Much More than Nutrients: The Protective Effects of Nutraceuticals on the Blood–Brain Barrier in Diseases
Abstract
1. Importance of Nutraceuticals in Health and Disease
2. Major Properties of Nutraceuticals with Protective Effects on the Blood–Brain Barrier
Nutraceutical | Properties | Source | Antioxidant | Efflux Pump Interaction Y/N | Influx Transport Interaction | BBB/Brain Penetration |
---|---|---|---|---|---|---|
Alkaloids | ||||||
Caffeine | 194 Da A | Coffee, green and black tea, guarana berries | Yes [19] | No [20] | CNT2/SLC28A2 [21] OAT1/SLC22A6 [22] GLUT1/SLC2A1 [23] | Yes, high [24,25] |
Capsaicin | 305 Da A | Chili pepper | Yes [26] | Yes [27,28] | ND | Yes, high [29] |
Theophylline | 180 Da A | Cocoa beans, brewed tea | Yes [30] | No [31] | OAT1 [22] | Yes [32] |
Anthocyanidines | ||||||
Cyanidin/Cyanidin-3-O-beta-glucoside/Procyanidine | 287 Da H | Red wine, elderflower, berries, tea, apple, cinnamon | Yes * [33] | Yes [34,35] | GLUT1/SLC2A1 [36] | Yes [36,37] |
Malvidin/Malvidin-3-O-glucoside | 331 Da H | Red wine, berries | Yes [33,38] | Yes [34] | GLUT1/SLC2A1, GLUT3/SLC2A3 [39] | Yes [40] |
Carotenoids | ||||||
Astaxanthin | 597 Da L | Seafood, salmon, trout, algae | Yes * | Yes [41] | ND | Yes * |
β-Carotene | 537 Da L | Carrots, sweet potato, pumpkin | Yes * | Yes [31,42] | GLUT4/SLC2A4 [43] | No * |
Fucoxanthin | 659 Da L | Brown algae | Yes * [44] | Yes [45] | SLC7A11 [44] | ND * |
Lutein | 569 Da L | Kale, spinach, orange, egg yolk, avocado | Yes * | Yes [46] | SR-B1 [47] | Yes * |
Lycopene | 537 Da L | Tomato, watermelon grapefruit, pomegranate | Yes * | Yes [48] | ND | Yes * |
Diarylheptanoids | ||||||
Curcumin | 368 Da L | Turmeric | Yes * [49] | Yes [50,51] | GLUT1/SLC2A1 [52] | No [53] |
Flavonoids | ||||||
Apigenin | 270 Da L | Parsley, celery, chamomile tea | Yes [54,55] | Yes [56,57] | GLUT1/SLC2A1 [58] | Yes, low [56,59] |
Catechin/ Epicatechin | 290 Da L | Tea, red wine, cocoa | Yes [60,61] | Yes [62,63] | ASBT/SLC10A2 [64] | Yes [36] |
Chrysin | 254 Da L | Chamomile, honey, propolis, passion fruit | Yes [65,66] | Yes [67,68] | OATP [69] | ND |
Daidzein | 254 Da L | Soy, soy products | Yes [70] | Yes [71,72] | GLUT4/SLC2A4 [73] | Yes, high [59] |
Fisetin | 286 Da L | Onions, leeks, broccoli | Yes [74] | Yes [75] | GLUT4/SLC2A4 [76] | Yes, low [59] |
Genistein | 270 Da A | Soy, soy products | Yes * [77] | Yes [72,78] | Noradrenalin, serotonin transporter [79] GLUT1/SLC2A1 [80] | Yes, high [56,59] |
Hesperetin | 302 Da L | Citrus fruit, herbs, wine | Yes * [81,82] | Yes [67,83] | ND | Yes [37] |
Hesperidin | 611 Da H | Citrus fruit, herbs, wine | Yes [84,85] | Yes [68,86] | ND | Yes, low [56] |
Kaempferol | 286 Da L | Onion, leeks, broccoli, ginkgo biloba | Yes [87,88] | Yes [67,71] | GLUT4/SLC2A4 [89] | Yes, low [56,90] |
Luteolin | 286 Da L | Pepper, leafy greens, celery, broccoli | Yes [91] | Yes [92] | SLC7A11 [93] | Yes, low [59] |
Myricetin | 318 Da L | Onions, leeks, broccoli | Yes [87] | Yes [94] | PCFT/SLC46A1 [95] | Yes [90] |
Naringenin | 272 Da L | Citrus fruits, herbs, wine | Yes [96] | Yes [65] | ND | Yes [35] |
Naringin | 581 Da H | Citrus fruits, herbs, wine | Yes [84] | Yes [68,97] | ND | ND |
Quercetin | 302 Da L | Onion, broccoli, ginkgo biloba, apple | Yes * | Yes [67,98] | SLC7A11 [99] | Yes, low [40,56,90] |
Rutin | 611 Da H | Citrus fruits, herbs, wine | Yes * | Yes [56,100] | OATP2B1/SLCO2B1 [101] GLUT4/SLC2A4 [102] | Yes, low [56,59] |
Silybin/ Silymarin | 482 Da L | Milk thistle | Yes * [103] | Yes [68] | ND | ND |
Tangeretin | 372 Da L | Tangerine, citrus peel | Yes [104,105] | Yes [106] | SGLT1/SLC5A1 [107] | Yes [108] |
Monoterpenes | ||||||
Borneol | 154 Da L | Coriander, ginger oil, rosemary, thyme | Yes [109] | Yes [110,111] | ND | Yes [112] |
Carvacrol | 150 Da L | Oregano, thyme | Yes [113] | Yes [114] | ND | ND |
Omega-3 fatty acids | ||||||
Docosahexaenoic acid | 328 Da L | Oceanic fish oil, seaweed | Yes [115] | Yes [116] | MFSD2A [117] | Yes [117] |
Eicosapentaenoic acid | 302 Da L | Fish oil, seaweed | Yes [118,119] | Yes [116] | VNUT/LC17A9 [120] | Yes [121] |
Organosulfur compounds | ||||||
α-Lipoic acid | 206 Da L | Broccoli, yeast, meat, kidney, heart, liver | Yes [122,123] | Yes [124] | SMVT/SLC5A6 [125] | Yes [126] |
Sulforaphane | 177 Da L | Broccoli, kale, cauliflower | Yes * | Yes [127] | ND | Yes [128] |
Phenolic acids | ||||||
Caffeic acid | 180 Da L | Berries, kiwi, plum, apple | Yes [129] | Yes [130] | MCT1/SLC16A1, MCT4/SLC16A3 [131] | Yes [132] |
Cinnamic acid | 148 Da L | Cinnamon, grape, cocoa | Yes [133] | Yes [134] | MCT1/SLC16A1, MCT4/SLC16A3 [131] | ND |
p-Coumaric acid | 164 Da L | Berries, kiwi, plum, apple | Yes [135] | ND | MCT1/SLC16A1, MCT4/SLC16A3 [131] OAT3/SLC22A8 [136] | ND |
Ferulic acid | 194 Da L | Grains, nuts, fruits, vegetables | Yes [137,138] | Yes [139] | MCT1/SLC16A1, MCT4/SLC16A3 [130,140] OAT3/SLC22A8 [136] | Yes, low [25] |
Gallic acid | 170 Da L | Berries, kiwi, plum, apple | Yes [141] | Yes [134] | OAT3/SLC22A8 [136] | Yes [142] |
Rosmarinic acid | 360 Da L | Berries, kiwi, plum, apple | Yes [143,144,145] | Yes [146] | OAT1/SLC22A6, OAT3/SLC22A8 [147] | Yes, low [132] |
Stilbenes | ||||||
Piceatannol | 244 Da L | Grape, white tea, passion fruit | Yes [148] | No [149] | MCT1/SLC16A1, MCT4/SLC16A3 [150] | ND |
Polydatin | 390 Da L | Grapes, cocoa, peanuts | Yes [151] | Yes [152] | ND | Yes, low [153] |
Pterostilbene | 256 Da L | Blueberries, grapes | Yes [154] | ND | MCT1/SLC16A1, MCT4/SLC16A3 [150] | Yes [155] |
Resveratrol | 228 Da L | Grapes, wine, peanuts | Yes * [33] | Yes [156] | ND | Yes, low [59,157] |
Vitamins | ||||||
Vitamin C/ Ascorbic acid | 176 Da H | Fruits, vegetables | Yes * [158] | No [159] | SLC19A1, SLC23A2 [11] | Yes [160] |
Vitamin B9/ Folic acid | 441 Da H | Fruits, vegetables, nuts | Yes [161] | ND | SLC19A1, SLC46A1 [11] | Yes [162] |
Vitamin D3/ Cholecalciferol | 385 Da L | Fish, milk, meat | Yes [163] | ND | LRPs [11] | Yes [164] |
Vitamin E/ α-Tocopherol | 431 Da L | Plant oil, nuts, nut oil, spinach, broccoli | Yes * | Yes [165] | SR-B1, αTTP, PLTP [162] | Yes [165] |
3. Protective Effects of Nutraceuticals on the BBB in CNS Diseases
3.1. In Vivo Investigations
Compound | Disease Model | Effects on BBB Parameters | Reference |
---|---|---|---|
Apigenin | subarachnoid hemorrhage, rat | inflammation ↓, BBB disruption ↓, ZO-1, occludin ↑ | [189] |
cerebral IR, MCAO, rat | vascularization/tube formation ↑, cerebral infarction ↓ | [190] | |
Astaxanthin and derivatives | subarachnoid hemorrhage, mouse | BBB disruption ↓ | [191] |
subarachnoid hemorrhage, rat | barrier integrity ↑, brain edema ↓, IL-1β, TNF-α, MMP-9 expression ↓ | [192] | |
Borneol | - | R123 permeability in hippocampus ↑, PGP and MRP1 ↓, TJ disruption | [193] |
cerebral IR - | blood pressure, cerebrovascular resistance ↓, edema ↓, BBB integrity, eNOS, CLDN-5, ZO-1 ↑, ET-1, iNOS, MMP-2/9, ICAM1, LFA-1 ↓ | [111,194] | |
Caffeic acid phenethyl ester | TBI, rat and mouse | vascular integrity ↑, CLDN-5 ↑ | [195] |
β-carotene | cerebral IR, MCAO, mouse | barrier integrity ↑, occludin, ZO-1 ↑ peroxynitrite generation ↓ | [196] |
Carvacrol | TBI, rat | barrier integrity ↑, brain edema ↓, occludin, CLDN-5, ZO-1 ↑, MMP-9 ↓ | [113] |
Catechin | TBI, rat | barrier integrity ↑, ZO-1, occludin ↑ | [197] |
Chrysin | TBI, rat | barrier integrity ↑, brain EB content ↓ | [198] |
p-Coumaric acid | hypoxia, mouse | barrier integrity ↑, brain edema ↓, occludin expression ↑ | [199] |
Curcumin | cerebral IR, MCAO, rat | barrier integrity ↑, brain EB content ↓ | [200] |
Hypoxia/hypercap-nia, rat | brain edema ↓, apoptosis ↓, AQP4 levels ↓, | [201] | |
Daidzein | cerebral IR, MCAO, rat | barrier integrity ↑, astrocyte swelling ↓, cytoplasmic vacuolation ↓, edema ↓, vessel lumen ↑ | [202] |
Docosahexaenoic acid | cerebral IR, MCAO, rat | barrier integrity ↑, brain edema ↓ | [203] |
cerebral IR, MCAO, rat | barrier integrity ↑ | [204] | |
cerebral IR, left CCAO, rat | barrier integrity ↑, brain edema ↓, occludin, CLDN-5, ZO-1 ↑, MMP-2/9 ↓ | [205] | |
uremia + contrast media, mouse | CLDN-5, laminin α-4, -5 ↑ | [206] | |
Eicosapentaenoic acid | cerebral IR, left CCAO, rat | barrier integrity ↑, brain edema ↓, occludin, CLDN-5, ZO-1 ↑, MMP-2/9 ↓ | [205] |
uremia + contrast media, mouse | CLDN-5, laminin α-4, -5 ↑ | [206] | |
Epigallo-catechin gallate | cerebral IR, MCAO, rat | barrier integrity ↑, TJ opening ↓ occludin, CLDN-5, ZO-1 expression ↑ | [207] |
Ferulic acid + tetramethylpyrazine | cerebral IR, MCAO, rat | barrier integrity ↑, brain edema ↓, JAM-1, occludin ↑, MMP-9 expression ↓ | [208] |
Fisetin | autism, valproic acid-induced, rat | barrier integrity ↑, CLDN-5 expression ↑ | [209] |
Fucoxanthin | TBI, mouse | barrier integrity ↑, brain edema ↓, occludin, CLDN-5, ZO-1, VE cadherin ↑, MMP-9 ↓, apoptosis and ferroptosis ↓, BMEC mitophagy ↑ | [210] |
Genistein | TBI, rat | barrier integrity ↑ | [211] |
Hesperetin | TBI, mouse | barrier integrity ↑, brain edema ↓, ZO-1, occludin, CLDN-5 ↑, NLRP3 inflammasome ↓ | [212] |
Hesperidin | cerebral IR, MCAO, mouse | barrier integrity ↑, brain edema ↓, disruption of CLDN-5 and ZO-1 ↓ | [85] |
Kaempferol | neuroinflammation, LPS-induced, mouse | barrier integrity ↑, occludin, connexin-43 expression ↑ | [213] |
neuroinflammation and BBB dysfunction, LPS-induced | BBB structure restored, brain edema ↓, occludin, connexin-43 expression ↑ | [214] | |
Kaempferol-glucoside/Juglanin | cerebral IR, MCAO, mouse | BBB permeability ↓, VEGF and VEGFR2 ↓ ZO-1, occludin expression ↑ | [215] |
α-Lipoic acid | TBI, rat | barrier integrity ↑, brain EB content ↓ | [216] |
Lutein | subarachnoid hemorrhage, rat | vasospasm ↓ | [217] |
TBI, rat | IL-1, IL-6, TNF-α, CCL2 ↓, ROS ↓, SOD, GSH ↑, ICAM-1, ET-1 ↓ | [218] | |
Luteolin | AD, Aβ25–35-induced, mouse | BBB leakage ↓, astrocyte swelling ↓, CBF ↑ ZO-1, occludin, CLDN-5 expression ↑, | [219] |
diabetes, high-fat diet and streptozotocin- induced, rat | ZO-1, occludin and GLUT-1 expression ↑ | [220] | |
Lycopene | subarachnoid hemorrhage, rat | barrier integrity ↑, brain edema ↓ | [221] |
hyperlipidemia, high fat diet induced, rat | VEGF, VCAM-1 ↓, CLDN-5 ↑, IL-1, IL-6, and TNF-α ↓ | [222] | |
Malvidin | cerebral IR, BCCAO, rat | eNOS ↑, MMP-9 ↓ | [223] |
Naringenin | cerebral IR, MCAO, mouse | BBB leakage ↓, ZO-1, occludin, CLDN-5, β-catenin ↑ | [224] |
Polydatin | cerebral IR, MCAO, rat | barrier integrity ↑, brain edema ↓, CLDN-5 expression ↑ | [225] |
cerebral IR, MCAO, rat | barrier integrity ↑, brain edema ↓, ZO-1, occludin, CLDN-5 ↑, TNF-α, IL-1β, IL-6, CCL2 levels ↓, ICAM-1 and VCAM-1 ↓ | [226] | |
Procyanidin B2 | cerebral IR, MCAO, rat | barrier integrity ↑, brain edema ↓, ZO-1 expression ↑ | [227] |
Pterostilbene | cerebral IR, MCAO, rat | barrier integrity ↑, CBF ↑, laminin ↑, ZO-1, occludin, CLDN-5, VE-cadherin ↑ | [228] |
cerebral IR, MCAO, rat | barrier integrity ↑, brain edema ↓, MMP-2/9 expression ↓ | [229] | |
Quercetin | AD, Aβ25–35-induced, mouse | barrier integrity ↑, CBF ↑ | [230] |
cerebral ischemia, photothrombosis-induced, rat | barrier integrity ↑, MMP-9 activity ↓ | [231] | |
cerebral IR, BCCAO, rat | barrier integrity ↑, brain endothelial cell swelling ↓, vesicles and vacuoles ↓, CLDN-5, ZO-1, β-catenin ↑, MMP-9 ↓ | [232] | |
oxidative stress, PCB-induced, rat | occludin, CLDN-5, JAM-3, ZO-1, AF-6 ↑ | [233] | |
cerebral IR, MCAO, rat | barrier integrity ↑, occludin, CLDN-5, ZO-1 expression ↑ | [234] | |
Quercetin +/− hydroxylsafflor yellow A | cerebral IR, MCAO, mouse | barrier integrity ↑ | [235] |
Resveratrol | recurrent ischemic stroke, rat | barrier integrity ↑, brain edema ↓, no change in CBF | [236] |
Rosmarinic acid | MCAO + diabetes, STZ-induced, rat | barrier integrity ↑, brain edema ↓ | [237] |
Tangeretin | cerebral IR, MCAO, rat | barrier integrity ↑ | [238] |
Vitamin B9 | sepsis, cecal ligation and perforation, rat | barrier integrity ↑ | [239] |
Vitamin C | cerebral IR, MCAO, rat | barrier integrity ↑, MMP-2/9 expression ↓, CLDN-1,CLDN-5, ZO-1 ↑ | [240] |
Vitamin D3 | TBI, rat | barrier integrity ↑, brain edema ↓, ZO-1, occludin expression ↑ | [241] |
3.1.1. Traumatic Brain Injury
3.1.2. Cerebrovascular Disorders
3.1.3. Neurodegenerative Diseases
3.1.4. Neuroinflammation, Oxidative Stress, and Other Neurodevelopmental Diseases
3.2. In Vitro Investigations
Compound | BBB Model | Injury | Effect on Brain Endothelial Cells | Reference |
---|---|---|---|---|
Apigenin | human BMEC | PMA | tube formation ↓, MMP-9 ↓ | [257] |
human BMEC | OGD/R | cell viability ↑, cell migration and tube formation ↑, caveolin-1 ↑ | [190] | |
Astaxanthin and derivatives | human HBMEC cell line | — | proliferation ↑, tube formation ↑ cell cycle G0/G1 phase ↓, S phase ↑, | [258] |
OGD | cell viability ↑, LDH release ↓ | |||
human BMEC | hemoglobin, collagenase | cell viability ↑, ROS ↓, VE-cadherin ↑ | [191] | |
mouse bEnd.3 cell line | OGDR | cell viability ↑, apoptosis ↓, FD40 permeability ↓, CLDN-5, ZO-1 ↑ | [259] | |
porcine BMEC | — | APP, ADAM10 ↑, BACE-1 ↓, PGP, ABCA1, LRP-1, Aβ1–40 uptake and transport ↑, cholesterol synthesis ↓ | [260] | |
Borneol | rat BMEC, AC co-culture | — | PGP ↓, R123 accumulation ↑, digoxin, verapamil transport ↑ | [110] |
mouse bEnd.3 cell line | — | puerarin, tetramethylpyrazine permeability ↑, ZO-1 ↓ | [246] | |
rat BMEC | OGD | cell viability ↑, apoptosis ↓, CAT ↑, VEGF and VEGFR1 ↑ | [193] | |
Caffeine | mouse BMEC | TNF-α + IFN-γ | VCAM-1 ↓, iNOS ↓ | [261] |
Capsaicin | mouse cEND cell line | — | TEER ↓, CLDN5 ↓, ZO-1 dislocation | [262] |
human hCMEC/D3 cell line | TNF-α | IL-1β, IL-6 ↓ | [263] | |
Catechin/Epicatechin and derivatives | rat BMEC, AC, PC co-culture | TNF-α + Il-1β | CLDN-5, β-catenin staining ↑, ROS, NO ↓, leptin transporter LRP2 ↓ | [264] |
human BMEC | Aβ1–42 | Aβ1–42 fibril formation ↓, ROS ↓ | [265] | |
Chrysin | mouse bEnd.3 cell line | LPS | VCAM-1 ↓, monocyte adhesion ↓ | [266] |
Cinnamic acid derivatives | human HBMEC-2 cell line | oxidative stress | cell damage ↓, cell viability ↑, mitochondrial transmembrane potential ↑ | [267] |
Curcumin | bovine BMEC | oxidative stress | cell damage, LDH release ↓ | [200] |
rat BMEC | OGD | LDH release ↓, IL-1β ↓ | [268] | |
porcine BMEC | — | BCRP protein ↓, efflux transport ↓ | [68] | |
Cyanidin metabolite | HBMEC | hypoxia | cell proliferation ↓, cell viability ↓, cyclin D1, CDK2, CDK4 ↓ | [269] |
Docosahexaenoic acid | rat BMEC, PC, AC co-culture | oligomeric Aβ42 | cell viability ↑, ROS production ↓ barrier integrity ↑ SF, albumin permeability ↓, PGP ↑, R123 accumulation ↓ | [270] |
BMEC | OGD | apoptosis ↓ | [271] | |
porcine BMEC | IL-1β | Calcein-AM accumulation ↑ | [272] | |
Fisetin | human BMEC | PMA | tube formation ↓, MMP-9 ↓ | [257] |
Fucoxanthin | mouse bEnd.3 cell line | mechanical/ stretch | cell viability ↑, apoptosis↓, TEER ↑, γGT ↑, ACSL4 ↓, PINK1, LC3 ↑ | [210] |
Gallic acid | rat BMEC, AC, PC co-culture | TNF-α + Il-1β | CLDN-5 and β-catenin staining ↑ | [264] |
Genistein | human BMEC | TNF-α | TNF-α, IL-1β, CCL-1, IL-8, ICAM-1 ↓, leukocyte tr.migration ↓ | [273] |
mouse bEnd.3 cell line | Aβ25–35 | cell viability ↑, ROS, and nitrotyrosine ↓, GSH ↑ | [274] | |
Kaempferol and derivatives | rat RBE4 cell line | — | ecto-ALP ↑, MPP+ uptake ↑ | [275] |
rat RBE4 cell line | — | ecto-ALP ↑, insulin uptake ↑ | [276] | |
human BMEC | OGD/R | cell viability ↑, FD permeation ↓, occludin, ZO-1 ↑ | [215] | |
human BMEC | hypoxia/reoxygenation | cell viability ↑, apoptosis ↓, mitochondrial membrane potential ↑, tube formation ↑, ICAM-1, VCAM-1, IL-1β ↓ | [277] | |
α-Lipoic acid | bEnd.3, rat BMEC | OGD/R | LDH release ↓ | [278] |
Luteolin | human BMEC | PMA | tube formation ↓, MMP-9 ↓ | [257] |
human BMEC, AC co-culture | Aβ1–40 | cell viability ↑, TEER ↑, SF and albumin permeability ↓, TNF-α, IL-1β, IL-6, IL-8 release ↓ | [279] | |
Lycopene | mouse bEnd.3 cell line | — | cell viability ↑ | [280] |
Myricetin | human BMEC | OGD/R | FD70 permeation ↓, TEER ↑, TNF-α, IL-1β and IL-6 ↓, NO and eNOS activity ↑ | [281] |
human BMEC | oxidative stress | cell viability ↑ | [90] | |
Naringenin | mouse b.END5 rat RBE4 cell lines | — | concentration and time-dependent cellular uptake | [37] |
Naringin | porcine BMEC | — | BCRP protein ↑, efflux transport ↑ | [68] |
Piceatannol | mouse bEnd.3 cell line | LPS | ICAM-1 and VCAM-1 ↓, iNOS, ROS ↓ | [148] |
Polydatin | primary rat BMEC | OGD | cell viability ↑, TNF-α, IL-6 ↓ CLDN-5, occludin, ZO-1 ↑ | [226] |
Procyanidin | rat BMEC | — | PGP activity ↓, efflux transport↓, R123 accumulation ↑ | [35] |
Pterostilbene | human BMEC | OGD | cell viability ↑, MMP-9 ↓, CLDN-5, ZO-1, VE-cadherin, occludin ↑, F/G actin ↓ | [228] |
Quercetin and metabolites | rat RBEC1 cell line | — | concentration- and time-dependent cellular accumulation | [282] |
human BMEC | Aβ1–40 | cell viability ↑, LDH release ↓ TEER ↑, albumin and SF permeability ↓, ROS ↓, γGT, ALP ↑ | [283] | |
human BMEC | oxidative stress | cell viability ↑ | [90] | |
porcine BMEC | — | BCRP protein ↑, efflux transport ↑ | [68] | |
human BMEC | hypoxia/reoxygenetion | viability ↑, migration, angiogenesis ↑, CLDN-5 and ZO-1 ↑, VCAM-1 ↓, ROS ↓ | [284] | |
mouse bEnd.3 cell line | Glaesserella parasuis infection | Il-6, Il-8, Il-18, TNF-α, MMP-9, ANG-2, ET-1 ↓, ZO-1, occludin, CLDN-5 ↑ | [285] | |
Quercetin-biapigenin nanoparticles | human hCMEC/D3 cell line | oxidative stress | cell viability ↑, TEER ↓ | [286] |
Quercetin +/− hydroxysafflor yellow A | human hCMEC/D3 cell line | OGD | cell viability ↑, TEER ↑ | [235] |
Resveratrol | rat BMEC | OGD | cell viability ↑ | [236] |
rat BMEC, AC, PC co-culture | TNF-α + Il-1β | albumin permeability ↓, CLDN-5 and β-catenin staining ↑, NO ↓ | [264] | |
Rutin | HBMEC | hypoxia | cell proliferation ↓, cell viability ↓, cyclin D1, CDK2, CDK4 ↑ | [269] |
Silymarin | human HBEC-5i cell line | AGE | cell migration ↓, tube formation ↓ | [287] |
Sulforaphane | human hCMEC/D3 cell line | NRF2 gene silencing by siRNA | mitochondrial ABCB10 ↑ | [288] |
mouse BMEC | - | GLUT1 ↑, HK1, PDK1, GSK, PKM2, ATP production ↑, NQO1, CAT, GSTs, TXN1, GSR ↑, ABCD3, ABCB6 ↑, ferroportin-1 ↑ | [127] | |
Tangeretin | human HBMEC cell line | OGD | cell viability ↑, ROS and MDA ↓, SOD activity ↑, NO and iNOS ↓ | [289] |
Theophylline | mouse BMEC | TNF-α + IFN-γ | VCAM-1 ↓, iNOS ↓ | [261] |
Vitamin E | human HBEC-5i cell line | oxidative stress | cell viability ↑, apoptosis ↓, mitochondrial membrane potential ↑, ROS ↓, GSH ↑, SOD, GPX, CAT ↑, cytosolic HO-1 and NQO1 ↑ | [290] |
3.2.1. Cell Viability
3.2.2. Cell Proliferation, Migration, and Tube Formation
3.2.3. Barrier Integrity
3.2.4. Antioxidative and Anti-Inflammatory Effects
3.2.5. Vasoactive Agents
3.2.6. Effects on BBB Efflux and Influx Transport
3.2.7. BBB Enzymes and Metabolism
4. BBB Signaling Pathways Regulated by Nutraceuticals
Nutraceutical | BBB Signaling Pathway Interactions | Reference |
---|---|---|
Apigenin | COX-2 ↓ TLR4, IκB, NF-κB ↓ BECN1 ↓, VEGF, mTOR ↑ | [257] [189] [190] |
Astaxanthin | caspase-3 ↓, pGSK3β ↓ WNT7A, β-catenin, CCND1 ↑, ERK activation ↓ p75NTR ↓ PPAR-α activation ↑ | [258] [191] [259] [260] |
Borneol | NF-κB activation ↑ A1AR, A2AR ↑ BCL-2 ↑, BAX ↓, Ca2+ ↓, VEGF ↑, VEGFR1 ↓ | [110] [246] [193] |
Capsaicin | TRPV1 activity and Ca2+ ↑ NF-κB activity, nuclear translocation ↓ | [303] [263] |
β-Carotene | AKT, FKHR, and ERK1/2 phosphorylation ↓ | [196] |
Carvacrol | TRPM7 activation ↓ caspase-3 ↓, BAX ↓, BCL-2 ↑, NF-KB ↓ | [304] [113] |
Catechin/Epicatechin/Epigallocatechin gallate | PKCα ↓ | [207] [197] |
Chrysin | p38 MAPK and JNK activation ↓, NF-κB p65 translocation ↓ | [266] |
Curcumin | p38 MAPK and NFκB activation ↓ | [268] |
Cyanidin | AKT ↑, caspase-3 ↓, ERK1/2 ↓ | [301] |
Docosahexaenoic acid | ANG2 ↓,VEGF ↑ PGE2, PGI2, COX-2 ↓ | [271] |
Fisetin | COX-2 ↓ | [257] |
Fucoxanthin | caspase-3 ↓ | [210] |
Gallic acid | NF-κB nuclear translocation ↓ | [264] |
Genistein | NRF2, PI3K ↑ | [274] |
Hesperidin | FOXO3a nuclear translocation ↓ | [85] |
Kaempferol and derivatives | VEGF and VEGFR2 ↓ VEGF ↑ | [215] [277] |
α-Lipoic acid | AKT and mTOR phosphorylation ↑ | [278] |
Luteolin | COX-2 ↓ NFκ-B activation ↓ | [257] [279] |
Lycopene | AKT activation ↑, LXR-β ↑ | [280] |
Myricetin | AKT and NRF2 activation ↑ | [281] |
Naringenin | p-GSK-3β ↓ | [224] |
Piceatannol | NF-κB, MAPK, p38, JNK ↓ p-IKKα/β, p-IκBα, p-p65 ↓ | [148] |
Polydatin | CREB/PGC-1α/PPARγ ↑ COX-2 ↓ | [226] |
Pterostilbene | c-Met, c-Jun and c-Myc proteins ↑ WNT pathway activation ↑ | [228] |
Quercetin | KEAP1/NRF2 activation ↑, ATF6/GRP78 ↓ VEGF ↓, PI3K/AKT/ERK activation ↑ WNT ↑, GSK-3β expression ↓ NF-kB p65, RAGE ↓ | [284] [285] [232] [230] |
Resveratrol | NF-κB nuclear translocation ↓ | [264] |
Silymarin | VEGF release ↓ | [287] |
Sulforaphan | NRF2 ↑, AKT phosphorylation ↑ NRF2 ↑ | [127,288] |
Tangeretin | caspase-3 ↓, JNK activation ↓ | [289] |
Vitamin E/α-Tocopherol | BAX, caspase-9/caspase-3 ↓, BCL-2 ↑, NRF2 ↑ | [290] |
5. Toxicity and Drug Interactions
6. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Puri, V.; Nagpal, M.; Singh, I.; Singh, M.; Dhingra, G.A.; Huanbutta, K.; Dheer, D.; Sharma, A.; Sangnim, T. A Comprehensive Review on Nutraceuticals: Therapy Support and Formulation Challenges. Nutrients 2022, 14, 4637. [Google Scholar] [CrossRef] [PubMed]
- Iriti, M.; Vitalini, S.; Fico, G.; Faoro, F. Neuroprotective herbs and foods from different traditional medicines and diets. Molecules 2010, 15, 3517–3555. [Google Scholar] [CrossRef] [PubMed]
- Castrogiovanni, P.; Trovato, F.M.; Loreto, C.; Nsir, H.; Szychlinska, M.A.; Musumeci, G. Nutraceutical Supplements in the Management and Prevention of Osteoarthritis. Int. J. Mol. Sci. 2016, 17, 2042. [Google Scholar] [CrossRef] [PubMed]
- Golla, U. Emergence of nutraceuticals as the alternative medications for pharmaceuticals. Int. J. Complement. Altern. Med. 2018, 11, 155–158. [Google Scholar] [CrossRef]
- Silva, R.F.M.; Pogačnik, L. Polyphenols from Food and Natural Products: Neuroprotection and Safety. Antioxidants 2020, 9, 61. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, L.; Wang, L.P.; Wan, Q. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs. Biomed. Pharmacother. 2022, 148, 112719. [Google Scholar] [CrossRef]
- Banji, O.J.F.; Banji, D.; Makeen, H.A.; Alqahtani, S.S.; Alshahrani, S. Neuroinflammation: The Role of Anthocyanins as Neuroprotectants. Curr. Neuropharmacol. 2022, 20, 2156–2174. [Google Scholar] [CrossRef]
- Marino, P.; Pepe, G.; Basilicata, M.G.; Vestuto, V.; Marzocco, S.; Autore, G.; Procino, A.; Gomez-Monterrey, I.M.; Manfra, M.; Campiglia, P. Potential Role of Natural Antioxidant Products in Oncological Diseases. Antioxidants 2023, 12, 704. [Google Scholar] [CrossRef]
- Feng, J.; Zheng, Y.; Guo, M.; Ares, I.; Martínez, M.; Lopez-Torres, B.; Martínez-Larrañaga, M.R.; Wang, X.; Anadón, A.; Martínez, M.A. Oxidative stress, the blood-brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants. Acta Pharm. Sin. B. 2023, 13, 3988–4024. [Google Scholar] [CrossRef]
- Campos-Bedolla, P.; Walter, F.R.; Veszelka, S.; Deli, M.A. Role of the blood-brain barrier in the nutrition of the central nervous system. Arch. Med. Res. 2014, 45, 610–638. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.D.; Zhao, Z.; Montagne, A.; Nelson, A.R.; Zlokovic, B.V. Blood-Brain Barrier: From Physiology to Disease and Back. Physiol. Rev. 2019, 99, 21–78. [Google Scholar] [CrossRef] [PubMed]
- Andjelkovic, A.V.; Stamatovic, S.M.; Phillips, C.M.; Martinez-Revollar, G.; Keep, R.F. Modeling blood-brain barrier pathology in cerebrovascular disease in vitro: Current and future paradigms. Fluids Barriers CNS 2020, 17, 44. [Google Scholar] [CrossRef] [PubMed]
- Archie, S.R.; Al Shoyaib, A.; Cucullo, L. Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics 2021, 13, 1779. [Google Scholar] [CrossRef]
- Walter, F.R.; Santa-Maria, A.R.; Mészáros, M.; Veszelka, S.; Dér, A.; Deli, M.A. Surface charge, glycocalyx, and blood-brain barrier function. Tissue Barriers 2021, 9, 1904773. [Google Scholar] [CrossRef]
- de Rus Jacquet, A.; Layé, S.; Calon, F. How nutrients and natural products act on the brain: Beyond pharmacology. Cell Rep. Med. 2023, 4, 101243. [Google Scholar] [CrossRef]
- Wager, T.T.; Hou, X.; Verhoest, P.R.; Villalobos, A. Central Nervous System Multiparameter Optimization Desirability: Application in Drug Discovery. ACS Chem. Neurosci. 2016, 7, 767–775. [Google Scholar] [CrossRef]
- Lakey-Beitia, J.; Kumar, D.J.; Hegde, M.L.; Rao, K.S. Carotenoids as Novel Therapeutic Molecules Against Neurodegenerative Disorders: Chemistry and Molecular Docking Analysis. Int. J. Mol. Sci. 2019, 20, 5553. [Google Scholar] [CrossRef]
- Gao, L.; Sun, W.; Zhang, L.; Liang, C.; Zhang, D. Caffeine upregulates SIRT3 expression to ameliorate astrocytes-mediated HIV-1 Tat neurotoxicity via suppression of EGR1 signaling pathway. J. Neurovirol. 2024, 30, 286–302. [Google Scholar] [CrossRef]
- Netsch, M.I.; Gutmann, H.; Luescher, S.; Brill, S.; Schmidlin, C.B.; Kreuter, M.H.; Drewe, J. Inhibitory activity of a green tea extract and some of its constituents on multidrug resistance-associated protein 2 functionality. Planta Med. 2005, 71, 135–141. [Google Scholar] [CrossRef]
- McCall, A.L.; Millington, W.R.; Wurtman, R.J. Blood-brain barrier transport of caffeine: Dose-related restriction of adenine transport. Life Sci. 1982, 31, 2709–2715. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, M.; Mochizuki, T.; Takekuma, Y.; Miyazaki, K. Structure-affinity relationship in the interactions of human organic anion transporter 1 with caffeine, theophylline, theobromine and their metabolites. Biochim. Biophys. Acta 2005, 1714, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Gunnink, L.K.; Busscher, B.M.; Wodarek, J.A.; Rosette, K.A.; Strohbehn, L.E.; Looyenga, B.D.; Louters, L.L. Caffeine inhibition of GLUT1 is dependent on the activation state of the transporter. Biochimie 2017, 137, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, S.; Deli, M.A.; Kawaguchi, H.; Shimizudani, T.; Shimono, T.; Kittel, A.; Tanaka, K.; Niwa, M. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem. Int. 2009, 54, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Lardeau, A.; Poquet, L. Phenolic acid metabolites derived from coffee consumption are unlikely to cross the blood-brain barrier. J. Pharm. Biomed. Anal. 2013, 76, 134–138. [Google Scholar] [CrossRef]
- Guo, S.Y.; Yang, G.P.; Jiang, D.J.; Wang, F.; Song, T.; Tan, X.H.; Sun, Z.Q. Protection of capsaicin against hypoxia-reoxygenation-induced apoptosis of rat hippocampal neurons. Can. J. Physiol. Pharmacol. 2008, 86, 785–792. [Google Scholar] [CrossRef]
- Nabekura, T.; Kamiyama, S.; Kitagawa, S. Effects of dietary chemopreventive phytochemicals on P-glycoprotein function. Biochem. Biophys. Res. Commun. 2005, 327, 866–870. [Google Scholar] [CrossRef]
- Okura, T.; Ibe, M.; Umegaki, K.; Shinozuka, K.; Yamada, S. Effects of dietary ingredients on function and expression of P-glycoprotein in human intestinal epithelial cells. Biol. Pharm. Bull. 2010, 33, 255–259. [Google Scholar] [CrossRef]
- Rollyson, W.D.; Stover, C.A.; Brown, K.C.; Perry, H.E.; Stevenson, C.D.; McNees, C.A.; Ball, J.G.; Valentovic, M.A.; Dasgupta, P. Bioavailability of capsaicin and its implications for drug delivery. J. Control. Release 2014, 196, 96–105. [Google Scholar] [CrossRef]
- Wu, F.; Liu, R.; Shen, X.; Xu, H.; Sheng, L. Study on the interaction and antioxidant activity of theophylline and theobromine with SOD by spectra and calculation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 215, 354–362. [Google Scholar] [CrossRef]
- Kupsáková, I.; Rybár, A.; Docolomanský, P.; Drobná, Z.; Stein, U.; Walther, W.; Barancík, M.; Breier, A. Reversal of P-glycoprotein mediated vincristine resistance of L1210/VCR cells by analogues of pentoxifylline. A QSAR study. Eur. J. Pharm. Sci. 2004, 21, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.H.; Liu, M.C. Determination of unbound theophylline in rat blood and brain by microdialysis and liquid chromatography. J. Chromatogr. A 2004, 1032, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Dani, C.; Pasquali, M.A.; Oliveira, M.R.; Umezu, F.M.; Salvador, M.; Henriques, J.A.; Moreira, J.C. Protective effects of purple grape juice on carbon tetrachloride-induced oxidative stress in brains of adult Wistar rats. J. Med. Food. 2008, 11, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Dreiseitel, A.; Oosterhuis, B.; Vukman, K.V.; Schreier, P.; Oehme, A.; Locher, S.; Hajak, G.; Sand, P.G. Berry anthocyanins and anthocyanidins exhibit distinct affinities for the efflux transporters BCRP and MDR1. Br. J. Pharmacol. 2009, 158, 1942–1950. [Google Scholar] [CrossRef]
- He, L.; Zhao, C.; Yan, M.; Zhang, L.Y.; Xia, Y.Z. Inhibition of P-glycoprotein function by procyanidine on blood-brain barrier. Phytother. Res. 2009, 23, 933–937. [Google Scholar] [CrossRef]
- Faria, A.; Pestana, D.; Teixeira, D.; Azevedo, J.; De Freitas, V.; Mateus, N.; Calhau, C. Flavonoid transport across RBE4 cells: A blood-brain barrier model. Cell Mol. Biol. Lett. 2010, 15, 234–241. [Google Scholar] [CrossRef]
- Youdim, K.A.; Dobbie, M.S.; Kuhnle, G.; Proteggente, A.R.; Abbott, N.J.; Rice-Evans, C. Interaction between flavonoids and the blood-brain barrier: In vitro studies. J. Neurochem. 2003, 85, 180–192. [Google Scholar] [CrossRef]
- Xu, Y.; Ke, H.; Li, Y.; Xie, L.; Su, H.; Xie, J.; Mo, J.; Chen, W. Malvidin-3-O-Glucoside from Blueberry Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Transcription Factor EB-Mediated Lysosomal Function and Activating the Nrf2/ARE Signaling Pathway. J. Agric. Food Chem. 2021, 69, 4663–4673. [Google Scholar] [CrossRef]
- Oliveira, H.; Roma-Rodrigues, C.; Santos, A.; Veigas, B.; Brás, N.; Faria, A.; Calhau, C.; de Freitas, V.; Baptista, P.V.; Mateus, N.; et al. GLUT1 and GLUT3 involvement in anthocyanin gastric transport- Nanobased targeted approach. Sci. Rep. 2019, 9, 789. [Google Scholar] [CrossRef]
- Faria, A.; Meireles, M.; Fernandes, I.; Santos-Buelga, C.; Gonzalez-Manzano, S.; Dueñas, M.; de Freitas, V.; Mateus, N.; Calhau, C. Flavonoid metabolites transport across a human BBB model. Food Chem. 2014, 149, 190–196. [Google Scholar] [CrossRef]
- Iizuka, M.; Ayaori, M.; Uto-Kondo, H.; Yakushiji, E.; Takiguchi, S.; Nakaya, K.; Hisada, T.; Sasaki, M.; Komatsu, T.; Yogo, M.; et al. Astaxanthin enhances ATP-binding cassette transporter A1/G1 expressions and cholesterol efflux from macrophages. J. Nutr. Sci. Vitaminol. 2012, 58, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.N.; Sheu, M.J.; Hsieh, Y.W.; Wang, R.Y.; Chiang, Y.C.; Hung, C.C. β-carotene reverses multidrug resistant cancer cells by selectively modulating human P-glycoprotein function. Phytomedicine 2016, 23, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, N.; Gao, Z. β-Carotene regulates glucose transport and insulin resistance in gestational diabetes mellitus by increasing the expression of SHBG. Clin. Exp. Pharmacol. Physiol. 2022, 49, 1307–1318. [Google Scholar] [CrossRef] [PubMed]
- Du, H.F.; Wu, J.W.; Zhu, Y.S.; Hua, Z.H.; Jin, S.Z.; Ji, J.C.; Wang, C.S.; Qian, G.Y.; Jin, X.D.; Ding, H.M. Fucoxanthin Induces Ferroptosis in Cancer Cells via Downregulation of the Nrf2/HO-1/GPX4 Pathway. Molecules 2024, 29, 2832. [Google Scholar] [CrossRef] [PubMed]
- Chandra, F.; Tania, T.F.; Nurcahyanti, A.D.R. Bixin and Fuxoxanthin Alone and in Combination with Cisplatin Regulate ABCC1 and ABCC2 Transcription in A549 Lung Cancer Cells. J. Pharm. Bioallied Sci. 2023, 15, 15–20. [Google Scholar] [CrossRef]
- Molnár, J.; Gyémánt, N.; Mucsi, I.; Molnár, A.; Szabó, M.; Körtvélyesi, T.; Varga, A.; Molnár, P.; Tóth, G. Modulation of multidrug resistance and apoptosis of cancer cells by selected carotenoids. In Vivo 2004, 18, 237–244. [Google Scholar]
- Sato, Y.; Kondo, Y.; Sumi, M.; Takekuma, Y.; Sugawara, M. Intracellular uptake mechanism of lutein in retinal pigment epithelial cells. J. Pharm. Pharm. Sci. 2013, 16, 494–501. [Google Scholar] [CrossRef]
- Palozza, P.; Simone, R.; Catalano, A.; Parrone, N.; Monego, G.; Ranelletti, F.O. Lycopene regulation of cholesterol synthesis and efflux in human macrophages. J. Nutr. Biochem. 2011, 22, 971–978. [Google Scholar] [CrossRef]
- Banji, D.; Banji, O.J.; Dasaroju, S.; Annamalai, A.R. Piperine and curcumin exhibit synergism in attenuating D-galactose induced senescence in rats. Eur. J. Pharmacol. 2013, 703, 91–99. [Google Scholar] [CrossRef]
- Chearwae, W.; Shukla, S.; Limtrakul, P.; Ambudkar, S.V. Modulation of the function of the multidrug resistance-linked ATP-binding cassette transporter ABCG2 by the cancer chemopreventive agent curcumin. Mol. Cancer Ther. 2006, 5, 1995–2006. [Google Scholar] [CrossRef]
- Shukla, S.; Zaher, H.; Hartz, A.; Bauer, B.; Ware, J.A.; Ambudkar, S.V. Curcumin inhibits the activity of ABCG2/BCRP1, a multidrug resistance-linked ABC drug transporter in mice. Pharm. Res. 2009, 26, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Gunnink, L.K.; Alabi, O.D.; Kuiper, B.D.; Gunnink, S.M.; Schuiteman, S.J.; Strohbehn, L.E.; Hamilton, K.E.; Wrobel, K.E.; Louters, L.L. Curcumin directly inhibits the transport activity of GLUT1. Biochimie 2016, 125, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Askarizadeh, A.; Barreto, G.E.; Henney, N.C.; Majeed, M.; Sahebkar, A. Neuroprotection by curcumin: A review on brain delivery strategies. Int. J. Pharm. 2020, 585, 119476. [Google Scholar] [CrossRef]
- Han, J.Y.; Ahn, S.Y.; Kim, C.S.; Yoo, S.K.; Kim, S.K.; Kim, H.C.; Hong, J.T.; Oh, K.W. Protection of apigenin against kainate-induced excitotoxicity by anti-oxidative effects. Biol. Pharm. Bull. 2012, 35, 1440–1446. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, J.L.; Wang, Y.R.; Fa, X.Z. Apigenin attenuates copper-mediated β-amyloid neurotoxicity through antioxidation, mitochondrion protection and MAPK signal inactivation in an AD cell model. Brain Res. 2013, 1492, 33–45. [Google Scholar] [CrossRef]
- Yang, Y.; Bai, L.; Li, X.; Xiong, J.; Xu, P.; Guo, C.; Xue, M. Transport of active flavonoids, based on cytotoxicity and lipophilicity: An evaluation using the blood-brain barrier cell and Caco-2 cell models. Toxicol. In Vitro 2014, 28, 388–396. [Google Scholar] [CrossRef]
- Ren, K.; Jiang, T.; Zhou, H.F.; Liang, Y.; Zhao, G.J. Apigenin Retards Atherogenesis by Promoting ABCA1-Mediated Cholesterol Efflux and Suppressing Inflammation. Cell Physiol. Biochem. 2018, 47, 2170–2184. [Google Scholar] [CrossRef]
- Melstrom, L.G.; Salabat, M.R.; Ding, X.Z.; Milam, B.M.; Strouch, M.; Pelling, J.C.; Bentrem, D.J. Apigenin inhibits the GLUT-1 glucose transporter and the phosphoinositide 3-kinase/Akt pathway in human pancreatic cancer cells. Pancreas 2008, 37, 426–431. [Google Scholar] [CrossRef]
- Shimazu, R.; Anada, M.; Miyaguchi, A.; Nomi, Y.; Matsumoto, H. Evaluation of Blood-Brain Barrier Permeability of Polyphenols, Anthocyanins, and Their Metabolites. J. Agric. Food Chem. 2021, 69, 11676–11686. [Google Scholar] [CrossRef]
- Werba, J.P.; Misaka, S.; Giroli, M.G.; Shimomura, K.; Amato, M.; Simonelli, N.; Vigo, L.; Tremoli, E. Update of green tea interactions with cardiovascular drugs and putative mechanisms. J. Food Drug Anal. 2018, 26, S72–S77. [Google Scholar] [CrossRef]
- Almajano, M.P.; Vila, I.; Gines, S. Neuroprotective effects of white tea against oxidative stress-induced toxicity in striatal cells. Neurotox. Res. 2011, 20, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Vaidyanathan, J.B.; Walle, T. Transport and metabolism of the tea flavonoid (-)-epicatechin by the human intestinal cell line Caco-2. Pharm. Res. 2001, 18, 1420–1425. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, T.; Hayashi, A.; Ikeda, N.; Morita, O.; Tasaki, J. Multidrug resistance-associated protein 2 (MRP2) is an efflux transporter of EGCG and its metabolites in the human small intestine. J. Nutr. Biochem. 2022, 107, 109071. [Google Scholar] [CrossRef] [PubMed]
- Annaba, F.; Kumar, P.; Dudeja, A.K.; Saksena, S.; Gill, R.K.; Alrefai, W.A. Green tea catechin EGCG inhibits ileal apical sodium bile acid transporter ASBT. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G467–G473. [Google Scholar] [CrossRef] [PubMed]
- He, X.L.; Wang, Y.H.; Bi, M.G.; Du, G.H. Chrysin improves cognitive deficits and brain damage induced by chronic cerebral hypoperfusion in rats. Eur. J. Pharmacol. 2012, 680, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, X.; Deng, L. Chrysin reduces inflammation and oxidative stress and improves ovarian function in D-gal-induced premature ovarian failure. Bioengineered 2022, 13, 8291–8301. [Google Scholar] [CrossRef]
- Mitsunaga, Y.; Takanaga, H.; Matsuo, H.; Naito, M.; Tsuruo, T.; Ohtani, H.; Sawada, Y. Effect of bioflavonoids on vincristine transport across blood-brain barrier. Eur. J. Pharmacol. 2000, 395, 193–201. [Google Scholar] [CrossRef]
- Kaur, M.; Badhan, R.K. Phytochemical mediated-modulation of the expression and transporter function of breast cancer resistance protein at the blood-brain barrier: An in-vitro study. Brain Res. 2017, 1654 Pt A, 9–23. [Google Scholar] [CrossRef]
- Mohos, V.; Fliszár-Nyúl, E.; Ungvári, O.; Bakos, É.; Kuffa, K.; Bencsik, T.; Zsidó, B.Z.; Hetényi, C.; Telbisz, Á.; Özvegy-Laczka, C.; et al. Effects of Chrysin and Its Major Conjugated Metabolites Chrysin-7-Sulfate and Chrysin-7-Glucuronide on Cytochrome P450 Enzymes and on OATP, P-gp, BCRP, and MRP2 Transporters. Drug Metab. Dispos. 2020, 48, 1064–1073. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, L.; Deng, S.; Liang, M. Daidzein ameliorates LPS-induced hepatocyte injury by inhibiting inflammation and oxidative stress. Eur. J. Pharmacol. 2020, 885, 173399. [Google Scholar] [CrossRef]
- Limtrakul, P.; Khantamat, O.; Pintha, K. Inhibition of P-glycoprotein function and expression by kaempferol and quercetin. J. Chemother. 2005, 17, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Merino, G.; Perez, M.; Real, R.; Egido, E.; Prieto, J.G.; Alvarez, A.I. In vivo inhibition of BCRP/ABCG2 mediated transport of nitrofurantoin by the isoflavones genistein and daidzein: A comparative study in Bcrp1 (−/−) mice. Pharm. Res. 2010, 27, 2098–2105. [Google Scholar] [CrossRef] [PubMed]
- Cheong, S.H.; Furuhashi, K.; Ito, K.; Nagaoka, M.; Yonezawa, T.; Miura, Y.; Yagasaki, K. Daidzein promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and improves glucose homeostasis in Type 2 diabetic model mice. J. Nutr. Biochem. 2014, 25, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, X.; Pi, W.; Zhang, Y.; Yu, L.; Xu, C.; Sun, Z.; Jiang, J. Fisetin Attenuates Doxorubicin-Induced Cardiomyopathy In Vivo and In Vitro by Inhibiting Ferroptosis Through SIRT1/Nrf2 Signaling Pathway Activation. Front. Pharmacol. 2022, 12, 808480. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, S.; Kawano, K.; Matsumura, R.; Sugihara, N.; Furuno, K. Inhibitory effect of flavonoids on the efflux of N-acetyl 5-aminosalicylic acid intracellularly formed in Caco-2 cells. J. Biomed. Biotechnol. 2009, 2009, 467489. [Google Scholar] [CrossRef]
- Watanabe, M.; Hisatake, M.; Fujimori, K. Fisetin Suppresses Lipid Accumulation in Mouse Adipocytic 3T3-L1 Cells by Repressing GLUT4-Mediated Glucose Uptake through Inhibition of mTOR-C/EBPα Signaling. J. Agric. Food Chem. 2015, 63, 4979–4987. [Google Scholar] [CrossRef]
- El-Far, Y.M.; Khodir, A.E.; Emarah, Z.A.; Ebrahim, M.A.; Al-Gayyar, M.M.H. Chemopreventive and hepatoprotective effects of genistein via inhibition of oxidative stress and the versican/PDGF/PKC signaling pathway in experimentally induced hepatocellular carcinoma in rats by thioacetamide. Redox Rep. 2022, 27, 9–20. [Google Scholar] [CrossRef]
- Kodaira, H.; Kusuhara, H.; Fujita, T.; Ushiki, J.; Fuse, E.; Sugiyama, Y. Quantitative evaluation of the impact of active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier on the predictability of the unbound concentrations of drugs in the brain using cerebrospinal fluid concentration as a surrogate. J. Pharmacol. Exp. Ther. 2011, 339, 935–944. [Google Scholar] [CrossRef]
- Toyohira, Y.; Ueno, S.; Tsutsui, M.; Itoh, H.; Sakai, N.; Saito, N.; Takahashi, K.; Yanagihara, N. Stimulatory effects of the soy phytoestrogen genistein on noradrenaline transporter and serotonin transporter activity. Mol. Nutr. Food Res. 2010, 54, 516–524. [Google Scholar] [CrossRef]
- Vera, J.C.; Reyes, A.M.; Cárcamo, J.G.; Velásquez, F.V.; Rivas, C.I.; Zhang, R.H.; Strobel, P.; Iribarren, R.; Scher, H.I.; Slebe, J.C.; et al. Genistein is a natural inhibitor of hexose and dehydroascorbic acid transport through the glucose transporter, GLUT1. J. Biol. Chem. 1996, 271, 8719–8724. [Google Scholar] [CrossRef]
- Choi, E.J.; Ahn, W.S. Neuroprotective effects of chronic hesperetin administration in mice. Arch. Pharm. Res. 2008, 31, 1457–1462. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, T.; Liu, P.; Yang, F.; Wang, X.; Zheng, W.; Sun, W. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct. 2021, 12, 3898–3918. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.E.; Zhang, S. Flavonoid-drug interactions: Effects of flavonoids on ABC transporters. Life Sci. 2006, 78, 2116–2130. [Google Scholar] [CrossRef]
- Ikemura, M.; Sasaki, Y.; Giddings, J.C.; Yamamoto, J. Preventive effects of hesperidin, glucosyl hesperidin and naringin on hypertension and cerebral thrombosis in stroke-prone spontaneously hypertensive rats. Phytother. Res. 2012, 26, 1272–1277. [Google Scholar] [CrossRef]
- Lee, B.K.; Hyun, S.W.; Jung, Y.S. Yuzu and Hesperidin Ameliorate Blood-Brain Barrier Disruption during Hypoxia via Antioxidant Activity. Antioxidants 2020, 9, 843. [Google Scholar] [CrossRef]
- El-Readi, M.Z.; Hamdan, D.; Farrag, N.; El-Shazly, A.; Wink, M. Inhibition of P-glycoprotein activity by limonin and other secondary metabolites from Citrus species in human colon and leukaemia cell lines. Eur. J. Pharmacol. 2010, 626, 139–145. [Google Scholar] [CrossRef]
- Lei, Y.; Chen, J.; Zhang, W.; Fu, W.; Wu, G.; Wei, H.; Wang, Q.; Ruan, J. In vivo investigation on the potential of galangin, kaempferol and myricetin for protection of D-galactose-induced cognitive impairment. Food Chem. 2012, 135, 2702–2707. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhai, Y.; Chen, J.; Xu, X.; Wang, H. Kaempferol Ameliorates Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Ferroptosis by Activating Nrf2/SLC7A11/GPX4 Axis. Biomolecules 2021, 11, 923. [Google Scholar] [CrossRef]
- Kitakaze, T.; Jiang, H.; Nomura, T.; Hironao, K.Y.; Yamashita, Y.; Ashida, H. Kaempferol Promotes Glucose Uptake in Myotubes through a JAK2-Dependent Pathway. J. Agric. Food Chem. 2020, 68, 13720–13729. [Google Scholar] [CrossRef]
- Figueira, I.; Garcia, G.; Pimpão, R.C.; Terrasso, A.P.; Costa, I.; Almeida, A.F.; Tavares, L.; Pais, T.F.; Pinto, P.; Ventura, M.R.; et al. Polyphenols journey through blood-brain barrier towards neuronal protection. Sci. Rep. 2017, 7, 11456. [Google Scholar] [CrossRef]
- Sharma, V.; Mishra, M.; Ghosh, S.; Tewari, R.; Basu, A.; Seth, P.; Sen, E. Modulation of interleukin-1beta mediated inflammatory response in human astrocytes by flavonoids: Implications in neuroprotection. Brain Res. Bull. 2007, 73, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Lee, K.; Kim, S.H.; Hong, M.J.; Jeong, N.J.; Kim, M.S. Luteolin improves hypercholesterolemia and glucose intolerance through LXRα-dependent pathway in diet-induced obese mice. J. Food Biochem. 2020, 44, e13358. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Batudeligen Chen, H.; Narisu Anda Xu, Y.; Xue, L. Luteolin attenuates CCl4-induced hepatic injury by inhibiting ferroptosis via SLC7A11. BMC Complement. Med. Ther. 2024, 24, 193. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.W.; Li, Y.; Paxton, J.W.; Birch, N.P.; Scheepens, A. Identification of novel dietary phytochemicals inhibiting the efflux transporter breast cancer resistance protein (BCRP/ABCG2). Food Chem. 2013, 138, 2267–2274. [Google Scholar] [CrossRef] [PubMed]
- Furumiya, M.; Inoue, K.; Nishijima, C.; Yamashiro, T.; Inaoka, E.; Ohta, K.; Hayashi, Y.; Yuasa, H. Noncompetitive inhibition of proton-coupled folate transporter by myricetin. Drug Metab. Pharmacokinet. 2014, 29, 312–316. [Google Scholar] [CrossRef]
- Li, Y.; He, B.; Zhang, C.; He, Y.; Xia, T.; Zeng, C. Naringenin Attenuates Isoprenaline-Induced Cardiac Hypertrophy by Suppressing Oxidative Stress through the AMPK/NOX2/MAPK Signaling Pathway. Nutrients 2023, 15, 1340. [Google Scholar] [CrossRef]
- Ali, M.M.; Agha, F.G.; El-Sammad, N.M.; Hassan, S.K. Modulation of anticancer drug-induced P-glycoprotein expression by naringin. Z. Naturforsch. C J. Biosci. 2009, 64, 109–116. [Google Scholar] [CrossRef]
- Ott, M.; Huls, M.; Cornelius, M.G.; Fricker, G. St. John’s Wort constituents modulate P-glycoprotein transport activity at the blood-brain barrier. Pharm. Res. 2010, 27, 811–822. [Google Scholar] [CrossRef]
- Lin, X.; Zhao, X.; Chen, Q.; Wang, X.; Wu, Y.; Zhao, H. Quercetin ameliorates ferroptosis of rat cardiomyocytes via activation of the SIRT1/p53/SLC7A11 signaling pathway to alleviate sepsis-induced cardiomyopathy. Int. J. Mol. Med. 2023, 52, 116. [Google Scholar] [CrossRef]
- Kumar, K.K.; Priyanka, L.; Gnananath, K.; Babu, P.R.; Sujatha, S. Pharmacokinetic drug interactions between apigenin, rutin and paclitaxel mediated by P-glycoprotein in rats. Eur. J. Drug Metab. Pharmacokinet. 2015, 40, 267–276. [Google Scholar] [CrossRef]
- Ogura, J.; Koizumi, T.; Segawa, M.; Yabe, K.; Kuwayama, K.; Sasaki, S.; Kaneko, C.; Tsujimoto, T.; Kobayashi, M.; Yamaguchi, H.; et al. Quercetin-3-rhamnoglucoside (rutin) stimulates transport of organic anion compounds mediated by organic anion transporting polypeptide 2B1. Biopharm. Drug Dispos. 2014, 35, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.Y.; Shih, H.Y.; Chia, Y.C.; Lee, C.H.; Ashida, H.; Lai, Y.K.; Weng, C.F. Rutin potentiates insulin receptor kinase to enhance insulin-dependent glucose transporter 4 translocation. Mol. Nutr. Food Res. 2014, 58, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.J.; Liao, J.F.; Lin, D.Y.; Huang, M.C.; Liou, D.Y.; Yang, H.C.; Lee, H.J.; Chen, Y.T.; Chi, C.W.; Huang, W.C.; et al. Silymarin protects spinal cord and cortical cells against oxidative stress and lipopolysaccharide stimulation. Neurochem. Int. 2010, 57, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Huang, R.; Qin, Z.; Liu, F. Influence of Tangeretin on the Exponential Regression of Inflammation and Oxidative Stress in Streptozotocin-Induced Diabetic Nephropathy. Appl. Biochem. Biotechnol. 2022, 194, 3914–3929. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Hu, J.; Sun, Y.; Huang, Y.; Peng, Q.; Zhao, W.; Xu, W.; Zhu, L. Tangeretin alleviates inflammation and oxidative response induced by spinal cord injury by activating the Sesn2/Keap1/Nrf2 pathway. Phytother. Res. 2024, 38, 4555–4569. [Google Scholar] [CrossRef]
- Honda, Y.; Ushigome, F.; Koyabu, N.; Morimoto, S.; Shoyama, Y.; Uchiumi, T.; Kuwano, M.; Ohtani, H.; Sawada, Y. Effects of grapefruit juice and orange juice components on P-glycoprotein- and MRP2-mediated drug efflux. Br. J. Pharmacol. 2004, 143, 856–864. [Google Scholar] [CrossRef]
- Satsu, H.; Shibata, R.; Suzuki, H.; Kimura, S.; Shimizu, M. Inhibitory Effect of Tangeretin and Cardamonin on Human Intestinal SGLT1 Activity In Vitro and Blood Glucose Levels in Mice In Vivo. Nutrients 2021, 13, 3382. [Google Scholar] [CrossRef]
- Datla, K.P.; Christidou, M.; Widmer, W.W.; Rooprai, H.K.; Dexter, D.T. Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson’s disease. Neuroreport 2001, 12, 3871–3875. [Google Scholar] [CrossRef]
- Bansod, S.; Chilvery, S.; Saifi, M.A.; Das, T.J.; Tag, H.; Godugu, C. Borneol protects against cerulein-induced oxidative stress and inflammation in acute pancreatitis mice model. Environ. Toxicol. 2021, 36, 530–539. [Google Scholar] [CrossRef]
- Fan, X.; Chai, L.; Zhang, H.; Wang, Y.; Zhang, B.; Gao, X. Borneol Depresses P-Glycoprotein Function by a NF-κB Signaling Mediated Mechanism in a Blood Brain Barrier in Vitro Model. Int. J. Mol. Sci. 2015, 16, 27576–27588. [Google Scholar] [CrossRef]
- Chen, N.; Wen, J.; Wang, Z.; Wang, J. Multiple regulation and targeting effects of borneol in the neurovascular unit in neurodegenerative diseases. Basic Clin. Pharmacol. Toxicol. 2022, 130, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Li, W.R.; Chen, R.Y.; Yang, L.; Huang, T.L.; Xu, Q.W.; Mi, S.Q.; Wang, N.S. Pharmacokinetics of natural borneol after oral administration in mice brain and its effect on excitation ratio. Eur. J. Drug Metab. Pharmacokinet. 2012, 37, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Abbasloo, E.; Khaksari, M.; Sanjari, M.; Kobeissy, F.; Thomas, T.C. Carvacrol decreases blood-brain barrier permeability post-diffuse traumatic brain injury in rats. Sci. Rep. 2023, 13, 14546. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Barbosa, C.R.; Scherf, J.R.; de Freitas, T.S.; de Menezes, I.R.A.; Pereira, R.L.S.; Dos Santos, J.F.S.; de Jesus, S.S.P.; Lopes, T.P.; de Sousa Silveira, Z.; de Morais Oliveira-Tintino, C.D.; et al. Effect of Carvacrol and Thymol on NorA efflux pump inhibition in multidrug-resistant (MDR) Staphylococcus aureus strains. J. Bioenerg. Biomembr. 2021, 53, 489–498. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; Xiao, B.; Cui, D.; Lin, Y.; Zeng, J.; Li, J.; Cao, M.J.; Liu, J. Antioxidant Activity of Docosahexaenoic Acid (DHA) and Its Regulatory Roles in Mitochondria. J. Agric. Food Chem. 2021, 69, 1647–1655. [Google Scholar] [CrossRef]
- Kuan, C.Y.; Walker, T.H.; Luo, P.G.; Chen, C.F. Long-chain polyunsaturated fatty acids promote paclitaxel cytotoxicity via inhibition of the MDR1 gene in the human colon cancer Caco-2 cell line. J. Am. Coll. Nutr. 2011, 30, 265–273. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Ma, D.; Shui, G.; Wong, P.; Cazenave-Gassiot, A.; Zhang, X.; Wenk, M.R.; Goh, E.L.; Silver, D.L. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 2014, 509, 503–506. [Google Scholar] [CrossRef]
- El Mahdy, R.N.; Nader, M.A.; Helal, M.G.; Abu-Risha, S.E.; Abdelmageed, M.E. Eicosapentaenoic acid mitigates ulcerative colitis-induced by acetic acid through modulation of NF-κB and TGF-β/ EGFR signaling pathways. Life Sci. 2023, 327, 121820. [Google Scholar] [CrossRef]
- Xiao, B.; Li, Y.; Lin, Y.; Lin, J.; Zhang, L.; Wu, D.; Zeng, J.; Li, J.; Liu, J.W.; Li, G. Eicosapentaenoic acid (EPA) exhibits antioxidant activity via mitochondrial modulation. Food Chem. 2022, 373 Pt A, 131389. [Google Scholar] [CrossRef]
- Kato, Y.; Ohsugi, K.; Fukuno, Y.; Iwatsuki, K.; Harada, Y.; Miyaji, T. Vesicular nucleotide transporter is a molecular target of eicosapentaenoic acid for neuropathic and inflammatory pain treatment. Proc. Natl. Acad. Sci. USA 2022, 119, e2122158119. [Google Scholar] [CrossRef]
- Edmond, J. Essential polyunsaturated fatty acids and the barrier to the brain: The components of a model for transport. J. Mol. Neurosci. 2001, 16, 181–193; discussion 215–221. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Zheng, Y.; Gao, W.; Qi, Z.; Gong, Y.; Liu, Y.; Wang, Y.; Cheng, X.; Ning, M.; Lang, Y.; et al. Alpha-lipoic acid impedes myocardial ischemia-reperfusion injury, myocardial apoptosis, and oxidative stress by regulating HMGB1 expression. Eur. J. Pharmacol. 2022, 933, 175295. [Google Scholar] [CrossRef] [PubMed]
- Skibska, B.; Kochan, E.; Stanczak, A.; Lipert, A.; Skibska, A. Antioxidant and Anti-inflammatory Effects of α-Lipoic Acid on Lipopolysaccharide-induced Oxidative Stress in Rat Kidney. Arch. Immunol. Ther. Exp. 2023, 71, 16. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.C.; Su, K.H.; Kou, Y.R.; Shyue, S.K.; Ching, L.C.; Yu, Y.B.; Wu, Y.L.; Pan, C.C.; Lee, T.S. α-Lipoic acid ameliorates foam cell formation via liver X receptor α-dependent upregulation of ATP-binding cassette transporters A1 and G1. Free Radic. Biol. Med. 2011, 50, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Zehnpfennig, B.; Wiriyasermkul, P.; Carlson, D.A.; Quick, M. Interaction of α-Lipoic Acid with the Human Na+/Multivitamin Transporter (hSMVT). J. Biol. Chem. 2015, 290, 16372–16382. [Google Scholar] [CrossRef]
- Spector, R. Fatty acid transport through the blood-brain barrier. J. Neurochem. 1988, 50, 639–643. [Google Scholar] [CrossRef]
- Sajja, R.K.; Kaisar, M.A.; Vijay, V.; Desai, V.G.; Prasad, S.; Cucullo, L. In Vitro Modulation of Redox and Metabolism Interplay at the Brain Vascular Endothelium: Genomic and Proteomic Profiles of Sulforaphane Activity. Sci. Rep. 2018, 8, 12708. [Google Scholar] [CrossRef]
- Jazwa, A.; Rojo, A.I.; Innamorato, N.G.; Hesse, M.; Fernández-Ruiz, J.; Cuadrado, A. Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. Antioxid. Redox Signal. 2011, 14, 2347–2360. [Google Scholar] [CrossRef]
- He, J.; He, Z.; Wang, H.; Zhang, C.; Pei, T.; Yan, S.; Yan, Y.; Wang, F.; Chen, Y.; Yuan, N.; et al. Caffeic acid alleviates skeletal muscle atrophy in 5/6 nephrectomy rats through the TLR4/MYD88/NF-kB pathway. Biomed. Pharmacother. 2024, 174, 116556. [Google Scholar] [CrossRef]
- Wortelboer, H.M.; Usta, M.; van Zanden, J.J.; van Bladeren, P.J.; Rietjens, I.M.; Cnubben, N.H. Inhibition of multidrug resistance proteins MRP1 and MRP2 by a series of alpha,beta-unsaturated carbonyl compounds. Biochem. Pharmacol. 2005, 69, 1879–1890. [Google Scholar] [CrossRef]
- Konishi, Y.; Hagiwara, K.; Shimizu, M. Transepithelial transport of fluorescein in Caco-2 cell monolayers and use of such transport in in vitro evaluation of phenolic acid availability. Biosci. Biotechnol. Biochem. 2002, 66, 2449–2457. [Google Scholar] [CrossRef] [PubMed]
- Hase, T.; Shishido, S.; Yamamoto, S.; Yamashita, R.; Nukima, H.; Taira, S.; Toyoda, T.; Abe, K.; Hamaguchi, T.; Ono, K.; et al. Rosmarinic acid suppresses Alzheimer’s disease development by reducing amyloid β aggregation by increasing monoamine secretion. Sci. Rep. 2019, 9, 8711. [Google Scholar] [CrossRef] [PubMed]
- Kose, S.B.E.; Kocasari, F.S. Protective effect of cinnamic acid on orthophenylphenol-induced oxidative stress in rats. Vet. Res. Forum. 2022, 13, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Jana, S.; Patel, V.B.; Patel, H. Effects of piperine, cinnamic acid and gallic acid on rosuvastatin pharmacokinetics in rats. Phytother. Res. 2013, 27, 1548–1556. [Google Scholar] [CrossRef] [PubMed]
- Mani, A.; Kushwaha, K.; Khurana, N.; Gupta, J. p-Coumaric acid attenuates high-fat diet-induced oxidative stress and nephropathy in diabetic rats. J. Anim. Physiol. Anim. Nutr. 2022, 106, 872–880. [Google Scholar] [CrossRef]
- Wang, L.; Sweet, D.H. Potential for food-drug interactions by dietary phenolic acids on human organic anion transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11). Biochem. Pharmacol. 2012, 84, 1088–1095. [Google Scholar] [CrossRef]
- Sun, S.; Ruan, Y.; Yan, M.; Xu, K.; Yang, Y.; Shen, T.; Jin, Z. Ferulic Acid Alleviates Oxidative Stress-Induced Cardiomyocyte Injury by the Regulation of miR-499-5p/p21 Signal Cascade. Evid. Based Complement. Altern. Med. 2021, 2021, 1921457. [Google Scholar] [CrossRef]
- Ermis, A.; Aritici Colak, G.; Acikel-Elmas, M.; Arbak, S.; Kolgazi, M. Ferulic Acid Treats Gastric Ulcer via Suppressing Oxidative Stress and Inflammation. Life 2023, 13, 388. [Google Scholar] [CrossRef]
- Muthusamy, G.; Balupillai, A.; Ramasamy, K.; Shanmugam, M.; Gunaseelan, S.; Mary, B.; Prasad, N.R. Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines. Eur. J. Pharmacol. 2016, 786, 194–203. [Google Scholar] [CrossRef]
- Poquet, L.; Clifford, M.N.; Williamson, G. Transport and metabolism of ferulic acid through the colonic epithelium. Drug Metab. Dispos. 2008, 36, 190–197. [Google Scholar] [CrossRef]
- Lin, Y.; Luo, T.; Weng, A.; Huang, X.; Yao, Y.; Fu, Z.; Li, Y.; Liu, A.; Li, X.; Chen, D.; et al. Gallic Acid Alleviates Gouty Arthritis by Inhibiting NLRP3 Inflammasome Activation and Pyroptosis Through Enhancing Nrf2 Signaling. Front. Immunol. 2020, 11, 580593. [Google Scholar] [CrossRef] [PubMed]
- Pervin, M.; Unno, K.; Nakagawa, A.; Takahashi, Y.; Iguchi, K.; Yamamoto, H.; Hoshino, M.; Hara, A.; Takagaki, A.; Nanjo, F.; et al. Blood brain barrier permeability of (-)-epigallocatechin gallate, its proliferation-enhancing activity of human neuroblastoma SH-SY5Y cells, and its preventive effect on age-related cognitive dysfunction in mice. Biochem. Biophys. Rep. 2017, 9, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Joardar, S.; Dewanjee, S.; Bhowmick, S.; Dua, T.K.; Das, S.; Saha, A.; De Feo, V. Rosmarinic Acid Attenuates Cadmium-Induced Nephrotoxicity via Inhibition of Oxidative Stress, Apoptosis, Inflammation and Fibrosis. Int. J. Mol. Sci. 2019, 20, 2027. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Li, R.; Liu, D.; Long, L.; He, N. Rosmarinic acid alleviates acetaminophen-induced hepatotoxicity by targeting Nrf2 and NEK7-NLRP3 signaling pathway. Ecotoxicol. Environ. Saf. 2022, 241, 113773. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Tao, Y.; Chen, S.; Luo, H.; Li, X.; Qu, S.; Chen, K.; Zeng, C. Rosmarinic Acid Ameliorates Pulmonary Ischemia/Reperfusion Injury by Activating the PI3K/Akt Signaling Pathway. Front. Pharmacol. 2022, 13, 860944. [Google Scholar] [CrossRef]
- Nyandwi, J.B.; Ko, Y.S.; Jin, H.; Yun, S.P.; Park, S.W.; Kim, H.J. Rosmarinic Acid Increases Macrophage Cholesterol Efflux through Regulation of ABCA1 and ABCG1 in Different Mechanisms. Int. J. Mol. Sci. 2021, 22, 8791. [Google Scholar] [CrossRef]
- Wang, L.; Sweet, D.H. Competitive inhibition of human organic anion transporters 1 (SLC22A6), 3 (SLC22A8) and 4 (SLC22A11) by major components of the medicinal herb Salvia miltiorrhiza (Danshen). Drug Metab. Pharmacokinet. 2013, 28, 220–228. [Google Scholar] [CrossRef]
- Zhou, Y.; Khan, H.; Hoi, M.P.M.; Cheang, W.S. Piceatannol Protects Brain Endothelial Cell Line (bEnd.3) against Lipopolysaccharide-Induced Inflammation and Oxidative Stress. Molecules 2022, 27, 1206. [Google Scholar] [CrossRef]
- Rubic, T.; Lorenz, R.L. Downregulated CD36 and oxLDL uptake and stimulated ABCA1/G1 and cholesterol efflux as anti-atherosclerotic mechanisms of interleukin-10. Cardiovasc. Res. 2006, 69, 527–535. [Google Scholar] [CrossRef]
- Ibacache-Chía, A.P.; Sierralta, J.A.; Schüller, A. The Inhibitory Effects of the Natural Stilbene Piceatannol on Lactate Transport In Vitro Mediated by Monocarboxylate Transporters. Mol. Nutr. Food Res. 2024, 68, e2400414. [Google Scholar] [CrossRef]
- Shah, F.A.; Kury, L.A.; Li, T.; Zeb, A.; Koh, P.O.; Liu, F.; Zhou, Q.; Hussain, I.; Khan, A.U.; Jiang, Y.; et al. Polydatin Attenuates Neuronal Loss via Reducing Neuroinflammation and Oxidative Stress in Rat MCAO Models. Front. Pharmacol. 2019, 10, 663. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Xu, J.; Zeng, Y.; Chen, L.; Xu, X.L. Polydatin attenuates atherosclerosis in apolipoprotein E-deficient mice: Role of reverse cholesterol transport. Phytomedicine 2019, 62, 152935. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, Y.; Cai, X.; Qu, B.; Zhang, Y.; Sun, Z.; Yan, J. Comparative pharmacokinetics and tissue distribution of polydatin, resveratrol, and emodin after oral administration of Huzhang and Huzhang-Guizhi herb-pair extracts to rats. J. Ethnopharmacol. 2024, 318 Pt B, 117010. [Google Scholar] [CrossRef]
- Dos Santos Lacerda, D.; Türck, P.; Gazzi de Lima-Seolin, B.; Colombo, R.; Duarte Ortiz, V.; Poletto Bonetto, J.H.; Campos-Carraro, C.; Bianchi, S.E.; Belló-Klein, A.; Linck Bassani, V.; et al. Pterostilbene reduces oxidative stress, prevents hypertrophy and preserves systolic function of right ventricle in cor pulmonale model. Br. J. Pharmacol. 2017, 174, 3302–3314. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Su, Y.; Yang, Y.; Jin, H.; Wu, M.; Wang, Q.; Sun, P.; Zhang, J.; Yang, X.; Shu, X. Increased brain uptake of pterostilbene loaded folate modified micellar delivery system. Drug Deliv. 2022, 29, 3071–3086. [Google Scholar] [CrossRef] [PubMed]
- Planas, J.M.; Alfaras, I.; Colom, H.; Juan, M.E. The bioavailability and distribution of trans-resveratrol are constrained by ABC transporters. Arch. Biochem. Biophys. 2012, 527, 67–73. [Google Scholar] [CrossRef]
- Juan, M.E.; Maijó, M.; Planas, J.M. Quantification of trans-resveratrol and its metabolites in rat plasma and tissues by HPLC. J. Pharm. Biomed. Anal. 2010, 51, 391–398. [Google Scholar] [CrossRef]
- Yen, G.C.; Duh, P.D.; Tsai, H.L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002, 79, 307–313. [Google Scholar] [CrossRef]
- Wartenberg, M.; Hoffmann, E.; Schwindt, H.; Grünheck, F.; Petros, J.; Arnold, J.R.; Hescheler, J.; Sauer, H. Reactive oxygen species-linked regulation of the multidrug resistance transporter P-glycoprotein in Nox-1 overexpressing prostate tumor spheroids. FEBS Lett. 2005, 579, 4541–4549. [Google Scholar] [CrossRef]
- May, J.M. Vitamin C transport and its role in the central nervous system. Subcell. Biochem. 2012, 56, 85–103. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, H.; Wang, Y.; Zheng, Y.; Sun, G. Effects of folate on arsenic toxicity in Chang human hepatocytes: Involvement of folate antioxidant properties. Toxicol. Lett. 2010, 195, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Spector, R.; Johanson, C.E. Vitamin transport and homeostasis in mammalian brain: Focus on Vitamins B and E. J. Neurochem. 2007, 103, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, Z.; Hekmatdoost, Z.; Nourian, M. Antioxidant efficacy of vitamin D. J. Parathyr. Dis. 2017, 5, 11–16. [Google Scholar]
- Pardridge, W.M.; Sakiyama, R.; Coty, W.A. Restricted transport of vitamin D and A derivatives through the rat blood-brain barrier. J. Neurochem. 1985, 44, 1138–1141. [Google Scholar] [CrossRef]
- Tang, J.; Fu, Q.; Wang, Y.; Racette, K.; Wang, D.; Liu, F. Vitamin E reverses multidrug resistance in vitro and in vivo. Cancer Lett. 2013, 336, 149–157. [Google Scholar] [CrossRef]
- Hunyadi, A. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med. Res. Rev. 2019, 39, 2505–2533. [Google Scholar] [CrossRef]
- Ureña-Vacas, I.; Aznar de la Riera, M.B.; Serrano Dolores, R.; González-Burgos, E. A new frontier in neuropharmacology: Recent progress in natural products research for blood–brain barrier crossing. Curr. Res. Biotechnol. 2024, 8, 100235. [Google Scholar] [CrossRef]
- Munji, R.N.; Soung, A.L.; Weiner, G.A.; Sohet, F.; Semple, B.D.; Trivedi, A.; Gimlin, K.; Kotoda, M.; Korai, M.; Aydin, S.; et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood-brain barrier dysfunction module. Nat. Neurosci. 2019, 22, 1892–1902. [Google Scholar] [CrossRef]
- Sabbagh, M.F.; Heng, J.S.; Luo, C.; Castanon, R.G.; Nery, J.R.; Rattner, A.; Goff, L.A.; Ecker, J.R.; Nathans, J. Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells. eLife 2018, 7, e36187. [Google Scholar] [CrossRef]
- Vanlandewijck, M.; He, L.; Mäe, M.A.; Andrae, J.; Ando, K.; Del Gaudio, F.; Nahar, K.; Lebouvier, T.; Laviña, B.; Gouveia, L.; et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 2018, 554, 475–480. [Google Scholar] [CrossRef]
- Garcia, F.J.; Sun, N.; Lee, H.; Godlewski, B.; Mathys, H.; Galani, K.; Zhou, B.; Jiang, X.; Ng, A.P.; Mantero, J.; et al. Single-cell dissection of the human brain vasculature. Nature 2022, 603, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.C.; Vest, R.T.; Kern, F.; Lee, D.P.; Agam, M.; Maat, C.A.; Losada, P.M.; Chen, M.B.; Schaum, N.; Khoury, N.; et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature 2022, 603, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Kalari, K.R.; Thompson, K.J.; Nair, A.A.; Tang, X.; Bockol, M.A.; Jhawar, N.; Swaminathan, S.K.; Lowe, V.J.; Kandimalla, K.K. BBBomics-Human Blood Brain Barrier Transcriptomics Hub. Front. Neurosci. 2016, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Veszelka, S.; Tóth, A.; Walter, F.R.; Tóth, A.E.; Gróf, I.; Mészáros, M.; Bocsik, A.; Hellinger, É.; Vastag, M.; Rákhely, G.; et al. Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport. Front. Mol. Neurosci. 2018, 11, 166. [Google Scholar] [CrossRef] [PubMed]
- Santa-Maria, A.R.; Heymans, M.; Walter, F.R.; Culot, M.; Gosselet, F.; Deli, M.A.; Neuhaus, W. Transport Studies Using Blood-Brain Barrier In Vitro Models: A Critical Review and Guidelines. Handb. Exp. Pharmacol. 2022, 273, 187–204. [Google Scholar] [CrossRef]
- Porkoláb, G.; Mészáros, M.; Szecskó, A.; Vigh, J.P.; Walter, F.R.; Figueiredo, R.; Kálomista, I.; Hoyk, Z.; Vizsnyiczai, G.; Gróf, I.; et al. Synergistic induction of blood-brain barrier properties. Proc. Natl. Acad. Sci. USA 2024, 121, e2316006121. [Google Scholar] [CrossRef]
- Zhou, S.; Lim, L.Y.; Chowbay, B. Herbal modulation of P-glycoprotein. Drug Metab. Rev. 2004, 36, 57–104. [Google Scholar] [CrossRef]
- Youdim, K.A.; Shukitt-Hale, B.; Joseph, J.A. Flavonoids and the brain: Interactions at the blood-brain barrier and their physiological effects on the central nervous system. Free Radic. Biol. Med. 2004, 37, 1683–1693. [Google Scholar] [CrossRef]
- Li, Y.; Revalde, J.; Paxton, J.W. The effects of dietary and herbal phytochemicals on drug transporters. Adv. Drug Deliv. Rev. 2017, 116, 45–62. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Tian, F.; Zhang, S.Q.; Jin, H. Advances in Pharmacokinetic Mechanisms of Transporter-Mediated Herb-Drug Interactions. Pharmaceuticals 2022, 15, 1126. [Google Scholar] [CrossRef]
- Fricker, G. Drug interactions with natural products at the blood brain barrier. Curr. Drug Metab. 2008, 9, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Pekdemir, B.; Raposo, A.; Saraiva, A.; Lima, M.J.; Alsharari, Z.D.; BinMowyna, M.N.; Karav, S. Mechanisms and Potential Benefits of Neuroprotective Agents in Neurological Health. Nutrients 2024, 16, 4368. [Google Scholar] [CrossRef] [PubMed]
- Auti, A.; Tathode, M.; Marino, M.M.; Vitiello, A.; Ballini, A.; Miele, F.; Mazzone, V.; Ambrosino, A.; Boccellino, M. Nature’s weapons: Bioactive compounds as anti-cancer agents. AIMS Public Health 2024, 11, 747–772. [Google Scholar] [CrossRef] [PubMed]
- Andrew, R.; Izzo, A.A. Principles of pharmacological research of nutraceuticals. Br. J. Pharmacol. 2017, 174, 1177–1194. [Google Scholar] [CrossRef]
- Lund, E.K. Health benefits of seafood; is it just the fatty acids? Food Chem. 2013, 140, 413–420. [Google Scholar] [CrossRef]
- Kulkarni, M.; Sawant, N.; Kolapkar, A.; Huprikar, A.; Desai, N. Borneol: A Promising Monoterpenoid in Enhancing Drug Delivery Across Various Physiological Barriers. AAPS PharmSciTech. 2021, 22, 145. [Google Scholar] [CrossRef]
- Profaci, C.P.; Munji, R.N.; Pulido, R.S.; Daneman, R. The blood-brain barrier in health and disease: Important unanswered questions. J. Exp. Med. 2020, 217, e20190062. [Google Scholar] [CrossRef]
- Mukherjee, P.; Roy, S.; Ghosh, D.; Nandi, S.K. Role of animal models in biomedical research: A review. Lab. Anim. Res. 2022, 38, 18. [Google Scholar] [CrossRef]
- Zhang, T.; Su, J.; Guo, B.; Wang, K.; Li, X.; Liang, G. Apigenin protects blood-brain barrier and ameliorates early brain injury by inhibiting TLR4-mediated inflammatory pathway in subarachnoid hemorrhage rats. Int. Immunopharmacol. 2015, 28, 79–87. [Google Scholar] [CrossRef]
- Pang, Q.; Zhao, Y.; Chen, X.; Zhao, K.; Zhai, Q.; Tu, F. Apigenin Protects the Brain against Ischemia/Reperfusion Injury via Caveolin-1/VEGF In Vitro and In Vivo. Oxid. Med. Cell Longev. 2018, 2018, 7017204. [Google Scholar] [CrossRef]
- Iwata, S.; Imai, T.; Shimazawa, M.; Ishibashi, T.; Hayashi, M.; Hara, H.; Nakamura, S. Protective effects of the astaxanthin derivative, adonixanthin, on brain hemorrhagic injury. Brain Res. 2018, 1698, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.S.; Zhang, X.; Zhang, Q.R.; Wu, Q.; Li, W.; Jiang, T.W.; Hang, C.H. Corrigendum to “Astaxanthin reduces matrix metalloproteinase-9 expression and activity in the brain after experimental subarachnoid hemorrhage in rats” [Brain Res. 1624 (2015) 113–124]. Brain Res. 2024, 1850, 149390. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Zhong, F.M.; Yao, Y.; Deng, S.Q.; Xu, H.Q.; Lu, J.F.; Ruan, M.; Shen, X.C. Synergistic protection of tetramethylpyrazine phosphate and borneol on brain microvascular endothelium cells injured by hypoxia. Am. J. Transl. Res. 2019, 11, 2168–2180. [Google Scholar]
- Li, Y.; Ren, M.; Wang, J.; Ma, R.; Chen, H.; Xie, Q.; Li, H.; Li, J.; Wang, J. Progress in Borneol Intervention for Ischemic Stroke: A Systematic Review. Front. Pharmacol. 2021, 12, 606682. [Google Scholar] [CrossRef]
- Zhao, J.; Pati, S.; Redell, J.B.; Zhang, M.; Moore, A.N.; Dash, P.K. Caffeic Acid phenethyl ester protects blood-brain barrier integrity and reduces contusion volume in rodent models of traumatic brain injury. J. Neurotrauma 2012, 29, 1209–1218. [Google Scholar] [CrossRef]
- Mahmood, Q.; Lu, N.; Wang, X.; Du, Y.; Ghori, M.U.; Tian, B.; Yang, H.; Han, F.; Jiang, G.; Lu, Y. Targeted delivery of β-carotene potentially prevents blood-brain barrier breakdown after stroke in mice. Phytomed. Plus 2023, 3, 100426. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, J.; Cai, Y.; Huang, J.; You, L. Catechin attenuates traumatic brain injury-induced blood-brain barrier damage and improves longer-term neurological outcomes in rats. Exp. Physiol. 2017, 102, 1269–1277. [Google Scholar] [CrossRef]
- Rashno, M.; Sarkaki, A.; Farbood, Y.; Rashno, M.; Khorsandi, L.; Naseri, M.K.G.; Dianat, M. Possible mechanisms involved in the neuroprotective effects of chrysin against mild traumatic brain injury-induced spatial cognitive decline: An in vivo study in a rat model. Brain Res. Bull. 2023, 204, 110779. [Google Scholar] [CrossRef]
- Li, Y.; Han, J.; Zhang, Y.; Chen, Y.; Zhang, Y. Prophylactic effect and mechanism of p-coumaric acid against hypoxic cerebral edema in mice. Respir. Physiol. Neurobiol. 2019, 260, 95–104. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, W.; Sun, Y.J.; Hu, M.; Li, F.; Zhu, D.Y. Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood-brain barrier damage. Eur. J. Pharmacol. 2007, 561, 54–62. [Google Scholar] [CrossRef]
- Yu, L.S.; Fan, Y.Y.; Ye, G.; Li, J.; Feng, X.P.; Lin, K.; Dong, M.; Wang, Z. Curcumin alleviates brain edema by lowering AQP4 expression levels in a rat model of hypoxia-hypercapnia-induced brain damage. Exp. Ther. Med. 2016, 11, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhong, X.; Zeng, J.; Huang, Z.; Li, X.; Xiao, H.; Chen, Q.; Li, D. 3′-Daidzein sulfonate sodium inhibits neuronal apoptosis induced by cerebral ischemia-reperfusion. Int. J. Mol. Med. 2017, 39, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.C.; Kao, T.K.; Ou, Y.C.; Yang, D.Y.; Yen, Y.J.; Wang, C.C.; Chuang, Y.H.; Liao, S.L.; Raung, S.L.; Wu, C.W.; et al. Protective effect of docosahexaenoic acid against brain injury in ischemic rats. J. Nutr. Biochem. 2009, 20, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.H.; Khoutorova, L.; Bazan, N.G.; Belayev, L. Docosahexaenoic acid improves behavior and attenuates blood-brain barrier injury induced by focal cerebral ischemia in rats. Exp. Transl. Stroke Med. 2015, 7, 3. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, H.; Mu, H.; Zhu, W.; Jiang, X.; Hu, X.; Shi, Y.; Leak, R.K.; Dong, Q.; Chen, J.; et al. Omega-3 polyunsaturated fatty acids mitigate blood-brain barrier disruption after hypoxic-ischemic brain injury. Neurobiol. Dis. 2016, 91, 37–46. [Google Scholar] [CrossRef]
- Shin, J.A.; Park, H.; Choi, H.; Chang, Y.K.; Kim, J.J.; Ham, Y.R.; Na, K.R.; Lee, K.W.; Choi, D.E. ω-3 Polyunsaturated Fatty Acids Improve the Blood-Brain-Barrier Integrity in Contrast-Induced Blood-Brain-Barrier Injury in Uremic Mice. Int. J. Mol. Sci. 2023, 24, 12168. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Wang, P.; Yu, B.; Liu, Y.; Xue, Y. Green tea polyphenols alleviate early BBB damage during experimental focal cerebral ischemia through regulating tight junctions and PKCalpha signaling. BMC Complement. Altern. Med. 2013, 13, 187. [Google Scholar] [CrossRef]
- Xu, S.H.; Yin, M.S.; Liu, B.; Chen, M.L.; He, G.W.; Zhou, P.P.; Cui, Y.J.; Yang, D.; Wu, Y.L. Tetramethylpyrazine-2′-O-sodium ferulate attenuates blood-brain barrier disruption and brain oedema after cerebral ischemia/reperfusion. Hum. Exp. Toxicol. 2017, 36, 670–680. [Google Scholar] [CrossRef]
- Mehra, S.; Ahsan, A.U.; Sharma, M.; Budhwar, M.; Chopra, M. Gestational Fisetin Exerts Neuroprotection by Regulating Mitochondria-Directed Canonical Wnt Signaling, BBB Integrity, and Apoptosis in Prenatal VPA-Induced Rodent Model of Autism. Mol. Neurobiol. 2024, 61, 4001–4020. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Z.; Bai, W.; Peng, Y.; Lin, Y.; Cong, Z. Fucoxanthin ameliorates traumatic brain injury by suppressing the blood-brain barrier disruption. iScience 2023, 26, 108270. [Google Scholar] [CrossRef]
- Soltani, Z.; Khaksari, M.; Jafari, E.; Iranpour, M.; Shahrokhi, N. Is genistein neuroprotective in traumatic brain injury? Physiol. Behav. 2015, 152 Pt A, 26–31. [Google Scholar] [CrossRef]
- Song, H.; Ding, Z.; Chen, J.; Chen, T.; Wang, T.; Huang, J. The AMPK-SIRT1-FoxO1-NF-κB signaling pathway participates in hesperetin-mediated neuroprotective effects against traumatic brain injury via the NLRP3 inflammasome. Immunopharmacol. Immunotoxicol. 2022, 44, 970–983. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Yang, Y.L.; Yang, H.; Wang, Y.H.; Du, G.H. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway. Int. Immunopharmacol. 2018, 56, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.L.; Cheng, X.; Li, W.H.; Liu, M.; Wang, Y.H.; Du, G.H. Kaempferol Attenuates LPS-Induced Striatum Injury in Mice Involving Anti-Neuroinflammation, Maintaining BBB Integrity, and Down-Regulating the HMGB1/TLR4 Pathway. Int. J. Mol. Sci. 2019, 20, 491. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, L.; Zhang, X.; Pan, L.; Jiang, L. The Protective Effects of Juglanin in Cerebral Ischemia Reduce Blood-Brain Barrier Permeability via Inhibition of VEGF/VEGFR2 Signaling. Drug Des. Dev. Ther. 2020, 14, 3165–3175. [Google Scholar] [CrossRef] [PubMed]
- Toklu, H.Z.; Hakan, T.; Biber, N.; Solakoğlu, S.; Oğünç, A.V.; Sener, G. The protective effect of alpha lipoic acid against traumatic brain injury in rats. Free Radic. Res. 2009, 43, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Turk, C.; Camlar, M.; Diniz, G.; Arslan, F.D.; Oren, M.M.; Ozer, F. Effects of Lutein on Brain Damage and Vasospasm in an Experimental Subarachnoid Hemorrhage Model. World Neurosurg. 2020, 143, e450–e455. [Google Scholar] [CrossRef]
- Tan, D.; Yu, X.; Chen, M.; Chen, J.; Xu, J. Lutein protects against severe traumatic brain injury through anti-inflammation and antioxidative effects via ICAM-1/Nrf-2. Mol. Med. Rep. 2017, 16, 4235–4240. [Google Scholar] [CrossRef]
- Liu, R.; Gao, M.; Qiang, G.F.; Zhang, T.T.; Lan, X.; Ying, J.; Du, G.H. The anti-amnesic effects of luteolin against amyloid beta(25-35) peptide-induced toxicity in mice involve the protection of neurovascular unit. Neuroscience 2009, 162, 1232–1243. [Google Scholar] [CrossRef]
- Moustafa, E.M.; Moawed, F.S.M.; Elmaghraby, D.F. Luteolin/ZnO nanoparticles attenuate neuroinflammation associated with diabetes via regulating MicroRNA-124 by targeting C/EBPA. Environ. Toxicol. 2023, 38, 2691–2704. [Google Scholar] [CrossRef]
- Wu, A.; Liu, R.; Dai, W.; Jie, Y.; Yu, G.; Fan, X.; Huang, Q. Lycopene attenuates early brain injury and inflammation following subarachnoid hemorrhage in rats. Int. J. Clin. Exp. Med. 2015, 8, 14316–14322. [Google Scholar] [PubMed]
- Wang, W.; Yang, W.; Shen, Z.; Wen, S.; Hu, M. The Dose-Response Effect of Lycopene on Cerebral Vessel and Neuron Impairment Induced by Hyperlipidemia. J. Agric. Food Chem. 2018, 66, 13173–13182. [Google Scholar] [CrossRef] [PubMed]
- Lapi, D.; Chiurazzi, M.; Di Maro, M.; Mastantuono, T.; Battiloro, L.; Sabatino, L.; Ricci, S.; Di Carlo, A.; Starita, N.; Guida, B.; et al. Malvidin’s Effects on Rat Pial Microvascular Permeability Changes Due to Hypoperfusion and Reperfusion Injury. Front. Cell Neurosci. 2016, 10, 153. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, L.; Yu, L.; Xia, Y.; Fang, Z.; Wang, S. Naringenin Protected Against Blood Brain Barrier Breakdown after Ischemic Stroke through GSK-3β/β-Catenin Pathway. Neurochem. Res. 2024, 50, 17. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Zhang, X.; Du, Y.; Liu, H.; Li, S.; Li, L. Polydatin modulates inflammation by decreasing NF-κB activation and oxidative stress by increasing Gli1, Ptch1, SOD1 expression and ameliorates blood-brain barrier permeability for its neuroprotective effect in pMCAO rat brain. Brain Res. Bull. 2012, 87, 50–59. [Google Scholar] [CrossRef]
- Ruan, W.; Li, J.; Xu, Y.; Wang, Y.; Zhao, F.; Yang, X.; Jiang, H.; Zhang, L.; Saavedra, J.M.; Shi, L.; et al. MALAT1 Up-Regulator Polydatin Protects Brain Microvascular Integrity and Ameliorates Stroke Through C/EBPβ/MALAT1/CREB/PGC-1α/PPARγ Pathway. Cell Mol. Neurobiol. 2019, 39, 265–286. [Google Scholar] [CrossRef]
- Wu, S.; Yue, Y.; Li, J.; Li, Z.; Li, X.; Niu, Y.; Xiang, J.; Ding, H. Procyanidin B2 attenuates neurological deficits and blood-brain barrier disruption in a rat model of cerebral ischemia. Mol. Nutr. Food Res. 2015, 59, 1930–1941. [Google Scholar] [CrossRef]
- Yang, Z.H.; Liu, Y.J.; Ban, W.K.; Liu, H.B.; Lv, L.J.; Zhang, B.Y.; Liu, A.L.; Hou, Z.Y.; Lu, J.; Chen, X.; et al. Pterostilbene alleviated cerebral ischemia/reperfusion-induced blood-brain barrier dysfunction via inhibiting early endothelial cytoskeleton reorganization and late basement membrane degradation. Food Funct. 2023, 14, 8291–8308. [Google Scholar] [CrossRef]
- Yan, W.; Ren, D.; Feng, X.; Huang, J.; Wang, D.; Li, T.; Zhang, D. Neuroprotective and Anti-Inflammatory Effect of Pterostilbene Against Cerebral Ischemia/Reperfusion Injury via Suppression of COX-2. Front. Pharmacol. 2021, 12, 770329. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, T.T.; Zhou, D.; Bai, X.Y.; Zhou, W.L.; Huang, C.; Song, J.K.; Meng, F.R.; Wu, C.X.; Li, L.; et al. Quercetin protects against the Aβ(25-35)-induced amnesic injury: Involvement of inactivation of rage-mediated pathway and conservation of the NVU. Neuropharmacology 2013, 67, 419–431. [Google Scholar] [CrossRef]
- Lee, J.K.; Kwak, H.J.; Piao, M.S.; Jang, J.W.; Kim, S.H.; Kim, H.S. Quercetin reduces the elevated matrix metalloproteinases-9 level and improves functional outcome after cerebral focal ischemia in rats. Acta Neurochir. 2011, 153, 1321–1329. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Ke, J.; Guo, P.; Wang, Y.; Wu, H. Quercetin improves blood-brain barrier dysfunction in rats with cerebral ischemia reperfusion via Wnt signaling pathway. Am. J. Transl. Res. 2019, 11, 4683–4695. [Google Scholar] [PubMed]
- Selvakumar, K.; Prabha, R.L.; Saranya, K.; Bavithra, S.; Krishnamoorthy, G.; Arunakaran, J. Polychlorinated biphenyls impair blood-brain barrier integrity via disruption of tight junction proteins in cerebrum, cerebellum and hippocampus of female Wistar rats: Neuropotential role of quercetin. Hum. Exp. Toxicol. 2013, 32, 706–720. [Google Scholar] [CrossRef]
- Yang, R.; Shen, Y.J.; Chen, M.; Zhao, J.Y.; Chen, S.H.; Zhang, W.; Song, J.K.; Li, L.; Du, G.H. Quercetin attenuates ischemia reperfusion injury by protecting the blood-brain barrier through Sirt1 in MCAO rats. J. Asian Nat. Prod. Res. 2022, 24, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, Y.; Feng, P.; Wang, H.; Zheng, M.; Zhu, Y.; Zhong, K.; Hu, J.; Ye, Y.; Lu, L.; et al. Quercetin improves the protection of hydroxysafflor yellow a against cerebral ischemic injury by modulating of blood-brain barrier and src-p-gp-mmp-9 signalling. Heliyon 2024, 10, e31002. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.; Tuor, U.I.; Thompson, R.; Institoris, A.; Kulynych, A.; Zhang, X.; Kinniburgh, D.W.; Bari, F.; Busija, D.W.; Barber, P.A. Protection against recurrent stroke with resveratrol: Endothelial protection. PLoS ONE 2012, 7, e47792. [Google Scholar] [CrossRef]
- Luan, H.; Kan, Z.; Xu, Y.; Lv, C.; Jiang, W. Rosmarinic acid protects against experimental diabetes with cerebral ischemia: Relation to inflammation response. J. Neuroinflamm. 2013, 10, 28. [Google Scholar] [CrossRef]
- Yang, T.; Feng, C.; Wang, D.; Qu, Y.; Yang, Y.; Wang, Y.; Sun, Z. Neuroprotective and Anti-inflammatory Effect of Tangeretin Against Cerebral Ischemia-Reperfusion Injury in Rats. Inflammation 2020, 43, 2332–2343. [Google Scholar] [CrossRef]
- Novochadlo, M.; Goldim, M.P.; Bonfante, S.; Joaquim, L.; Mathias, K.; Metzker, K.; Machado, R.S.; Lanzzarin, E.; Bernades, G.; Bagio, E.; et al. Folic acid alleviates the blood brain barrier permeability and oxidative stress and prevents cognitive decline in sepsis-surviving rats. Microvasc. Res. 2021, 137, 104193. [Google Scholar] [CrossRef]
- Chang, C.Y.; Chen, J.Y.; Wu, M.H.; Hu, M.L. Therapeutic treatment with vitamin C reduces focal cerebral ischemia-induced brain infarction in rats by attenuating disruptions of blood brain barrier and cerebral neuronal apoptosis. Free Radic. Biol. Med. 2020, 155, 29–36. [Google Scholar] [CrossRef]
- Yang, J.; Wang, K.; Hu, T.; Wang, G.; Wang, W.; Zhang, J. Vitamin D3 Supplement Attenuates Blood-Brain Barrier Disruption and Cognitive Impairments in a Rat Model of Traumatic Brain Injury. Neuromol. Med. 2021, 23, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Shlosberg, D.; Benifla, M.; Kaufer, D.; Friedman, A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat. Rev. Neurol. 2010, 6, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Cash, A.; Theus, M.H. Mechanisms of Blood-Brain Barrier Dysfunction in Traumatic Brain Injury. Int. J. Mol. Sci. 2020, 21, 3344. [Google Scholar] [CrossRef] [PubMed]
- Keep, R.F.; Zhou, N.; Xiang, J.; Andjelkovic, A.V.; Hua, Y.; Xi, G. Vascular disruption and blood-brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS 2014, 11, 18. [Google Scholar] [CrossRef]
- Bernardo-Castro, S.; Sousa, J.A.; Brás, A.; Cecília, C.; Rodrigues, B.; Almendra, L.; Machado, C.; Santo, G.; Silva, F.; Ferreira, L.; et al. Pathophysiology of Blood-Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery. Front. Neurol. 2020, 11, 594672. [Google Scholar] [CrossRef]
- Wu, J.Y.; Li, Y.J.; Yang, L.; Hu, Y.Y.; Hu, X.B.; Tang, T.T.; Wang, J.M.; Liu, X.Y.; Xiang, D.X. Borneol and A-asarone as adjuvant agents for improving blood-brain barrier permeability of puerarin and tetramethylpyrazine by activating adenosine receptors. Drug Deliv. 2018, 25, 1858–1864. [Google Scholar] [CrossRef]
- Bjelik, A.; Bereczki, E.; Gonda, S.; Juhász, A.; Rimanóczy, A.; Zana, M.; Csont, T.; Pákáski, M.; Boda, K.; Ferdinandy, P.; et al. Human apoB overexpression and a high-cholesterol diet differently modify the brain APP metabolism in the transgenic mouse model of atherosclerosis. Neurochem. Int. 2006, 49, 393–400. [Google Scholar] [CrossRef]
- Hoyk, Z.; Tóth, M.E.; Lénárt, N.; Nagy, D.; Dukay, B.; Csefová, A.; Zvara, Á.; Seprényi, G.; Kincses, A.; Walter, F.R.; et al. Cerebrovascular Pathology in Hypertriglyceridemic APOB-100 Transgenic Mice. Front. Cell Neurosci. 2018, 12, 380. [Google Scholar] [CrossRef]
- Barabási, B.; Barna, L.; Santa-Maria, A.R.; Harazin, A.; Molnár, R.; Kincses, A.; Vigh, J.P.; Dukay, B.; Sántha, M.; Tóth, M.E.; et al. Role of interleukin-6 and interleukin-10 in morphological and functional changes of the blood-brain barrier in hypertriglyceridemia. Fluids Barriers CNS 2023, 20, 15. [Google Scholar] [CrossRef]
- Galea, I. The blood-brain barrier in systemic infection and inflammation. Cell Mol. Immunol. 2021, 18, 2489–2501. [Google Scholar] [CrossRef]
- Gozal, E.; Jagadapillai, R.; Cai, J.; Barnes, G.N. Potential crosstalk between sonic hedgehog-WNT signaling and neurovascular molecules: Implications for blood-brain barrier integrity in autism spectrum disorder. J. Neurochem. 2021, 159, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Tesse, A.; Grossini, E.; Tamma, G.; Brenner, C.; Portincasa, P.; Marinelli, R.A.; Calamita, G. Aquaporins as Targets of Dietary Bioactive Phytocompounds. Front. Mol. Biosci. 2018, 5, 30. [Google Scholar] [CrossRef] [PubMed]
- Langen, U.H.; Ayloo, S.; Gu, C. Development and Cell Biology of the Blood-Brain Barrier. Annu. Rev. Cell Dev. Biol. 2019, 35, 591–613. [Google Scholar] [CrossRef] [PubMed]
- Stresser, D.M.; Kopec, A.K.; Hewitt, P.; Hardwick, R.N.; Van Vleet, T.R.; Mahalingaiah, P.K.S.; O’Connell, D.; Jenkins, G.J.; David, R.; Graham, J.; et al. Towards in vitro models for reducing or replacing the use of animals in drug testing. Nat. Biomed. Eng. 2024, 8, 930–935. [Google Scholar] [CrossRef]
- Ingber, D.E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 2022, 23, 467–491. [Google Scholar] [CrossRef]
- Helms, H.C.; Abbott, N.J.; Burek, M.; Cecchelli, R.; Couraud, P.O.; Deli, M.A.; Förster, C.; Galla, H.J.; Romero, I.A.; Shusta, E.V.; et al. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J. Cereb. Blood Flow. Metab. 2016, 36, 862–890. [Google Scholar] [CrossRef]
- Tahanian, E.; Sanchez, L.A.; Shiao, T.C.; Roy, R.; Annabi, B. Flavonoids targeting of IκB phosphorylation abrogates carcinogen-induced MMP-9 and COX-2 expression in human brain endothelial cells. Drug Des. Dev. Ther. 2011, 5, 299–309. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, J.; Jiang, W.; Zhang, S. Astaxanthin induces angiogenesis through Wnt/β-catenin signaling pathway. Phytomedicine 2015, 22, 744–751. [Google Scholar] [CrossRef]
- Kuo, M.H.; Lee, H.F.; Tu, Y.F.; Lin, L.H.; Cheng, Y.Y.; Lee, H.T. Astaxanthin Ameliorates Ischemic-Hypoxic-Induced Neurotrophin Receptor p75 Upregulation in the Endothelial Cells of Neonatal Mouse Brains. Int. J. Mol. Sci. 2019, 20, 6168. [Google Scholar] [CrossRef]
- Fanaee-Danesh, E.; Gali, C.C.; Tadic, J.; Zandl-Lang, M.; Carmen Kober, A.; Agujetas, V.R.; de Dios, C.; Tam-Amersdorfer, C.; Stracke, A.; Albrecher, N.M.; et al. Astaxanthin exerts protective effects similar to bexarotene in Alzheimer’s disease by modulating amyloid-beta and cholesterol homeostasis in blood-brain barrier endothelial cells. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 2224–2245. [Google Scholar] [CrossRef]
- Bereta, M.; Bereta, J.; Georgoff, I.; Coffman, F.D.; Cohen, S.; Cohen, M.C. Methylxanthines and calcium-mobilizing agents inhibit the expression of cytokine-inducible nitric oxide synthase and vascular cell adhesion molecule-1 in murine microvascular endothelial cells. Exp. Cell Res. 1994, 212, 230–242. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M.; Burek, M.; Britz, S.; Lankamp, F.; Ketelhut, S.; Kemper, B.; Förster, C.; Gorzelanny, C.; Goycoolea, F.M. The Influence of Capsaicin on the Integrity of Microvascular Endothelial Cell Monolayers. Int. J. Mol. Sci. 2018, 20, 122. [Google Scholar] [CrossRef] [PubMed]
- Jamornwan, S.; Chokpanuwat, T.; Uppakara, K.; Laorob, T.; Wichai, U.; Ketsawatsomkron, P.; Saengsawang, W. Nitro Capsaicin Suppressed Microglial Activation and TNF-α-Induced Brain Microvascular Endothelial Cell Damage. Biomedicines 2022, 10, 2680. [Google Scholar] [CrossRef] [PubMed]
- Ardid-Ruiz, A.; Harazin, A.; Barna, L.; Walter, F.R.; Bladé, C.; Suárez, M.; Deli, M.A.; Aragonès, G. The effects of Vitis vinifera L. phenolic compounds on a blood-brain barrier culture model: Expression of leptin receptors and protection against cytokine-induced damage. J. Ethnopharmacol. 2020, 247, 112253. [Google Scholar] [CrossRef]
- Lee, S.B.; Choi, E.H.; Jeong, K.H.; Kim, K.S.; Shim, S.M.; Kim, G.H. Effect of catechins and high-temperature-processed green tea extract on scavenging reactive oxygen species and preventing Aβ1-42 fibrils’ formation in brain microvascular endothelium. Nutr. Neurosci. 2020, 23, 363–373. [Google Scholar] [CrossRef]
- Lee, B.K.; Lee, W.J.; Jung, Y.S. Chrysin Attenuates VCAM-1 Expression and Monocyte Adhesion in Lipopolysaccharide-Stimulated Brain Endothelial Cells by Preventing NF-κB Signaling. Int. J. Mol. Sci. 2017, 18, 1424. [Google Scholar] [CrossRef]
- Zhang, W.X.; Wang, H.; Cui, H.R.; Guo, W.B.; Zhou, F.; Cai, D.S.; Xu, B.; Jia, X.H.; Huang, X.M.; Yang, Y.Q.; et al. Design, synthesis and biological evaluation of cinnamic acid derivatives with synergetic neuroprotection and angiogenesis effect. Eur. J. Med. Chem. 2019, 183, 111695. [Google Scholar] [CrossRef]
- Dong, H.J.; Shang, C.Z.; Peng, D.W.; Xu, J.; Xu, P.X.; Zhan, L.; Wang, P. Curcumin attenuates ischemia-like injury induced IL-1β elevation in brain microvascular endothelial cells via inhibiting MAPK pathways and nuclear factor-κB activation. Neurol. Sci. 2014, 35, 1387–1392. [Google Scholar] [CrossRef]
- Lamy, S.; Muhire, É.; Annabi, B. Antiproliferative efficacy of elderberries and elderflowers (Sambucus canadensis) on glioma and brain endothelial cells under normoxic and hypoxic conditions. J. Funct. Foods 2018, 40, 164–179. [Google Scholar] [CrossRef]
- Veszelka, S.; Tóth, A.E.; Walter, F.R.; Datki, Z.; Mózes, E.; Fülöp, L.; Bozsó, Z.; Hellinger, E.; Vastag, M.; Orsolits, B.; et al. Docosahexaenoic acid reduces amyloid-β induced toxicity in cells of the neurovascular unit. J. Alzheimer’s Dis. 2013, 36, 487–501. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Q.; Zhan, L.; Shu, A. Effects and mechanisms of docosahexaenoic acid on the generation of angiopoietin-2 by rat brain microvascular endothelial cells under an oxygen- and glucose-deprivation environment. SpringerPlus 2016, 5, 1518. [Google Scholar] [CrossRef] [PubMed]
- Torres-Vergara, P.; Penny, J. Pro-inflammatory and anti-inflammatory compounds exert similar effects on P-glycoprotein in blood-brain barrier endothelial cells. J. Pharm. Pharmacol. 2018, 70, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.W.; Lee, W.H. Protective effects of genistein on proinflammatory pathways in human brain microvascular endothelial cells. J. Nutr. Biochem. 2008, 19, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.D.; Yu, H.L.; Ding, J.; Ma, W.W.; Yuan, L.H.; Feng, J.F.; Xiao, Y.X.; Xiao, R. Flavonoids protect cerebrovascular endothelial cells through Nrf2 and PI3K from β-amyloid peptide-induced oxidative damage. Curr. Neurovasc. Res. 2012, 9, 32–41. [Google Scholar] [CrossRef]
- Calhau, C.; Martel, F.; Soares-da-Silva, P.; Hipólito-Reis, C.; Azevedo, I. Regulation of [(3)H]MPP(+) transport by phosphorylation/dephosphorylation pathways in RBE4 cells: Role of ecto-alkaline phosphatase. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2002, 365, 349–356. [Google Scholar] [CrossRef]
- Calhau, C.; Martel, F.; Pinheiro-Silva, S.; Pinheiro, H.; Soares-da-Silva, P.; Hipólito-Reis, C.; Azevedo, I. Modulation of insulin transport in rat brain microvessel endothelial cells by an ecto-phosphatase activity. J. Cell Biochem. 2002, 84, 389–400. [Google Scholar] [CrossRef]
- Li, M.T.; Ke, J.; Guo, S.F.; Shan, L.L.; Gong, J.H.; Qiao, T.C.; Tian, H.Y.; Wu, Y.; Peng, Z.Y.; Zeng, X.Q.; et al. Huzhangqingmaiyin protected vascular endothelial cells against cerebral small vessel disease through inhibiting inflammation. J. Ethnopharmacol. 2024, 318 Pt A, 116905. [Google Scholar] [CrossRef]
- Xie, R.; Li, X.; Ling, Y.; Shen, C.; Wu, X.; Xu, W.; Gao, X. Alpha-lipoic acid pre- and post-treatments provide protection against in vitro ischemia-reperfusion injury in cerebral endothelial cells via Akt/mTOR signaling. Brain Res. 2012, 1482, 81–90. [Google Scholar] [CrossRef]
- Zhang, J.X.; Xing, J.G.; Wang, L.L.; Jiang, H.L.; Guo, S.L.; Liu, R. Luteolin Inhibits Fibrillary β-Amyloid1-40-Induced Inflammation in a Human Blood-Brain Barrier Model by Suppressing the p38 MAPK-Mediated NF-κB Signaling Pathways. Molecules 2017, 22, 334. [Google Scholar] [CrossRef]
- Xu, X.D.; Teng, Y.; Zou, J.Y.; Ye, Y.; Song, H.; Wang, Z.Y. Effects of lycopene on vascular remodeling through the LXR-PI3K-AKT signaling pathway in APP/PS1 mice. Biochem. Biophys. Res. Commun. 2020, 526, 699–705. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, X.; Guo, S.; Shi, L.; He, Q.; Zhang, P.; Yu, S.; Zhao, R. Myricetin ameliorated ischemia/reperfusion-induced brain endothelial permeability by improvement of eNOS uncoupling and activation eNOS/NO. J. Pharmacol. Sci. 2019, 140, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Ishisaka, A.; Ichikawa, S.; Sakakibara, H.; Piskula, M.K.; Nakamura, T.; Kato, Y.; Ito, M.; Miyamoto, K.; Tsuji, A.; Kawai, Y.; et al. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radic. Biol. Med. 2011, 51, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, S.; Li, J.; Sun, Y.; Hasimu, H.; Liu, R.; Zhang, T. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1-40-induced toxicity. Acta Pharm. Sin. B 2015, 5, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Li, M.T.; Ke, J.; Guo, S.F.; Wu, Y.; Bian, Y.F.; Shan, L.L.; Liu, Q.Y.; Huo, Y.J.; Guo, C.; Liu, M.Y.; et al. The Protective Effect of Quercetin on Endothelial Cells Injured by Hypoxia and Reoxygenation. Front. Pharmacol. 2021, 12, 732874. [Google Scholar] [CrossRef]
- Sun, P.; Yang, Y.; Yang, L.; Qian, Y.; Liang, M.; Chen, H.; Zhang, J.; Qiu, Y.; Guo, L.; Fu, S. Quercetin Protects Blood-Brain Barrier Integrity via the PI3K/Akt/Erk Signaling Pathway in a Mouse Model of Meningitis Induced by Glaesserella parasuis. Biomolecules 2024, 14, 696. [Google Scholar] [CrossRef]
- Oliveira, A.I.; Pinho, C.; Sarmento, B.; Dias, A.C.P. Quercetin-biapigenin nanoparticles are effective to penetrate the blood-brain barrier. Drug Deliv. Transl. Res. 2022, 12, 267–281. [Google Scholar] [CrossRef]
- Alhusban, A.; Alkhazaleh, E.; El-Elimat, T. Silymarin Ameliorates Diabetes-Induced Proangiogenic Response in Brain Endothelial Cells through a GSK-3β Inhibition-Induced Reduction of VEGF Release. J. Diabetes Res. 2017, 2017, 2537216. [Google Scholar] [CrossRef]
- Sajja, R.K.; Prasad, S.; Tang, S.; Kaisar, M.A.; Cucullo, L. Blood-brain barrier disruption in diabetic mice is linked to Nrf2 signaling deficits: Role of ABCB10? Neurosci. Lett. 2017, 653, 152–158. [Google Scholar] [CrossRef]
- Wu, C.; Zhao, J.; Chen, Y.; Li, T.; Zhu, R.; Zhu, B.; Zhang, Y. Tangeretin protects human brain microvascular endothelial cells against oxygen-glucose deprivation-induced injury. J. Cell Biochem. 2019, 120, 4883–4891. [Google Scholar] [CrossRef]
- Shieh, P.; Hsu, S.S.; Liang, W.Z. Mechanisms underlying protective effects of vitamin E against mycotoxin deoxynivalenol-induced oxidative stress and its related cytotoxicity in primary human brain endothelial cells. Environ. Toxicol. 2021, 36, 1375–1388. [Google Scholar] [CrossRef]
- Deli, M.A. Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim. Biophys. Acta 2009, 1788, 892–910. [Google Scholar] [CrossRef] [PubMed]
- Greene, C.; Campbell, M. Tight junction modulation of the blood brain barrier: CNS delivery of small molecules. Tissue Barriers 2016, 4, e1138017. [Google Scholar] [CrossRef] [PubMed]
- Tavakkoli, A.; Iranshahi, M.; Hasheminezhad, S.H.; Hayes, A.W.; Karimi, G. The neuroprotective activities of natural products through the Nrf2 upregulation. Phytother. Res. 2019, 33, 2256–2273. [Google Scholar] [CrossRef] [PubMed]
- Banks, W.A.; Kovac, A.; Morofuji, Y. Neurovascular unit crosstalk: Pericytes and astrocytes modify cytokine secretion patterns of brain endothelial cells. J. Cereb. Blood Flow. Metab. 2018, 38, 1104–1118. [Google Scholar] [CrossRef] [PubMed]
- Deli, M.A.; Porkoláb, G.; Kincses, A.; Mészáros, M.; Szecskó, A.; Kocsis, A.E.; Vigh, J.P.; Valkai, S.; Veszelka, S.; Walter, F.R.; et al. Lab-on-a-chip models of the blood-brain barrier: Evolution, problems, perspectives. Lab Chip 2024, 24, 1030–1063. [Google Scholar] [CrossRef] [PubMed]
- Scarpellino, G.; Brunetti, V.; Berra-Romani, R.; De Sarro, G.; Guerra, G.; Soda, T.; Moccia, F. The Unexpected Role of the Endothelial Nitric Oxide Synthase at the Neurovascular Unit: Beyond the Regulation of Cerebral Blood Flow. Int. J. Mol. Sci. 2024, 25, 9071. [Google Scholar] [CrossRef] [PubMed]
- Black, K.L.; Baba, T.; Pardridge, W.M. Enzymatic barrier protects brain capillaries from leukotriene C4. J. Neurosurg. 1994, 81, 745–751. [Google Scholar] [CrossRef]
- Gosslau, A.; Chen, K.Y. Nutraceuticals, apoptosis, and disease prevention. Nutrition 2004, 20, 95–102. [Google Scholar] [CrossRef]
- Rattner, A.; Wang, Y.; Nathans, J. Signaling Pathways in Neurovascular Development. Annu. Rev. Neurosci. 2022, 45, 87–108. [Google Scholar] [CrossRef]
- Dragoni, S.; Turowski, P. Polarised VEGFA signalling at vascular blood–neural barriers. Int. J. Mol. Sci. 2018, 19, 1378. [Google Scholar] [CrossRef]
- Xu, J.W.; Ikeda, K.; Yamori, Y. Inhibitory effect of polyphenol cyanidin on TNF-alpha-induced apoptosis through multiple signaling pathways in endothelial cells. Atherosclerosis 2007, 193, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Scuto, M.; Majzúnová, M.; Torcitto, G.; Antonuzzo, S.; Rampulla, F.; Di Fatta, E.; Trovato Salinaro, A. Functional Food Nutrients, Redox Resilience Signaling and Neurosteroids for Brain Health. Int. J. Mol. Sci. 2024, 25, 12155. [Google Scholar] [CrossRef] [PubMed]
- Golech, S.A.; McCarron, R.M.; Chen, Y.; Bembry, J.; Lenz, F.; Mechoulam, R.; Shohami, E.; Spatz, M. Human brain endothelium: Coexpression and function of vanilloid and endocannabinoid receptors. Brain Res. Mol. Brain Res. 2004, 132, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Park, C.S.; Lee, J.Y.; Choi, H.Y.; Yune, T.Y. Suppression of Transient Receptor Potential Melastatin 7 by Carvacrol Protects against Injured Spinal Cord by Inhibiting Blood-Spinal Cord Barrier Disruption. J. Neurotrauma 2022, 39, 735–749. [Google Scholar] [CrossRef] [PubMed]
- Vezzani, A.; Balosso, S.; Varvel, N.H.; Dingledine, R. Anti-inflammatory strategies for disease modification: Focus on therapies close to clinical translation. In Jasper’s Basic Mechanisms of the Epilepsies, 5th ed.; Noebels, J.L., Avoli, M., Rogawski, M.A., Vezzani, A., Delgado-Escueta, A.V., Eds.; Oxford University Press: New York, NY, USA, 2024; Chapter 74. [Google Scholar]
- Rodak, K.; Kokot, I.; Kratz, E.M. Caffeine as a Factor. Influencing the Functioning of the Human. Body-Friend or Foe? Nutrients 2021, 13, 3088. [Google Scholar] [CrossRef]
- van Hameren, G.; Aboghazleh, R.; Parker, E.; Dreier, J.P.; Kaufer, D.; Friedman, A. From spreading depolarization to blood-brain barrier dysfunction: Navigating traumatic brain injury for novel diagnosis and therapy. Nat. Rev. Neurol. 2024, 20, 408–425. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Z.; Li, G.; Belwal, T.; Li, L.; Xu, Y.; Su, B.; Lin, X. Interference-free Detection of Caffeine in Complex Matrices Using a Nanochannel Electrode Modified with Binary Hydrophilic-Hydrophobic PDMS. ACS Sens. 2021, 6, 1604–1612. [Google Scholar] [CrossRef]
- Sharma, N.; Phan, H.T.T.; Yoda, T.; Shimokawa, N.; Vestergaard, M.C.; Takagi, M. Effects of Capsaicin on Biomimetic Membranes. Biomimetics 2019, 4, 17. [Google Scholar] [CrossRef]
- Konovalova, I.S.; Shishkina, S.V.; Wyshusek, M.; Patzer, M.; Reiss, G.J. Supramolecular architecture of theophylline polymorphs, monohydrate and co-crystals with iodine: Study from the energetic viewpoint. RSC Adv. 2024, 14, 29774–29788. [Google Scholar] [CrossRef]
- Whaley, W.L.; Rummel, J.D.; Kastrapeli, N. Interactions of genistein and related isoflavones with lipid micelles. Langmuir 2006, 22, 7175–7184. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocsis, A.E.; Kucsápszky, N.; Santa-Maria, A.R.; Hunyadi, A.; Deli, M.A.; Walter, F.R. Much More than Nutrients: The Protective Effects of Nutraceuticals on the Blood–Brain Barrier in Diseases. Nutrients 2025, 17, 766. https://doi.org/10.3390/nu17050766
Kocsis AE, Kucsápszky N, Santa-Maria AR, Hunyadi A, Deli MA, Walter FR. Much More than Nutrients: The Protective Effects of Nutraceuticals on the Blood–Brain Barrier in Diseases. Nutrients. 2025; 17(5):766. https://doi.org/10.3390/nu17050766
Chicago/Turabian StyleKocsis, Anna E., Nóra Kucsápszky, Ana Raquel Santa-Maria, Attila Hunyadi, Mária A. Deli, and Fruzsina R. Walter. 2025. "Much More than Nutrients: The Protective Effects of Nutraceuticals on the Blood–Brain Barrier in Diseases" Nutrients 17, no. 5: 766. https://doi.org/10.3390/nu17050766
APA StyleKocsis, A. E., Kucsápszky, N., Santa-Maria, A. R., Hunyadi, A., Deli, M. A., & Walter, F. R. (2025). Much More than Nutrients: The Protective Effects of Nutraceuticals on the Blood–Brain Barrier in Diseases. Nutrients, 17(5), 766. https://doi.org/10.3390/nu17050766