org/10.1038/s41598-019-56282-5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chiurchiù, V.; Leuti, A.; Dalli, J.; Jacobsson, A.; Battistini, L.; Maccarrone, M.; Serhan, C.N. Proresolving lipid mediators resolvin D1, resolvin D2, and maresin 1 are critical in modulating T cell responses. Sci. Transl. Med. 2016, 8, 353ra111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bernardo, A.; Giammarco, M.L.; De Nuccio, C.; Ajmone-Cat, M.A.; Visentin, S.; De Simone, R.; Minghetti, L. Docosahexaenoic acid promotes oligodendrocyte differentiation via PPAR-γ signalling and prevents tumor necrosis factor-α-dependent maturational arrest. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Siegert, E.; Paul, F.; Rothe, M.; Weylandt, K.H. The effect of omega-3 fatty acids on central nervous system remyelination in fat-1 mice. BMC Neurosci. 2017, 18, 19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Torkildsen, Ø.; Brunborg, L.A.; Thorsen, F.; Mørk, S.J.; Stangel, M.; Myhr, K.M.; Bø, L. Effects of dietary intervention on MRI activity, de- and remyelination in the cuprizone model for demyelination. Exp. Neurol. 2009, 215, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Ren, H.; Wan, J.B.; Yao, X.; Zhang, X.; He, C.; So, K.F.; Kang, J.X.; Pei, Z.; Su, H. Enriched endogenous omega-3 fatty acids in mice protect against global ischemia injury. J. Lipid Res. 2014, 55, 1288–1297. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Innes, J.K.; Calder, P.C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot. Essent. Fat. Acids 2018, 132, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Omura, T.; Masaki, N.; Arima, H.; Banno, T.; Okamoto, A.; Hanada, M.; Takei, S.; Matsushita, S.; Sugiyama, E.; et al. Increased arachidonic acid-containing phosphatidylcholine is associated with reactive microglia and astrocytes in the spinal cord after peripheral nerve injury. Sci. Rep. 2016, 6, 26427. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hammer, A.; Schliep, A.; Jörg, S.; Haghikia, A.; Gold, R.; Kleinewietfeld, M.; Müller, D.N.; Linker, R.A. Impact of combined sodium chloride and saturated long-chain fatty acid challenge on the differentiation of T helper cells in neuroinflammation. J. Neuroinflamm. 2017, 14, 184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kwon, K.J.; Jung, Y.S.; Lee, S.H.; Moon, C.H.; Baik, E.J. Arachidonic acid induces neuronal death through lipoxygenase and cytochrome P450 rather than cyclooxygenase. J. Neurosci. Res. 2005, 81, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D.D.; Hoehn, K.; Weiss, S.; MacVicar, B.A. Arachidonic acid inhibits sodium currents and synaptic transmission in cultured striatal neurons. Neuron 1993, 11, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Jana, A.; Pahan, K. Sphingolipids in multiple sclerosis. Neuromol. Med. 2010, 12, 351–361. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ortiz, G.G.; Pacheco-Moisés, F.P.; Bitzer-Quintero, O.K.; Ramírez-Anguiano, A.C.; Flores-Alvarado, L.J.; Ramírez-Ramírez, V.; Macias-Islas, M.A.; Torres-Sánchez, E.D. Immunology and oxidative stress in multiple sclerosis: Clinical and basic approach. Clin. Dev. Immunol. 2013, 2013, 708659. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perluigi, M.; Coccia, R.; Butterfield, D.A. 4-Hydroxy-2-nonenal, a reactive product of lipid peroxidation, and neurodegenerative diseases: A toxic combination illuminated by redox proteomics studies. Antioxid. Redox Signal. 2012, 17, 1590–1609. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kemp, K.; Redondo, J.; Hares, K.; Rice, C.; Scolding, N.; Wilkins, A. Oxidative injury in multiple sclerosis cerebellar grey matter. Brain Res. 2016, 1642, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, H.B.; Neves, B.; Guerra, I.M.; Moreira, A.; Melo, T.; Paiva, A.; Domingues, M.R. An overview of lipidomic analysis in different human matrices of multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 44, 102189. [Google Scholar] [CrossRef] [PubMed]
- Bystrická, Z.; Ďuračková, Z. Gas chromatography determination of fatty acids in the human erythrocyte membranes—A review. Prostaglandins Leukot. Essent. Fat. Acids 2016, 115, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Brenna, J.T.; Plourde, M.; Stark, K.D.; Jones, P.J.; Lin, Y.H. Best practices for the design, laboratory analysis, and reporting of trials involving fatty acids. Am. J. Clin. Nutr. 2018, 108, 211–227. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stojkovic, L.; Djordjevic, A.; Stefanovic, M.; Stankovic, A.; Dincic, E.; Djuric, T.; Zivkovic, M. Circulatory Indicators of Lipid Peroxidation, the Driver of Ferroptosis, Reflect Differences between Relapsing-Remitting and Progressive Multiple Sclerosis. Int. J. Mol. Sci. 2024, 25, 11024. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Glaser, C.; Demmelmair, H.; Koletzko, B. High-throughput analysis of total plasma fatty acid composition with direct in situ transesterification. PLoS ONE 2010, 5, e12045. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harris, W.S.; Von Schacky, C. The Omega-3 Index: A new risk factor for death from coronary heart disease? Prev. Med. 2004, 39, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Oppong, A.E.; Coelewij, L.; Robertson, G.; Martin-Gutierrez, L.; Waddington, K.E.; Dönnes, P.; Nytrova, P.; Farrell, R.; Pineda-Torra, I.; Jury, E.C. Blood metabolomic and transcriptomic signatures stratify patient subgroups in multiple sclerosis according to disease severity. iScience 2024, 27, 109225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cherayil, G.D. Sialic acid and fatty acid concentrations in lymphocytes, red blood cells and plasma from patients with multiple sclerosis. J. Neurol. Sci. 1984, 63, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Love, W.C.; Cashell, A.; Reynolds, M.; Callaghan, N. Linoleate and fatty-acid patterns of serum lipids in multiple sclerosis and other diseases. Br. Med. J. 1974, 3, 18–21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Neu, I.S. Essential fatty acids in the serum and cerebrospinal fluid of multiple sclerosis patients. Acta Neurol. Scand. 1983, 67, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Rutkowsky, J.M.; Snodgrass, R.G.; Ono-Moore, K.D.; Schneider, D.A.; Newman, J.W.; Adams, S.H.; Hwang, D.H. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J. Lipid Res. 2012, 53, 2002–2013. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, H.R.; Kim, J.Y.; Park, K.Y.; Lee, J. Lipotoxicity of palmitic Acid on neural progenitor cells and hippocampal neurogenesis. Toxicol. Res. 2011, 27, 103–110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aupperle, R.L.; Denney, D.R.; Lynch, S.G.; Carlson, S.E.; Sullivan, D.K. Omega-3 fatty acids and multiple sclerosis: Relationship to depression. J. Behav. Med. 2008, 31, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Stoessel, D.; Stellmann, J.P.; Willing, A.; Behrens, B.; Rosenkranz, S.C.; Hodecker, S.C.; Stürner, K.H.; Reinhardt, S.; Fleischer, S.; Deuschle, C.; et al. Metabolomic Profiles for Primary Progressive Multiple Sclerosis Stratification and Disease Course Monitoring. Front. Hum. Neurosci. 2018, 12, 226. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dunlop, E.; Daly, A.; Mori, T.A.; Langer-Gould, A.; Pereira, G.; Black, L.J. Plasma levels of polyunsaturated fatty acids and multiple sclerosis susceptibility in a US case-control study. Mult. Scler. Relat. Disord. 2024, 92, 105920. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, S. Pathogenesis and Progression of Multiple Sclerosis: The Role of Arachidonic Acid–Mediated Neuroinflammation. In Multiple Sclerosis: Perspectives in Treatment and Pathogenesis [Internet]; Zagon, I.S., McLaughlin, P.J., Eds.; Codon Publications: Brisbane, Australia, 2017; Chapter 7. [Google Scholar] [PubMed]
- Van Horssen, J.; Schreibelt, G.; Drexhage, J.; Hazes, T.; Dijkstra, C.D.; van der Valk, P.; de Vries, H.E. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic. Biol. Med. 2008, 45, 1729–1737. [Google Scholar] [CrossRef] [PubMed]
- Usatyuk, P.V.; Parinandi, N.L.; Natarajan, V. Redox regulation of 4-hydroxy-2-nonenal-mediated endothelial barrier dysfunction by focal adhesion, adherens, and tight junction proteins. J. Biol. Chem. 2006, 281, 35554–35566. [Google Scholar] [CrossRef] [PubMed]
- Theodosis-Nobelos, P.; Rekka, E.A. The Multiple Sclerosis Modulatory Potential of Natural Multi-Targeting Antioxidants. Molecules 2022, 27, 8402. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baker, R.W.; Thompson, R.H.; Zilkha, K.J. Serum fatty acids in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 1964, 27, 408–414. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hon, G.M.; Hassan, M.S.; van Rensburg, S.J.; Abel, S.; Marais, D.W.; van Jaarsveld, P.; Smuts, C.M.; Henning, F.; Erasmus, R.T.; Matsha, T. Erythrocyte membrane fatty acids in patients with multiple sclerosis. Mult. Scler. 2009, 15, 759–762. [Google Scholar] [CrossRef] [PubMed]
- Villoslada, P.; Alonso, C.; Agirrezabal, I.; Kotelnikova, E.; Zubizarreta, I.; Pulido-Valdeolivas, I.; Saiz, A.; Comabella, M.; Montalban, X.; Villar, L.; et al. Metabolomic signatures associated with disease severity in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e321. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vazdar, M.; Jurkiewicz, P.; Hof, M.; Jungwirth, P.; Cwiklik, L. Behavior of 4-hydroxynonenal in phospholipid membranes. J. Phys. Chem. B 2012, 116, 6411–6415. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Ramsaransing, G.S.; Fokkema, M.R.; Heersema, D.J.; De Keyser, J. Erythrocyte membrane fatty acids in benign and progressive forms of multiple sclerosis. J. Neurol. Sci. 2006, 244, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; Thomas, R.M. Biological variability of blood omega-3 biomarkers. Clin. Biochem. 2010, 43, 338–340. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S. The omega-3 index: Clinical utility for therapeutic intervention. Curr. Cardiol. Rep. 2010, 12, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Parks, N.E.; Jackson-Tarlton, C.S.; Vacchi, L.; Merdad, R.; Johnston, B.C. Dietary interventions for multiple sclerosis-related outcomes. Cochrane Database Syst. Rev. 2020, 5, CD004192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
FA | Mean | SD | p | |||
---|---|---|---|---|---|---|
RRMS | PMS | RRMS | PMS | |||
SFA | 16:0 | 26.05 | 26.19 | 0.89 | 1.18 | 0.35 # |
18:0 | 18.67 | 18.80 | 0.90 | 0.90 | 0.33 # | |
Total | 44.73 | 44.99 | 0.84 | 0.90 | 0.04 # | |
MUFA | 16:1n-7 | 0.15 | 0.19 | 0.08 | 0.09 | 0.002 & |
18:1n-9 | 12.49 | 12.44 | 0.96 | 1.02 | 0.73 # | |
18:1n-7 | 0.97 | 1.05 | 0.13 | 0.19 | 0.001 & | |
Total | 13.62 | 13.69 | 0.98 | 1.14 | 0.64 # | |
n-6 PUFA | 18:2n-6 | 11.54 | 11.11 | 1.47 | 1.29 | 0.04 # |
20:3n-6 | 1.48 | 1.51 | 0.37 | 0.42 | 0.92 & | |
20:4n-6 | 18.96 | 18.83 | 1.52 | 1.69 | 0.57 # | |
22:4n-6 | 3.96 | 3.71 | 0.78 | 0.79 | 0.03 # | |
Total | 35.93 | 35.17 | 1.90 | 2.11 | 0.004 & | |
n-3 PUFA | 20:5n-3 | 0.24 | 0.24 | 0.23 | 0.15 | 0.65 & |
22:5n-3 | 1.51 | 1.55 | 0.45 | 0.40 | 0.13 & | |
22:6n-3 | 3.96 | 4.37 | 1.28 | 1.40 | 0.03 & | |
Total | 5.72 | 6.16 | 1.73 | 1.71 | 0.04 & | |
n-6/n-3 ratio | 6.83 | 6.21 | 1.99 | 1.94 | 0.03 # | |
20:5n-3 + 22:6n-3 | 4.21 | 4.60 | 1.46 | 1.50 | 0.04 & | |
Total PUFAs | 41.66 | 41.33 | 0.99 | 1.42 | 0.04 # | |
Estimated elongase activities | Elongase 18:0/16:0 | 0.72 | 0.72 | 0.05 | 0.06 | 0.80 # |
Elongase 18:1n-7/16:1n-7 | 7.56 | 6.78 | 3.99 | 3.76 | 0.02 & | |
Elongase 22:4n-6/20:4n-6 | 0.21 | 0.19 | 0.04 | 0.04 | 0.04 # | |
Estimated desaturase activities | D9D 18:1n-9/18:0 | 0.67 | 0.66 | 0.07 | 0.07 | 0.46 # |
D6D 20:3n-6/18:2n-6 | 0.13 | 0.14 | 0.03 | 0.04 | 0.18 & | |
D5D 20:4n-6/20:3n-6 | 13.60 | 13.37 | 3.47 | 3.75 | 0.66 # |
FA | Mean | SD | p | |||
---|---|---|---|---|---|---|
RRMS | PMS | RRMS | PMS | |||
SFA | 16:0 | 26.08 | 26.00 | 0.82 | 0.84 | 0.75 # |
18:0 | 18.55 | 18.71 | 0.85 | 0.67 | 0.50 # | |
Total | 44.62 | 44.71 | 0.73 | 0.71 | 0.71 # | |
MUFA | 16:1n-7 | 0.15 | 0.19 | 0.14 | 0.06 | 0.004 & |
18:1n-9 | 12.54 | 12.57 | 0.89 | 1.05 | 0.92 # | |
18:1n-7 | 0.97 | 1.03 | 0.10 | 0.11 | 0.07 # | |
Total | 13.67 | 13.79 | 0.93 | 1.11 | 0.69 # | |
n-6 PUFA | 18:2n-6 | 11.27 | 10.94 | 1.21 | 1.37 | 0.39 # |
20:3n-6 | 1.44 | 1.43 | 0.33 | 0.39 | 0.63 & | |
20:4n-6 | 18.70 | 18.92 | 1.55 | 1.43 | 0.63 # | |
22:4n-6 | 3.67 | 3.54 | 0.84 | 0.77 | 0.58 # | |
Total | 35.08 | 34.83 | 2.45 | 2.32 | 0.40 & | |
n-3 PUFA | 20:5n-3 | 0.32 | 0.28 | 0.32 | 0.18 | 0.99 & |
22:5n-3 | 1.75 | 1.69 | 0.62 | 0.46 | 0.92 & | |
22:6n-3 | 4.55 | 4.69 | 1.58 | 1.51 | 0.51 & | |
Total | 6.62 | 6.67 | 2.22 | 1.99 | 0.77 & | |
n-6/n-3 ratio | 5.83 | 5.78 | 1.77 | 2.12 | 0.93 # | |
20:5n-3 + 22:6n-3 | 4.87 | 4.98 | 1.85 | 1.65 | 0.55 & | |
Total PUFAs | 41.70 | 41.50 | 0.87 | 1.34 | 0.52 # | |
Estimated elongase activities | Elongase 18:0/16:0 | 0.71 | 0.72 | 0.05 | 0.04 | 0.57 # |
Elongase 18:1n-7/16:1n-7 | 8.28 | 6.01 | 3.86 | 2.06 | 0.01 & | |
Elongase 22:4n-6/20:4n-6 | 0.20 | 0.19 | 0.04 | 0.03 | 0.38 # | |
Estimated desaturase activities | D9D 18:1n-9/18:0 | 0.68 | 0.67 | 0.07 | 0.06 | 0.78 # |
D6D 20:3n-6/18:2n-6 | 0.13 | 0.13 | 0.03 | 0.04 | 0.95 & | |
D5D 20:4n-6/20:3n-6 | 13.74 | 13.97 | 3.70 | 3.23 | 0.30 & |
(a) | ||||||||
Fatty Acids | RRMS | PMS | ||||||
EDSS | MSSS | EDSS | MSSS | |||||
r | r | r | r | |||||
p | p | p | p | |||||
Total SFAs | 0.02 0.82 | −0.14 0.10 | 0.33 0.008 | −0.06 0.64 | ||||
Total MUFAs | −0.07 0.45 | −0.07 0.43 | 0.13 0.32 | 0.17 0.18 | ||||
Total n-6 PUFAs | 0.08 0.35 | 0.14 0.10 | −0.29 0.02 | −0.30 0.01 | ||||
Total n-3 PUFAs | −0.05 0.56 | −0.04 0.66 | 0.09 0.50 | 0.33 0.008 | ||||
Total n-6/n-3 ratio | 0.04 0.65 | 0.05 0.60 | −0.11 0.38 | −0.36 0.003 | ||||
(b) | ||||||||
Fatty Acid | RRMS | PMS | ||||||
EDSS | MSSS | 4-HNE | EDSS | MSSS | 4-HNE | |||
r | r | r | r | r | r | |||
p | p | p | p | p | p | |||
16:0, PA | −0.07 0.43 | −0.10 0.26 | 0.24 0.004 | 0.41 0.0007 | 0.25 0.05 | 0.07 0.55 | ||
18:0, SA | 0.09 0.30 | −0.03 0.72 | −0.14 0.10 | −0.20 0.12 | −0.37 0.003 | −0.17 0.18 | ||
16:1n-7, POA | 0.11 0.20 | 0.06 0.52 | 0.02 0.81 | 0.09 0.49 | 0.12 0.35 | −0.03 0.81 | ||
18:1n-9, OA | −0.11 0.22 | −0.08 0.38 | −0.07 0.40 | 0.09 0.47 | 0.16 0.20 | −0.15 0.23 | ||
18:1n-7, cVA | 0.19 0.03 | −0.01 0.93 | −0.01 0.89 | 0.19 0.13 | 0.05 0.68 | 0.07 0.57 | ||
18:2n-6, LA | −0.15 0.09 | 0.005 0.96 | 0.06 0.45 | −0.004 0.97 | 0.004 0.98 | 0.04 0.73 | ||
20:3n-6, DGLA | −0.003 0.98 | 0.02 0.85 | −0.09 0.29 | 0.002 0.99 | 0.14 0.25 | −0.09 0.47 | ||
20:4n-6, AA | 0.18 0.04 | 0.13 0.14 | 0.03 0.68 | −0.23 0.07 | −0.22 0.08 | 0.14 0.27 | ||
22:4n-6, ADA | 0.14 0.11 | 0.09 0.33 | −0.11 0.18 | −0.30 0.02 | −0.45 0.0002 | 0.13 0.31 | ||
20:5n-3, EPA | −0.02 0.83 | 0.01 0.89 | 0.05 0.55 | −0.02 0.86 | 0.24 0.06 | −0.04 0.78 | ||
22:5n-3, DPA | −0.09 0.33 | −0.14 0.10 | −0.07 0.41 | 0.14 0.27 | 0.27 0.03 | −0.17 0.17 | ||
22:6n-3, DHA | −0.03 0.71 | 0.003 0.97 | −0.04 0.61 | 0.05 0.68 | 0.30 0.02 | −0.05 0.66 |
(a) | ||||||||
Fatty Acids | RRMS | PMS | ||||||
EDSS | MSSS | EDSS | MSSS | |||||
r | r | r | r | |||||
p | p | p | p | |||||
Total SFAs | −0.06 0.51 | −0.15 0.11 | 0.36 0.005 | −0.01 0.91 | ||||
Total MUFAs | −0.09 0.32 | −0.09 0.31 | 0.13 0.32 | 0.19 0.16 | ||||
Total n-6 PUFAs | 0.12 0.20 | 0.15 0.10 | −0.25 0.06 | −0.34 0.009 | ||||
Total n-3 PUFAs | −0.04 0.69 | −0.03 0.74 | 0.03 0.82 | 0.35 0.007 | ||||
Total n-6/n-3 ratio | 0.03 0.71 | 0.04 0.68 | −0.07 0.61 | −0.38 0.003 | ||||
(b) | ||||||||
Fatty Acid | RRMS | PMS | ||||||
EDSS | MSSS | 4-HNE | EDSS | MSSS | 4-HNE | |||
r | r | r | r | r | r | |||
p | p | p | p | p | p | |||
16:0, PA | −0.16 0.08 | −0.14 0.13 | 0.20 0.02 | 0.42 0.0009 | 0.27 0.04 | 0.09 0.52 | ||
18:0, SA | 0.10 0.26 | 0.005 0.95 | −0.08 0.35 | −0.20 0.14 | −0.37 0.004 | −0.13 0.34 | ||
16:1n-7, POA | 0.10 0.30 | 0.05 0.56 | −0.0004 0.99 | 0.12 0.35 | 0.14 0.29 | −0.04 0.76 | ||
18:1n-9, OA | −0.13 0.16 | −0.11 0.24 | −0.06 0.46 | 0.09 0.48 | 0.17 0.19 | −0.20 0.13 | ||
18:1n-7, cVA | 0.17 0.06 | 0.02 0.79 | −0.03 0.72 | 0.19 0.15 | 0.07 0.61 | 0.19 0.16 | ||
18:2n-6, LA | −0.15 0.10 | −0.03 0.76 | 0.10 0.26 | −0.05 0.73 | 0.005 0.97 | 0.08 0.57 | ||
20:3n-6, DGLA | 0.004 0.97 | 0.002 0.98 | −0.06 0.48 | 0.006 0.96 | 0.14 0.28 | −0.19 0.14 | ||
20:4n-6, AA | 0.19 0.03 | 0.17 0.06 | 0.04 0.61 | −0.16 0.22 | −0.25 0.05 | 0.11 0.41 | ||
22:4n-6, ADA | 0.20 0.03 | 0.10 0.28 | −0.07 0.42 | −0.25 0.05 | −0.48 0.0001 | 0.15 0.27 | ||
20:5n-3, EPA | −0.01 0.88 | 0.02 0.84 | −0.02 0.82 | −0.05 0.70 | 0.22 0.09 | −0.11 0.43 | ||
22:5n-3, DPA | −0.07 0.45 | −0.13 0.17 | −0.12 0.17 | 0.11 0.43 | 0.30 0.02 | −0.14 0.31 | ||
22:6n-3, DHA | −0.02 0.83 | 0.01 0.93 | −0.10 0.28 | −0.0002 0.99 | 0.32 0.01 | −0.04 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojkovic, L.; Rankovic, S.; Dincic, E.; Boskovic, M.; Kolakovic, A.; Seke, M.; Takić, M.; Zivkovic, M. The Erythrocyte Fatty Acid Profile in Multiple Sclerosis Is Linked to the Disease Course, Lipid Peroxidation, and Dietary Influence. Nutrients 2025, 17, 974. https://doi.org/10.3390/nu17060974
Stojkovic L, Rankovic S, Dincic E, Boskovic M, Kolakovic A, Seke M, Takić M, Zivkovic M. The Erythrocyte Fatty Acid Profile in Multiple Sclerosis Is Linked to the Disease Course, Lipid Peroxidation, and Dietary Influence. Nutrients. 2025; 17(6):974. https://doi.org/10.3390/nu17060974
Chicago/Turabian StyleStojkovic, Ljiljana, Slavica Rankovic, Evica Dincic, Maja Boskovic, Ana Kolakovic, Mariana Seke, Marija Takić, and Maja Zivkovic. 2025. "The Erythrocyte Fatty Acid Profile in Multiple Sclerosis Is Linked to the Disease Course, Lipid Peroxidation, and Dietary Influence" Nutrients 17, no. 6: 974. https://doi.org/10.3390/nu17060974
APA StyleStojkovic, L., Rankovic, S., Dincic, E., Boskovic, M., Kolakovic, A., Seke, M., Takić, M., & Zivkovic, M. (2025). The Erythrocyte Fatty Acid Profile in Multiple Sclerosis Is Linked to the Disease Course, Lipid Peroxidation, and Dietary Influence. Nutrients, 17(6), 974. https://doi.org/10.3390/nu17060974