Impact of Alcohol Intake on Skeletal Muscle: A Large Cross-Sectional Analysis in Japanese Adults
Abstract
:1. Introduction
2. Patients and Methods
2.1. Our Study Subjects
2.2. Type Classification Based on Alcohol Consumed and Our Study Framework
2.3. Statistics
3. Results
3.1. Baseline Features
3.2. Comparison of FF Index and the Proportion of Decreased SMM Among the Four Types in Males
3.3. Comparison of FF Index and the Proportion of Decreased SMM Among Four Types in Females
3.4. Subgroup Analysis 1: Comparison of FF Index Among Four Types of Males (≥60 Years and <60 Years)
3.5. Subgroup Analysis 2: Comparison of FF Index Among Four Types of Females (≥60 Years and <60 Years)
3.6. Subgroup Analysis 3: Comparison of FF Index Among Four Types of Males (BMI ≥ 23 kg/m2 and BMI < 23 kg/m2)
3.7. Subgroup Analysis 4: Comparison of FF Index Among Four Types of Females (BMI ≥ 23 kg/m2 and BMI < 23 kg/m2)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Yamamuro, B. Origins of some Japanese drinking customs. Q. J. Stud. Alcohol 1968, 29, 979–982. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.mhlw.go.jp/stf/newpage_38541.html (accessed on 10 January 2025).
- Osaki, Y.; Kinjo, A.; Higuchi, S.; Matsumoto, H.; Yuzuriha, T.; Horie, Y.; Kimura, M.; Kanda, H.; Yoshimoto, H. Prevalence and Trends in Alcohol Dependence and Alcohol Use Disorders in Japanese Adults; Results from Periodical Nationwide Surveys. Alcohol Alcohol. 2016, 51, 465–473. [Google Scholar] [CrossRef]
- Hanai, T.; Nishimura, K.; Unome, S.; Miwa, T.; Nakahata, Y.; Imai, K.; Suetsugu, A.; Takai, K.; Shimizu, M. Alcohol-associated liver disease increases the risk of muscle loss and mortality in patients with cirrhosis. J. Gastroenterol. 2024, 59, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C.; Isath, A.; Rosenson, R.S.; Khawaja, M.; Wang, Z.; Fogg, S.E.; Virani, S.S.; Qi, L.; Cao, Y.; Long, M.T.; et al. Alcohol Consumption and Cardiovascular Health. Am. J. Med. 2022, 135, 1213–1230.e3. [Google Scholar] [CrossRef]
- Llamosas-Falcón, L.; Rehm, J.; Bright, S.; Buckley, C.; Carr, T.; Kilian, C.; Lasserre, A.M.; Lemp, J.M.; Zhu, Y.; Probst, C. The Relationship Between Alcohol Consumption, BMI, and Type 2 Diabetes: A Systematic Review and Dose-Response Meta-analysis. Diabetes Care 2023, 46, 2076–2083. [Google Scholar] [CrossRef]
- Bagnardi, V.; Rota, M.; Botteri, E.; Tramacere, I.; Islami, F.; Fedirko, V.; Scotti, L.; Jenab, M.; Turati, F.; Pasquali, E.; et al. Alcohol consumption and site-specific cancer risk: A comprehensive dose-response meta-analysis. Br. J. Cancer 2015, 112, 580–593. [Google Scholar] [CrossRef] [PubMed]
- Rumgay, H.; Murphy, N.; Ferrari, P.; Soerjomataram, I. Alcohol and Cancer: Epidemiology and Biological Mechanisms. Nutrients 2021, 13, 3173. [Google Scholar] [CrossRef]
- Day, E.; Rudd, J.H.F. Alcohol use disorders and the heart. Addiction 2019, 114, 1670–1678. [Google Scholar] [CrossRef]
- Enomoto, H.; Akuta, N.; Hikita, H.; Suda, G.; Inoue, J.; Tamaki, N.; Ito, K.; Akahane, T.; Kawaoka, T.; Morishita, A.; et al. Etiological changes of liver cirrhosis and hepatocellular carcinoma-complicated liver cirrhosis in Japan: Updated nationwide survey from 2018 to 2021. Hepatol. Res. 2024, 54, 763–772. [Google Scholar] [CrossRef]
- Simon, L.; Bourgeois, B.L.; Molina, P.E. Alcohol and Skeletal Muscle in Health and Disease. Alcohol. Res. 2023, 43, 4. [Google Scholar] [CrossRef]
- Dasarathy, J.; McCullough, A.J.; Dasarathy, S. Sarcopenia in Alcoholic Liver Disease: Clinical and Molecular Advances. Alcohol. Clin. Exp. Res. 2017, 41, 1419–1431. [Google Scholar] [CrossRef] [PubMed]
- Oba, T.; Maeno, Y.; Ishida, K. Differential contribution of clinical amounts of acetaldehyde to skeletal and cardiac muscle dysfunction in alcoholic myopathy. Curr. Pharm. Des. 2005, 11, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Kant, S.; Davuluri, G.; Alchirazi, K.A.; Welch, N.; Heit, C.; Kumar, A.; Gangadhariah, M.; Kim, A.; McMullen, M.R.; Willard, B.; et al. Ethanol sensitizes skeletal muscle to ammonia-induced molecular perturbations. J. Biol. Chem. 2019, 294, 7231–7244. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Namisaki, T.; Murata, K.; Fujimoto, Y.; Takeda, S.; Enomoto, M.; Shibamoto, A.; Ishida, K.; Ogawa, H.; Takagi, H.; et al. The association between sarcopenia and endotoxin in patients with alcoholic cirrhosis. Medicine 2021, 100, e27212. [Google Scholar] [CrossRef]
- Grossmann, M.; Hoermann, R.; Gani, L.; Chan, I.; Cheung, A.; Gow, P.J.; Li, A.; Zajac, J.D.; Angus, P. Low testosterone levels as an independent predictor of mortality in men with chronic liver disease. Clin. Endocrinol. 2012, 77, 323–328. [Google Scholar] [CrossRef]
- Sinclair, M.; Grossmann, M.; Hoermann, R.; Angus, P.W.; Gow, P.J. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: A randomised controlled trial. J. Hepatol. 2016, 65, 906–913. [Google Scholar] [CrossRef]
- Tentler, J.J.; LaPaglia, N.; Steiner, J.; Williams, D.; Castelli, M.; Kelley, M.R.; Emanuele, N.V.; Emanuele, M.A. Ethanol, growth hormone and testosterone in peripubertal rats. J. Endocrinol. 1997, 152, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Skinner, J.; Shepstone, L.; Hickson, M.; Welch, A.A. Alcohol Consumption and Measures of Sarcopenic Muscle Risk: Cross-Sectional and Prospective Associations Within the UK Biobank Study. Calcif. Tissue Int. 2023, 113, 143–156. [Google Scholar] [CrossRef]
- Onishi, S.; Fukuda, A.; Matsui, M.; Ushiro, K.; Nishikawa, T.; Asai, A.; Kim, S.K.; Nishikawa, H. Body Composition Analysis in Patients with Metabolic Dysfunction-Associated Fatty Liver Disease. Nutrients 2023, 15, 3878. [Google Scholar] [CrossRef]
- Kawakami, R.; Tanisawa, K.; Ito, T.; Usui, C.; Miyachi, M.; Torii, S.; Midorikawa, T.; Ishii, K.; Muraoka, I.; Suzuki, K.; et al. Fat-Free Mass Index as a Surrogate Marker of Appendicular Skeletal Muscle Mass Index for Low Muscle Mass Screening in Sarcopenia. J. Am. Med. Dir. Assoc. 2022, 23, 1955–1961.e3. [Google Scholar] [CrossRef]
- Ushiro, K.; Matsui, M.; Fukuda, A.; Onishi, S.; Nishikawa, T.; Asai, A.; Kim, S.K.; Nishikawa, H. Fatty liver index and somatic composition in subjects receiving medical health checkup. Hepatol. Res. 2024. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef] [PubMed]
- Crowther, D.; Curran, J.; Somerville, M.; Sinclair, D.; Wozney, L.; MacPhee, S.; Rose, A.E.; Boulos, L.; Caudrella, A. Harm reduction strategies in acute care for people who use alcohol and/or drugs: A scoping review. PLoS ONE 2023, 18, e0294804. [Google Scholar] [CrossRef] [PubMed]
- Hammock, K.; Velasquez, M.M.; Alwan, H.; von Sternberg, K. Alcohol Screening, Brief Intervention, and Referral to Treatment (SBIRT) for Girls and Women. Alcohol. Res. 2020, 40, 7. [Google Scholar] [CrossRef]
- Hara, N.; Hiraoka, A.; Nakai, M.; Shiraki, M.; Namisaki, T.; Miyaaki, H.; Hisanaga, T.; Takahashi, H.; Ohama, H.; Tada, F.; et al. Brief intervention for chronic liver disease patients with alcohol use disorder in a hepatology outpatient unit: Effects and limitations. Hepatol. Res. 2024, 54, 1099–1105. [Google Scholar] [CrossRef]
- Wilk, A.; Jensen, N.; Havighurst, T. Meta-analysis of randomized control trials addressing brief interventions in heavy alcohol drinkers. J. Gen. Intern. Med. 1997, 12, 274–283. [Google Scholar] [CrossRef]
- Palpacuer, C.; Duprez, R.; Huneau, A.; Locher, C.; Boussageon, R.; Laviolle, B.; Naudet, F. Pharmacologically controlled drinking in the treatment of alcohol dependence or alcohol use disorders: A systematic review with direct and network meta-analyses on nalmefene, naltrexone, acamprosate, baclofen and topiramate. Addiction 2018, 113, 220–237. [Google Scholar] [CrossRef]
- Miyata, H.; Takahashi, M.; Murai, Y.; Tsuneyoshi, K.; Hayashi, T.; Meulien, D.; Sørensen, P.; Higuchi, S. Nalmefene in alcohol-dependent patients with a high drinking risk: Randomized controlled trial. Psychiatry Clin. Neurosci. 2019, 73, 697–706. [Google Scholar] [CrossRef]
- Higuchi, S.; Takahashi, M.; Murai, Y.; Tsuneyoshi, K.; Nakamura, I.; Meulien, D.; Miyata, H. Long-term safety and efficacy of nalmefene in Japanese patients with alcohol dependence. Psychiatry Clin. Neurosci. 2020, 74, 431–438. [Google Scholar] [CrossRef]
- Ko, S.H.; Jung, Y. Energy Metabolism Changes and Dysregulated Lipid Metabolism in Postmenopausal Women. Nutrients 2021, 13, 4556. [Google Scholar] [CrossRef]
- You, M.; Arteel, G.E. Effect of ethanol on lipid metabolism. J. Hepatol. 2019, 70, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Aberg, F.; Byrne, C.D.; Pirola, C.J.; Männistö, V.; Sookoian, S. Alcohol consumption and metabolic syndrome: Clinical and epidemiological impact on liver disease. J. Hepatol. 2023, 78, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, F.D.; Fuchs, S.C. The Effect of Alcohol on Blood Pressure and Hypertension. Curr. Hypertens. Rep. 2021, 23, 42. [Google Scholar] [CrossRef] [PubMed]
Male (n = 8405) | Female (n = 11,509) | Overall p Value | |
---|---|---|---|
Age (years) | 52.2 ± 13.2 | 50.1 ± 12.1 | <0.0001 |
BMI (kg/m2) | 23.8 ± 3.6 | 21.8 ± 3.7 | <0.0001 |
Type A/B/C/D | 3064(36.5%)/3716(44.2%)/ 500(5.9%)/1125(13.4%) | 6888(59.8%)/3607(31.3%)/ 424(3.7%)/590(5.1%) | <0.0001 |
WC (cm) | 85.2 ± 9.9 | 77.9 ± 9.8 | <0.0001 |
30 min or more exercise per day, yes/no/unknown | 2414(28.7%)/5636(67.1%) /355(4.2%) | 2132(18.5%)/9037(78.5%) /340(3.0%) | <0.0001 |
Hemoglobin (g/dL) | 14.9 ± 1.1 | 13.1 ± 1.1 | <0.0001 |
ALT (IU/L) | 26.9 ± 19.5 | 17.3 ± 11.7 | <0.0001 |
GGT (IU/L) | 45.2 ± 53.0 | 23.6 ± 27.6 | <0.0001 |
Serum albumin (g/dL) | 4.4 ± 0.3 | 4.3 ± 0.2 | <0.0001 |
Triglycerides (mg/dL) | 118.7 ± 89.6 | 80.5 ± 50.3 | <0.0001 |
Fatty liver index | 32.5 ± 26.0 | 14.2 ± 18.4 | <0.0001 |
FBS (mg/dL) | 95.9 ± 19.8 | 88.5 ± 12.5 | <0.0001 |
Uric acid (mg/dL) | 6.2 ± 1.3 | 4.6 ± 1.0 | <0.0001 |
eGFR (ml/min/1.73 m2) | 70.9 ± 13.5 | 74.1 ± 13.6 | <0.0001 |
sBP (mmHg) | 122.5 ± 16.7 | 115.3 ± 17.4 | <0.0001 |
dBP (mmHg) | 78.7 ± 12.6 | 71.6 ± 12.1 | <0.0001 |
Fat mass (kg) | 15.7 ± 7.0 | 16.5 ± 7.2 | <0.0001 |
FF index (kg/m2) | 18.5 ± 1.5 | 15.1 ± 1.0 | <0.0001 |
Males (n = 8405) | Type A (n = 3064) | Type B (n = 3716) | Type C (n = 500) | Type D (n = 1125) | Overall p Value |
---|---|---|---|---|---|
Age (years) | 50.5 ± 13.9 | 52.7 ± 12.7 | 52.8 ± 13.7 | 54.9 ± 12.0 | <0.0001 |
BMI (kg/m2) | 23.7 ± 3.3 | 24.2 ± 4.1 | 23.0 ± 2.3 | 23.4 ± 3.3 | <0.0001 |
30 min or more exercise per day, yes/no/unknown | 779(25.4%)/2141 (69.9%)/144(4.7%) | 1144(30.8%)/2473 (66.6%)/99(2.7%) | 168(33.6%)/288 (57.6%)/44(8.8%) | 323(28.7%)/734 (65.2%)/68(6.0%) | <0.0001 |
WC (cm) | 84.5 ± 9.5 | 86.1 ± 10.6 | 83.2 ± 7.5 | 85.0 ± 9.0 | <0.0001 |
Hemoglobin (g/dL) | 14.9 ± 1.1 | 14.9 ± 1.1 | 14.7 ± 1.1 | 14.8 ± 1.2 | 0.0011 |
ALT (IU/L) | 26.9 ± 18.8 | 27.4 ± 20.9 | 24.1 ± 15.0 | 26.7 ± 18.3 | 0.0249 |
GGT (IU/L) | 32.3 ± 27.4 | 44.8 ± 47.5 | 52.3 ± 70.5 | 78.6 ± 88.1 | <0.0001 |
Serum albumin (g/dL) | 4.4 ± 0.3 | 4.4 ± 0.3 | 4.4 ± 0.3 | 4.3 ± 0.3 | 0.0018 |
Triglycerides (mg/dL) | 111.6 ± 81.8 | 119.2 ± 86.8 | 120.0 ± 91.2 | 136.1 ± 113.2 | <0.0001 |
Fatty liver index | 28.5 ± 23.7 | 34.3 ± 27.1 | 29.2 ± 23.8 | 38.9 ± 27.6 | <0.0001 |
FBS (mg/dL) | 94.6 ± 20.1 | 96.3 ± 19.0 | 96.4 ± 19.8 | 97.6 ± 19.4 | <0.0001 |
Uric acid (mg/dL) | 6.0 ± 1.2 | 6.3 ± 1.2 | 6.3 ± 1.3 | 6.4 ± 1.3 | <0.0001 |
eGFR (ml/min/1.73 m2) | 70.7 ± 14.0 | 70.6 ± 13.2 | 71.2 ± 13.4 | 72.3 ± 13.4 | 0.0032 |
Fat mass (kg) | 15.3 ± 6.2 | 16.3 ± 8.0 | 14.2 ± 4.7 | 15.3 ± 6.0 | <0.0001 |
sBP (mmHg) | 119.7 ± 16.4 | 123.3 ± 16.3 | 123.1 ± 16.3 | 127.6 ± 17.5 | <0.0001 |
dBP (mmHg) | 76.1 ± 12.6 | 79.4 ± 12.3 | 79.6 ± 12.0 | 82.6 ± 12.6 | <0.0001 |
Females (n = 11,509) | Type A (n = 6888) | Type B (n = 3607) | Type C (n = 424) | Type D (n = 590) | Overall p Value |
---|---|---|---|---|---|
Age (years) | 49.8 ± 12.1 | 50.4 ± 11.9 | 49.3 ± 11.2 | 52.6 ± 13.7 | <0.0001 |
BMI (kg/m2) | 21.9 ± 3.8 | 21.6 ± 3.3 | 21.9 ± 3.7 | 20.8 ± 3.2 | <0.0001 |
30 min or more exercise per day, yes/no/unknown | 1249(18.1%)/5505 (79.9%)/134(1.9%) | 688(19.1%)/2800 (77.6%)/119(33.0%) | 92(21.7%)/319 (75.2%)/13(3.1%) | 103(17.5%)/413 (70.0%)/74(12.5%) | <0.0001 |
WC (cm) | 78.2 ± 10.1 | 77.6 ± 9.3 | 78.2 ± 9.8 | 77.0 ± 8.8 | 0.0287 |
Hemoglobin (g/dL) | 13.0 ± 1.2 | 13.1 ± 1.1 | 13.1 ± 1.1 | 13.0 ± 1.3 | 0.7007 |
ALT (IU/L) | 17.6 ± 12.2 | 16.8 ± 10.3 | 17.4 ± 13.6 | 17.6 ± 11.8 | 0.5021 |
GGT (IU/L) | 21.6 ± 20.5 | 23.9 ± 21.1 | 31.1 ± 41.4 | 39.4 ± 75.5 | <0.0001 |
Serum albumin (g/dL) | 4.3 ± 0.2 | 4.3 ± 0.2 | 4.3 ± 0.2 | 4.3 ± 0.2 | 0.075 |
Triglycerides (mg/dL) | 80.3 ± 46.8 | 78.5 ± 45.4 | 81.9 ± 44.8 | 94.1 ± 97.2 | 0.0002 |
Fatty liver index | 14.5 ± 19.1 | 13.3 ± 16.8 | 16.0 ± 19.9 | 15.2 ± 19.0 | 0.0002 |
FBS (mg/dL) | 88.2 ± 13.2 | 88.6 ± 11.4 | 89.3 ± 10.0 | 90.0 ± 12.8 | <0.0001 |
Uric acid (mg/dL) | 4.6 ± 1.0 | 4.7 ± 1.0 | 4.8 ± 1.0 | 5.0 ± 1.2 | <0.0001 |
eGFR (mL/min/1.73 m2) | 73.9 ± 13.4 | 73.7 ± 13.6 | 75.7 ± 13.8 | 76.4 ± 15.0 | <0.0001 |
Fat mass (kg) | 16.8 ± 7.5 | 16.1 ± 6.5 | 16.9 ± 7.6 | 15.1 ± 6.5 | <0.0001 |
sBP (mmHg) | 114.8 ± 17.4 | 115.3 ± 17.2 | 117.6 ± 17.1 | 119.5 ± 18.0 | <0.0001 |
dBP (mmHg) | 71.1 ± 11.9 | 71.8 ± 11.9 | 74.2 ± 12.7 | 74.6 ± 13.1 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsui, M.; Fukuda, A.; Onishi, S.; Ushiro, K.; Nishikawa, T.; Asai, A.; Kim, S.K.; Nishikawa, H. Impact of Alcohol Intake on Skeletal Muscle: A Large Cross-Sectional Analysis in Japanese Adults. Nutrients 2025, 17, 894. https://doi.org/10.3390/nu17050894
Matsui M, Fukuda A, Onishi S, Ushiro K, Nishikawa T, Asai A, Kim SK, Nishikawa H. Impact of Alcohol Intake on Skeletal Muscle: A Large Cross-Sectional Analysis in Japanese Adults. Nutrients. 2025; 17(5):894. https://doi.org/10.3390/nu17050894
Chicago/Turabian StyleMatsui, Masahiro, Akira Fukuda, Saori Onishi, Kosuke Ushiro, Tomohiro Nishikawa, Akira Asai, Soo Ki Kim, and Hiroki Nishikawa. 2025. "Impact of Alcohol Intake on Skeletal Muscle: A Large Cross-Sectional Analysis in Japanese Adults" Nutrients 17, no. 5: 894. https://doi.org/10.3390/nu17050894
APA StyleMatsui, M., Fukuda, A., Onishi, S., Ushiro, K., Nishikawa, T., Asai, A., Kim, S. K., & Nishikawa, H. (2025). Impact of Alcohol Intake on Skeletal Muscle: A Large Cross-Sectional Analysis in Japanese Adults. Nutrients, 17(5), 894. https://doi.org/10.3390/nu17050894