Body Fat and Visceral Fat Values in Spanish Healthcare Workers: Associated Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- Individuals between 18 and 69 years of age.
- Employment in one of the collaborating organisations.
- Provision of informed consent to participate in the study.
- Authorisation for the use of their data for epidemiological analysis.
- Individuals younger than 18 or older than 69 years.
- Lack of an employment relationship with a participating organisation.
- Failure to provide informed consent for study participation.
- Refusal to authorise the use of personal data for epidemiological research.
2.2. Determination of Variables
- Medical History: Information related to sociodemographic characteristics (e.g., age, sex, and professional role) and health behaviours—such as smoking status, physical activity patterns, and adherence to the Mediterranean diet—was obtained.
- Physical and Clinical Assessments: Anthropometric and physiological parameters (including height, weight, waist and hip circumferences, and systolic and diastolic blood pressure) were documented.
- Laboratory Testing: Biochemical analyses focused on lipid profiles, markers of liver function, and fasting glucose concentrations.
2.2.1. Anthropometric Determinations
- Height and Weight: Participants’ height and weight were measured while standing, wearing only underwear, with their arms at their sides and their head and chest aligned. A SECA 700 scale and a SECA 220 stadiometer (SECA, Chino, CA, USA) were used for the measurements. The procedures followed the international standards for anthropometric assessment established by ISAK [35].
- Circumferences: Waist circumference was measured using a SECA tape (SECA, Chino, CA, USA), positioned midway between the iliac crest and the lowest rib, while hip circumference was recorded at the widest part of the buttocks. All of the measurements were taken with participants in an upright and relaxed posture.
- Body and Visceral Fat Assessment: Body fat and visceral fat levels were measured using bioelectrical impedance analysis with the Tanita DC 430MA device (TANITA Corporation, Tokyo, Japan). Elevated visceral fat was defined as values of 10 or higher based on the bioimpedance scale, while thresholds for high body fat varied according to the age-specific criteria provided by the device. The Gallagher classification was used to classify this percentage [36].
2.2.2. Clinical Determinations
- Blood Pressure: Measurements were conducted using an OMRON-M3 sphygmomanometer (OMRON, Osaka, Japan) after participants had rested in a seated position for at least 10 min. Participants were instructed to abstain from consuming food, beverages, or tobacco for a minimum of one hour prior. Three readings were taken at one-minute intervals, and the average was calculated.
2.2.3. Analytical Determinations
- Triglycerides, Total Cholesterol, and Glucose: Assessed using enzymatic methods.
- High-Density Lipoprotein (HDL) Cholesterol: Determined through a precipitation-based approach.
- Low-Density Lipoprotein (LDL) Cholesterol: Calculated using the Friedewald equation [37] for triglyceride levels below 400 mg/dL. For levels greater than 400 mg/dL, LDL was determined directly.
2.2.4. Risk Scales
- Professional Categories: Participants were grouped into the following four professional roles: physicians, nurses, health technicians (e.g., laboratory, pathology, and radiology), and nursing assistants or orderlies.
- Smoking Definition: An individual was classified as a smoker if they had regularly consumed at least one cigarette per day (or its equivalent in other forms of tobacco use) within the prior month or had ceased smoking within the previous year.
- Dietary Assessment: Adherence to the Mediterranean diet (MD) was evaluated using the “Mediterranean Diet Adherence Questionnaire,” a tool derived from the PREDIMED test. The questionnaire comprises 14 items, each scored as either 0 or 1 point. A total score of less than 9 was categorised as low adherence, while scores of 9 or higher were indicative of good adherence [38].
- Physical Activity Assessment: Physical activity levels were measured using the International Physical Activity Questionnaire (IPAQ). This self-administered instrument consists of seven items designed to capture the type, duration, and frequency of physical activities undertaken in daily life over the preceding seven days [39,40]. The physical activity questionnaires (IPAQ) were completed during the clinical interview conducted on the day of the occupational medical examination. The health professionals supervised the proper completion of the questionnaire,
2.3. Statistical Analysis
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puljiz, Z.; Kumric, M.; Vrdoljak, J.; Martinovic, D.; Ticinovic Kurir, T.; Krnic, M.O.; Urlic, H.; Puljiz, Z.; Zucko, J.; Dumanic, P.; et al. Obesity, Gut Microbiota, and Metabolome: From Pathophysiology to Nutritional Interventions. Nutrients 2023, 15, 2236. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agrawal, S.; Wang, M.; Klarqvist, M.D.; Smith, K.; Shin, J.; Dashti, H.; Diamant, N.; Choi, S.H.; Jurgens, S.J.; Ellinor, P.T.; et al. Inherited basis of visceral, abdominal subcutaneous and gluteofemoral fat depots. Nat. Commun. 2022, 13, 3771. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kolb, H. Obese visceral fat tissue inflammation: From protective to detrimental? BMC Med. 2022, 20, 494. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cypess, A.M. Reassessing Human Adipose Tissue. N. Engl. J. Med. 2022, 386, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Zwick, R.K.; Guerrero-Juarez, C.F.; Horsley, V.; Plikus, M.V. Anatomical, Physiological, and Functional Diversity of Adipose Tissue. Cell Metab. 2018, 27, 68–83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol.-Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suárez, R.; Chapela, S.P.; Álvarez-Córdova, L.; Bautista-Valarezo, E.; Sarmiento-Andrade, Y.; Verde, L.; Frias-Toral, E.; Sarno, G. Epigenetics in Obesity and Diabetes Mellitus: New Insights. Nutrients 2023, 15, 811. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koenen, M.; Hill, M.A.; Cohen, P.; Sowers, J.R. Obesity, Adipose Tissue and Vascular Dysfunction. Circ. Res. 2021, 128, 951–968. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zou, Y.; Huang, L.; Zhao, D.; He, M.; Han, D.; Su, D.; Zhang, R. Food and Nutrient Intake in Children and Adolescents with or without Overweight/Obesity. Nutrients 2023, 15, 4450. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Calcaterra, V.; Rossi, V.; Tagi, V.M.; Baldassarre, P.; Grazi, R.; Taranto, S.; Zuccotti, G. Food Intake and Sleep Disorders in Children and Adolescents with Obesity. Nutrients 2023, 15, 4736. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Antonio-Villa, N.E.; Bello-Chavolla, O.Y.; Vargas-Vázquez, A.; Mehta, R.; Fermín-Martínez, C.A.; Martagón-Rosado, A.J.; Barquera-Guevara, D.A.; Aguilar-Salinas, C.A.; Arellano-Campos, O.; Gómez-Velasco, D.V.; et al. Increased visceral fat accumulation modifies the effect of insulin resistance on arterial stiffness and hypertension risk. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Salmón-Gómez, L.; Catalán, V.; Frühbeck, G.; Gómez-Ambrosi, J. Relevance of body composition in phenotyping the obesities. Rev. Endocr. Metab. Disord. 2023, 24, 809–823. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Litwin, M.; Kułaga, Z. Obesity, metabolic syndrome, and primary hypertension. Pediatr. Nephrol. 2021, 36, 825–837. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Barone Gibbs, B.; Beaton, A.Z.; Boehme, A.K.; et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024, 149, e347–e913. [Google Scholar] [CrossRef] [PubMed]
- Conti, G.; Calderan, L.; Sierra, L.Q.; Conti, A.; Ossanna, R.; Boschi, F.; Marzola, P.; Ferrarini, F.; Governa, M.; Lievens, P.J.; et al. Tumor and peritumoral adipose tissue crosstalk: De-differentiated adipocytes influence spread of colon carcinoma cells. Tissue Cell 2023, 80, 101990. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.A.; Scherer, P.E. Update on Adipose Tissue and Cancer. Endocr. Rev. 2023, 44, 961–974. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Diao, B.; Fan, Z.; Zhou, B.; Zhan, H. Crosstalk between pancreatic cancer and adipose tissue: Molecular mechanisms and therapeutic implications. Biochem. Biophys. Res. Commun. 2024, 740, 151012. [Google Scholar] [CrossRef] [PubMed]
- Maina, J.G.; Balkhiyarova, Z.; Nouwen, A.; Pupko, I.; Ulrich, A.; Boissel, M.; Bonnefond, A.; Froguel, P.; Khamis, A.; Prokopenko, I.; et al. Bidirectional Mendelian Randomization and Multiphenotype GWAS Show Causality and Shared Pathophysiology Between Depression and Type 2 Diabetes. Diabetes Care 2023, 46, 1707–1714. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fulton, S.; Décarie-Spain, L.; Fioramonti, X.; Guiard, B.; Nakajima, S. The menace of obesity to depression and anxiety prevalence. Trends Endocrinol. Metab. 2022, 33, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, D.; Vermund, S.H. Advantages and Limitations of the Body Mass Index (BMI) to Assess Adult Obesity. Int. J. Environ. Res. Public Health 2024, 21, 757. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramírez-Manent, J.I.; Jover, A.M.; Martinez, C.S.; Tomás-Gil, P.; Martí-Lliteras, P.; López-González, Á.A. Waist Circumference Is an Essential Factor in Predicting Insulin Resistance and Early Detection of Metabolic Syndrome in Adults. Nutrients 2023, 15, 257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vicente-Herrero, M.T.; Gordito Soler, M.; García Agudo, S.; Vallejos, D.; López-González, A.A.; Ramírez-Manent, J.I. Cardiometabolic risk level in 1136 Spanish professional musicians. Acad. J. Health Sci. 2024, 39, 59–66. [Google Scholar] [CrossRef]
- Wendler, G.; Nassif, P.A.N.; Malafaia, O.; Wendler, E.; Wendler, I.B.T.; Cirpiani, L.M. Helical computerized tomography can measure subcutaneous, visceral and total fat areas? Arq. Bras. Cir. Dig. 2022, 34, e1591. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dokpuang, D.; Zhiyong Yang, J.; Nemati, R.; He, K.; Plank, L.D.; Murphy, R.; Lu, J. Magnetic resonance study of visceral, subcutaneous, liver and pancreas fat changes after 12 weeks intermittent fasting in obese participants with prediabetes. Diabetes Res. Clin. Pract. 2023, 202, 110775. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.J.; Racette, S.B. The Utility of Body Composition Assessment in Nutrition and Clinical Practice: An Overview of Current Methodology. Nutrients 2021, 13, 2493. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gómez-Ambrosi, J.; González-Crespo, I.; Catalán, V.; Rodríguez, A.; Moncada, R.; Valentí, V.; Romero, S.; Ramírez, B.; Silva, C.; Gil, M.J.; et al. Clinical usefulness of abdominal bioimpedance (ViScan) in the determination of visceral fat and its application in the diagnosis and management of obesity and its comorbidities. Clin. Nutr. 2018, 37, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.M.; Quigley, K.M.; Wadden, T.A. Dietary interventions for obesity: Clinical and mechanistic findings. J. Clin. Investig. 2021, 131, e140065. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oppert, J.M.; Ciangura, C.; Bellicha, A. Physical activity and exercise for weight loss and maintenance in people living with obesity. Rev. Endocr. Metab. Disord. 2023, 24, 937–949. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 8. Obesity and Weight Management for the Prevention and Treatment of Type 2 Diabetes: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47 (Suppl. 1), S145–S157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jastreboff, A.M.; Kushner, R.F. New Frontiers in Obesity Treatment: GLP-1 and Nascent Nutrient-Stimulated Hormone-Based Therapeutics. Annu. Rev. Med. 2023, 74, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Perdomo, C.M.; Cohen, R.V.; Sumithran, P.; Clément, K.; Frühbeck, G. Contemporary medical, device, and surgical therapies for obesity in adults. Lancet 2023, 401, 1116–1130. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.; Marfell-Jones, M.; Olds, T.; Ridder, H. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry—ISAK: Lower Hutt, New Zealand, 2011. [Google Scholar]
- Gallagher, D.; Heymsfield, S.B.; Heo, M.; Jebb, S.A.; Murgatroyd, P.R.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar] [CrossRef]
- Aguiló Juanola, M.C.; López-González, A.A.; Tomás-Gil, P.; Paublini, H.; Tárraga-López, P.J.; Ramírez-Manent, J.I. Influence of tobacco consumption and other variables on the values of different cardiovascular risk factors in 418,343 spanish workers. Acad. J. Health Sci. 2024, 39, 89–95. [Google Scholar] [CrossRef]
- Mestre-Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Tomás-Gil, P.; Paublini, H.; López-González, A.A. Influence of sociodemographic variables and healthy habits on the values of overweight and obesity scales in 386,924 Spanish workers. Acad. J. Health Sci. 2024, 39, 27–35. [Google Scholar] [CrossRef]
- Mestre-Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Tomás-Gil, P.; Paublini, H.; López-González, A.A. Influence of sociodemographic variables and healthy habits on the values of type 2 diabetes risk scales. Acad. J. Health Sci. 2024, 39, 99–106. [Google Scholar] [CrossRef]
- Román Viñas, B.; Ribas Barba, L.; Ngo, J.; Serra Majem, L. Validación en población catalana del cuestionario internacional de actividad física [Validity of the international physical activity questionnaire in the Catalan population (Spain)]. Gac. Sanit. 2013, 27, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Tosoratto, J.; Tárraga López, P.J.; López-González, Á.A.; Vallejos, D.; Martínez-Almoyna Rifá, E.; Ramirez-Manent, J.I. Association of Shift Work, Sociodemographic Variables and Healthy Habits with Obesity Scales. Life 2024, 14, 1503. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reyes-Farias, M.; Fos-Domenech, J.; Serra, D.; Herrero, L.; Sánchez-Infantes, D. White adipose tissue dysfunction in obesity and aging. Biochem. Pharmacol. 2021, 192, 114723. [Google Scholar] [CrossRef] [PubMed]
- Ou, M.Y.; Zhang, H.; Tan, P.C.; Zhou, S.B.; Li, Q.F. Adipose tissue aging: Mechanisms and therapeutic implications. Cell Death Dis. 2022, 13, 300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Andreacchi, A.T.; Griffith, L.E.; Guindon, G.E.; Mayhew, A.; Bassim, C.; Pigeyre, M.; Stranges, S.; Anderson, L.N. Body mass index, waist circumference, waist-to-hip ratio, and body fat in relation to health care use in the Canadian Longitudinal Study on Aging. Int. J. Obes. 2021, 45, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Kitazoe, Y.; Kishino, H.; Tanisawa, K.; Udaka, K.; Tanaka, M. Renormalized basal metabolic rate describes the human aging process and longevity. Aging Cell 2019, 18, e12968. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, X.; Jiang, S.; Pan, B.; Xie, W.; Meng, J. Ectopic and visceral fat deposition in aging, obesity, and idiopathic pulmonary fibrosis: An interconnected role. Lipids Health Dis. 2023, 22, 201. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rogeri, P.S.; Zanella RJr Martins, G.L.; Garcia, M.D.A.; Leite, G.; Lugaresi, R.; Gasparini, S.O.; Sperandio, G.A.; Ferreira, L.H.B.; Souza-Junior, T.P.; Lancha, A.H., Jr. Strategies to Prevent Sarcopenia in the Aging Process: Role of Protein Intake and Exercise. Nutrients 2021, 14, 52. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vasquez-Purí, C.; Plaza-Ccuno, J.N.R.; Soriano-Moreno, A.N.; Calizaya-Milla, Y.E.; Saintila, J. Burnout, Fat Intake, and Body Mass Index in Health Professionals Working in a Public Hospital: A Cross-Sectional Study. Inquiry 2023, 60, 469580231189601. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- López-González, A.A.; Tomás-Gil, P.; Coll Villalonga, J.L.; Martí-Lliteras, P.; González San Miguel, H.M.; Ramírez-Manent, J.I. Correlation between overweight and obesity scales and blood pressure values in 418.343 Spanish workers. Acad. J. Health Sci. 2023, 38, 44–51. [Google Scholar] [CrossRef]
- Singh, P.; Covassin, N.; Marlatt, K.; Gadde, K.M.; Heymsfield, S.B. Obesity, Body Composition, and Sex Hormones: Implications for Cardiovascular Risk. Compr. Physiol. 2021, 12, 2949–2993. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baarts, R.B.; Jensen, M.R.; Hansen, O.M.; Haddock, B.; Prescott, E.; Hovind, P.; Simonsen, L.; Bülow, J.; Suetta, C. Age- and sex-specific changes in visceral fat mass throughout the life-span. Obesity 2023, 31, 1953–1961. [Google Scholar] [CrossRef] [PubMed]
- Medina, F.X.; Aguilar, A.; Solé-Sedeño, J.M. Aspectos sociales y culturales sobre la obesidad: Reflexiones necesarias desde la salud pública. Nutr. Clín. Diet. Hosp. 2014, 34, 67–71. [Google Scholar] [CrossRef]
- Garrido Sepúlveda, L.; Alberto Garrido, J.; López González, Á.A.; Vicente-Herrero, M.T. Índices de adiposidad corporal (BAI) y volumen abdominal (AVI). Relación con hábitos de vida en población laboral. Acad. J. Health Sci. 2024, 39, 54–62. [Google Scholar] [CrossRef]
- Manzanero, R.Z.; López-González, A.A.; Tomás-Gil, P.; Paublini, H.; Martínez-Jover, A.; Ramírez-Manent, J.I. Estimation of cardiometabolic risk in 25.030 Spanish kitchen workers. Acad. J. Health Sci. 2023, 38, 101–110. [Google Scholar] [CrossRef]
- Bartoskova Polcrova, A.; Ksinan, A.J.; González-Rivas, J.P.; Bobak, M.; Pikhart, H. The explanation of educational disparities in adiposity by lifestyle, socioeconomic and mental health mediators: A multiple mediation model. Eur. J. Clin. Nutr. 2024, 78, 376–383. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dias, S.S.; Rodrigues, A.M.; Gregório, M.J.; de Sousa, R.D.; Branco, J.C.; Canhão, H. Cohort Profile: The Epidemiology of Chronic Diseases Cohort (EpiDoC). Int. J. Epidemiol. 2018, 47, 1741j–1742j. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, P.; Song, M.; Eliassen, A.H.; Wang, M.; Fung, T.T.; Clinton, S.K.; Rimm, E.B.; Hu, F.B.; Willett, W.C.; Tabung, F.K.; et al. Optimal dietary patterns for prevention of chronic disease. Nat. Med. 2023, 29, 719–728, Erratum in Nat. Med. 2024, 30, 1786. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gottschalk, M.G.; Domschke, K.; Schiele, M.A. Epigenetics Underlying Susceptibility and Resilience Relating to Daily Life Stress, Work Stress, and Socioeconomic Status. Front. Psychiatry 2020, 11, 163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saxena, S.; Singh, P.K.; Singh, L.; Kashyap, S.; Singh, S. Smokeless tobacco use and public health nutrition: A global systematic review. Public Health Nutr. 2023, 26, 46–55. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bloom, E.L.; Farris, S.G.; DiBello, A.M.; Abrantes, A.M. Smoking-related weight and appetite concerns and use of electronic cigarettes among daily cigarette smokers. Psychol. Health Med. 2019, 24, 221–228. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, H.J.; Cho, Y.J. Smoking cessation and risk of metabolic syndrome: A meta-analysis. Medicine 2024, 103, e38328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nilan, K.; McKeever, T.M.; McNeill, A.; Raw, M.; Murray, R.L. Prevalence of tobacco use in healthcare workers: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0220168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khazaal, M.S.; Hamdan, F.B.; Al-Mayah, Q.S. Nicotine dependence and visceral adiposity as risk factors for the development and severity of carotid artery stenosis. J. Med. Life 2023, 16, 463–470. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Flor-Alemany, M.; Marín-Jiménez, N.; Nestares, T.; Borges-Cosic, M.; Aranda, P.; Aparicio, V.A. Mediterranean diet, tobacco consumption and body composition during perimenopause. The FLAMENCO project. Maturitas 2020, 137, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Gordito Soler, M.; López-González, Á.A.; Vallejos, D.; Martínez-Almoyna Rifá, E.; Vicente-Herrero, M.T.; Ramírez-Manent, J.I. Usefulness of Body Fat and Visceral Fat Determined by Bioimpedanciometry versus Body Mass Index and Waist Circumference in Predicting Elevated Values of Different Risk Scales for Non-Alcoholic Fatty Liver Disease. Nutrients 2024, 16, 2160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vicente-Herrero, M.T.; Ramírez-Iñiguez de la Torre, M.V.; López González, A.A. Estimación del nivel de riesgo cardiometabolico relacionado con obesidad en trabajadores sanitarios españoles. Acad. J. Health Sci. 2023, 38, 89–95. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E.; Predimed Investigators. Benefits of the Mediterranean Diet: Insights from the PREDIMED Study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Ashtary-Larky, D.; Bagheri, R.; Bavi, H.; Baker, J.S.; Moro, T.; Mancin, L.; Paoli, A. Ketogenic diets, physical activity and body composition: A review. Br. J. Nutr. 2022, 127, 1898–1920. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Konieczna, J.; Ruiz-Canela, M.; Galmes-Panades, A.M.; Abete, I.; Babio, N.; Fiol, M.; Martín-Sánchez, V.; Estruch, R.; Vidal, J.; Buil-Cosiales, P.; et al. An Energy-Reduced Mediterranean Diet, Physical Activity, and Body Composition: An Interim Subgroup Analysis of the PREDIMED-Plus Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2337994. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kudiarasu, C.; Lopez, P.; Galvão, D.A.; Newton, R.U.; Taaffe, D.R.; Mansell, L.; Fleay, B.; Saunders, C.; Fox-Harding, C.; Singh, F. What are the most effective exercise, physical activity and dietary interventions to improve body composition in women diagnosed with or at high-risk of breast cancer? A systematic review and network meta-analysis. Cancer 2023, 129, 3697–3712. [Google Scholar] [CrossRef] [PubMed]
- Mestre Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Tomás-Gil, P.; Paublini, H.; López-González, Á.A. Influence of Sociodemographic Variables and Healthy Habits on the Values of Insulin Resistance Indicators in 386,924 Spanish Workers. Nutrients 2023, 15, 5122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Christensen, J.R.; Faber, A.; Ekner, D.; Overgaard, K.; Holtermann, A.; Søgaard, K. Diet, physical exercise and cognitive behavioral training as a combined workplace based intervention to reduce body weight and increase physical capacity in health care workers—a randomized controlled trial. BMC Public Health 2011, 11, 671. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, K.H.; Wu, N.K.; Chen, C.T.; Hsu, C.Y.; Lin, Y.A.; Luo, J.J.C.; Lee, L.A.; Chuang, H.H. Effectiveness and response differences of a multidisciplinary workplace health promotion program for healthcare workers. Front. Med. 2022, 9, 930165. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Catapano, P.; Cipolla, S.; Sampogna, G.; Perris, F.; Luciano, M.; Catapano, F.; Fiorillo, A. Organizational and Individual Interventions for Managing Work-Related Stress in Healthcare Professionals: A Systematic Review. Medicina 2023, 59, 1866. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, M.; Murphy, B.; Cabanilla, A.; Yidi, C. Physical relaxation for occupational stress in healthcare workers: A systematic review and network meta-analysis of randomized controlled trials. J. Occup. Health 2021, 63, e12243. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sooriyaarachchi, P.; Jayawardena, R.; Pavey, T.; King, N.A. Shift work and the risk for metabolic syndrome among healthcare workers: A systematic review and meta-analysis. Obes. Rev. 2022, 23, e13489. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, H.; Wang, J.; Zhang, S.; Tong, S.; Hu, J.; Che, Y.; Zhuo, L.; Wang, P.; Geng, R.; Zhou, Y.; et al. Relationship between night shift and sleep problems, risk of metabolic abnormalities of nurses: A 2 years follow-up retrospective analysis in the National Nurse Health Study (NNHS). Int. Arch. Occup. Environ. Health 2023, 96, 1361–1371. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Romero-Romero, E.; De León, E.G.; Morán-Pinzón, J.; Salado-Castillo, R.; Castillo-Pimentel, A. Academic stress, hair and saliva cortisol, and their relationship with body mass index and fat percentage in first year medical students. Physiol. Int. 2023, 110, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Boivin, D.B.; Boudreau, P.; Kosmadopoulos, A. Disturbance of the Circadian System in Shift Work and Its Health Impact. J. Biol. Rhythms. 2022, 37, 3–28. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smith, K.L.; Danyluk, A.B.; Munir, S.S.; Covassin, N. Shift Work and Obesity Risk-Are There Sex Differences? Curr. Diabetes Rep. 2022, 22, 341–352. [Google Scholar] [CrossRef] [PubMed]
- D’Ettorre, G.; Pellicani, V.; Caroli, A.; Greco, M. Shift work sleep disorder and job stress in shift nurses: Implications for preventive interventions. Med. Lav. 2020, 111, 195–202. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nena, E.; Katsaouni, M.; Steiropoulos, P.; Theodorou, E.; Constantinidis, T.C.; Tripsianis, G. Effect of Shift Work on Sleep, Health, and Quality of Life of Health-care Workers. Indian J. Occup. Environ. Med. 2018, 22, 29–34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chmielewski, J.; Łoś, K.; Łuczyński, W. Mindfulness in healthcare professionals and medical education. Int. J. Occup. Med. Environ. Health 2021, 34, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Green, A.A.; Kinchen, E.V. The Effects of Mindfulness Meditation on Stress and Burnout in Nurses. J. Holist. Nurs. 2021, 39, 356–368, Erratum in J. Holist. Nurs. 2022, 40, NP1–NP5. [Google Scholar] [CrossRef] [PubMed]
- Pigsborg, K.; Kalea, A.Z.; De Dominicis, S.; Magkos, F. Behavioral and Psychological Factors Affecting Weight Loss Success. Curr. Obes. Rep. 2023, 12, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Marks, D.F. Homeostatic theory of obesity. Health Psychol. Open 2015, 2, 2055102915590692. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Men n = 14,305 | Women n = 30,634 | ||
---|---|---|---|
Mean (SD) | Mean (SD) | p-Value | |
Age (years) | 41.1 (10.6) | 40.4 (10.5) | <0.001 |
Height (cm) | 176.0 (7.5) | 162.6 (6.0) | <0.001 |
Weight (kg) | 81.2 (14.5) | 63.7 (13.3) | <0.001 |
Waist circumference (cm) | 89.7 (12.6) | 76.7 (11.8) | <0.001 |
Hip circumference (cm) | 101.7 (8.8) | 99.3 (10.7) | <0.001 |
Systolic blood pressure (mmHg) | 128.2 (13.1) | 116.1 (13.8) | <0.001 |
Diastolic blood pressure (mmHg) | 79.9 (10.6) | 74.8 (10.1) | <0.001 |
Total cholesterol (mg/dL) | 191.8 (37.2) | 187.8 (34.6) | <0.001 |
HDL-c (mg/dL) | 48.9 (11.2) | 59.3 (12.8) | <0.001 |
LDL-c (mg/dL) | 165.2 (46.2) | 144.8 (38.9) | <0.001 |
Triglycerides (mg/dL) | 111.0 (73.2) | 81.7 (47.0) | <0.001 |
Glucose (mg/dL) | 93.6 (18.2) | 88.9 (12.4) | <0.001 |
AST (U/L) | 24.1 (17.2) | 18.2 (8.0) | <0.001 |
ALT (U/L) | 29.0 (36.7) | 17.3 (13.7) | <0.001 |
GGT (U/L) | 30.2 (28.8) | 18.1 (18.1) | <0.001 |
n (%) | n (%) | p-Value | |
<30 years | 2400 (16.8) | 5984 (19.5) | <0.001 |
30–39 years | 4200 (29.4) | 8304 (27.1) | |
40–49 years | 4512 (31.5) | 10,128 (33.0) | |
50–59 years | 2449 (17.1) | 5150 (16.8) | |
60–69 years | 744 (5.2) | 1120 (3.6) | |
Physicians | 5064 (35.4) | 5024 (16.4) | <0.001 |
Nurses | 4008 (28.0) | 12,752 (41.6) | |
Health technicians | 1728 (12.1) | 4128 (13.5) | |
Nursing assistants or orderlies | 3505 (24.5) | 8782 (28.5) | |
Non-smokers | 12,001 (83.9) | 26,094 (85.0) | <0.001 |
Smokers | 2304 (16.1) | 4592 (15.0) | |
No physical activity | 7512 (52.5) | 18,744 (61.1) | <0.001 |
Yes physical activity | 6793 (47.5) | 11,942 (38.9) | |
No Mediterranean diet | 7771 (54.2) | 19,213 (62.1) | <0.001 |
Yes Mediterranean diet | 6534 (45.8) | 11,413 (37.9) |
Body Fat | Visceral Fat | ||||
---|---|---|---|---|---|
Men | n | Mean (SD) | p-Value | Mean (SD) | p-Value |
<30 years | 2400 | 15.1 (7.1) | <0.001 | 3.4 (3.0) | <0.001 |
30–39 years | 4200 | 18.0 (6.3) | 5.9 (3.6) | ||
40–49 years | 4512 | 20.2 (8.3) | 8.4 (3.7) | ||
50–59 years | 2449 | 24.1 (6.6) | 12.0 (4.0) | ||
60–69 years | 744 | 27.5 (6.4) | 13.1 (3.8) | ||
Physicians | 5064 | 19.0 (7.0) | <0.001 | 7.5 (4.6) | <0.001 |
Nurses | 4008 | 18.0 (7.5) | 6.2 (4.4) | ||
Health technicians | 1728 | 21.7 (10.2) | 8.5 (4.6) | ||
Nursing assistants or orderlies | 3505 | 21.8 (7.7) | 9.2 (4.7) | ||
Non-smokers | 12,001 | 19.5 (8.0) | <0.001 | 7.5 (4.8) | <0.001 |
Smokers | 2304 | 21.1 (7.3) | 7.7 (4.4) | ||
No physical activity | 7512 | 22.5 (7.9) | <0.001 | 9.2 (4.8) | <0.001 |
Yes physical activity | 6793 | 16.7 (6.7) | 6.0 (3.9) | ||
No Mediterranean diet | 7771 | 21.7 (7.7) | <0.001 | 8.9 (4.5) | <0.001 |
Yes Mediterranean diet | 6534 | 17.5 (6.8) | 6.4 (3.5) | ||
Women | n | Mean (SD) | p-Value | Mean (SD) | p-Value |
<30 years | 5984 | 24.9 (6.6) | <0.001 | 2.1 (2.2) | <0.001 |
30–39 years | 8304 | 26.9 (7.4) | 3.3 (2.5) | ||
40–49 years | 10,128 | 30.0 (7.6) | 5.1 (2.7) | ||
50–59 years | 5150 | 32.8 (7.6) | 7.1 (2.8) | ||
60–69 years | 1120 | 33.5 (7.1) | 8.2 (3.4) | ||
Physicians | 5024 | 25.0 (6.7) | <0.001 | 3.1 (2.6) | <0.001 |
Nurses | 12,752 | 27.2 (7.1) | 3.7 (2.6) | ||
Health technicians | 4128 | 31.3 (7.8) | 5.2 (3.1) | ||
Nursing assistants or orderlies | 8782 | 31.9 (7.9) | 6.1 (3.5) | ||
Non-smokers | 26,094 | 28.6 (7.7) | <0.001 | 4.4 (3.1) | <0.001 |
Smokers | 4592 | 29.6 (8.4) | 5.0 (3.4) | ||
No physical activity | 18,744 | 30.2 (7.9) | <0.001 | 4.9 (3.5) | <0.001 |
Yes physical activity | 11,942 | 26.4 (7.1) | 3.7 (2.5) | ||
No Mediterranean diet | 19,213 | 28.8 (7.4) | <0.001 | 4.7 (3.4) | <0.001 |
Yes Mediterranean diet | 11,413 | 27.0 (7.5) | 3.9 (2.6) |
Very High BF | High VF | ||||||
---|---|---|---|---|---|---|---|
Men | n | %Pre–Post | % Difference | p-Value | %Pre–Post | % Difference | p-Value |
<30 years | 2400 | 5.7–6.0 | 5.3 | <0.001 | 2.8–3.0 | 7.1 | <0.001 |
30–39 years | 4200 | 9.8–10.6 | 8.2 | 5.2–5.7 | 9.6 | ||
40–49 years | 4512 | 10.8–12.1 | 12.0 | 10.0–11.7 | 17.1 | ||
50–59 years | 2449 | 20.8–24.5 | 17.8 | 32.3–38.2 | 18.3 | ||
60–69 years | 744 | 20.4–25.8 | 26.5 | 45.3–58.1 | 28.3 | ||
Physicians | 5064 | 7.0–7.1 | 1.2 | <0.001 | 11.9–12.6 | 5.9 | <0.001 |
Nurses | 4008 | 11.1–12.0 | 8.0 | 8.3–9.0 | 8.4 | ||
Health technicians | 1728 | 12.1–13.9 | 14.9 | 14.4–16.7 | 16.0 | ||
Nursing assistants or orderlies | 3505 | 19.2–24.0 | 25.1 | 17.7–21.9 | 23.7 | ||
Non-smokers | 12,001 | 11.4–12.4 | 8.8 | <0.001 | 13.8–15.2 | 10.1 | <0.001 |
Smokers | 2304 | 16.9–18.8 | 11.2 | 14.2–16.7 | 17.6 | ||
No physical activity | 7512 | 16.0–20.1 | 25.6 | <0.001 | 17.4–22.4 | 28.7 | <0.001 |
Yes physical activity | 6793 | 5.6–6.0 | 7.1 | 7.3–7.8 | 6.8 | ||
No Mediterranean diet | 7771 | 15.2–18.5 | 21.7 | <0.001 | 16.0–20.1 | 25.6 | <0.001 |
Yes Mediterranean diet | 6534 | 7.3–7.9 | 8.2 | 8.5–9.3 | 9.4 | ||
Women | n | % | p-Value | % | p-Value | ||
<30 years | 5984 | 2.8–2.9 | 3.6 | <0.001 | 0.3–0.3 | 3.7 | <0.001 |
30–39 years | 8304 | 5.4–5.8 | 7.4 | 1.0–1.2 | 11.5 | ||
40–49 years | 10,128 | 9.1–10.1 | 11.0 | 1.6–1.9 | 12.8 | ||
50–59 years | 5150 | 14.4–16.4 | 11.6 | 3.7–4.3 | 16.2 | ||
60–69 years | 1120 | 17.8–21.4 | 20.2 | 9.4–11.4 | 21.3 | ||
Physicians | 5024 | 1.5–1.6 | 6.7 | <0.001 | 0.5–0.6 | 5.6 | <0.001 |
Nurses | 12,752 | 5.0–5.4 | 8.0 | 0.8–1.0 | 14.3 | ||
Health technicians | 4128 | 13.7–15.3 | 11.7 | 3.4–3.9 | 17.3 | ||
Nursing assistants or orderlies | 8782 | 13.7–16.3 | 19.0 | 3.4–4.0 | 20.2 | ||
Non-smokers | 26,094 | 8.2–8.9 | 8.5 | <0.001 | 1.8–2.0 | 11.1 | <0.001 |
Smokers | 4592 | 8.7–9.8 | 12.6 | 3.0–3.5 | 15.8 | ||
No physical activity | 18,744 | 10.3–12.3 | 19.4 | <0.001 | 2.9–3.5 | 20.7 | <0.001 |
Yes physical activity | 11,942 | 3.6–3.9 | 8.3 | 0.3–0.4 | 11.9 | ||
No Mediterranean diet | 19,213 | 9.8–11.5 | 17.4 | <0.001 | 2.6–3.1 | 19.2 | <0.001 |
Yes Mediterranean diet | 11,413 | 4.6–4.9 | 6.5 | 0.5–0.6 | 10.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tárraga Marcos, P.J.; López-González, Á.A.; Martínez-Almoyna Rifá, E.; Paublini Oliveira, H.; Martorell Sánchez, C.; Tárraga López, P.J.; Ramírez-Manent, J.I. Body Fat and Visceral Fat Values in Spanish Healthcare Workers: Associated Variables. Nutrients 2025, 17, 649. https://doi.org/10.3390/nu17040649
Tárraga Marcos PJ, López-González ÁA, Martínez-Almoyna Rifá E, Paublini Oliveira H, Martorell Sánchez C, Tárraga López PJ, Ramírez-Manent JI. Body Fat and Visceral Fat Values in Spanish Healthcare Workers: Associated Variables. Nutrients. 2025; 17(4):649. https://doi.org/10.3390/nu17040649
Chicago/Turabian StyleTárraga Marcos, Pedro Javier, Ángel Arturo López-González, Emilio Martínez-Almoyna Rifá, Hernán Paublini Oliveira, Cristina Martorell Sánchez, Pedro Juan Tárraga López, and José Ignacio Ramírez-Manent. 2025. "Body Fat and Visceral Fat Values in Spanish Healthcare Workers: Associated Variables" Nutrients 17, no. 4: 649. https://doi.org/10.3390/nu17040649
APA StyleTárraga Marcos, P. J., López-González, Á. A., Martínez-Almoyna Rifá, E., Paublini Oliveira, H., Martorell Sánchez, C., Tárraga López, P. J., & Ramírez-Manent, J. I. (2025). Body Fat and Visceral Fat Values in Spanish Healthcare Workers: Associated Variables. Nutrients, 17(4), 649. https://doi.org/10.3390/nu17040649