Endocrine Adaptations to Prolonged Fasting: From Physiology, Clinical Uncertainties, Translational Challenges to Healthspan Implications
Abstract
1. Introduction
2. Endocrine Pathways in Prolonged Fasting
2.1. Hypothalamic–Pituitary–Somatotropic Axis
2.2. Hypothalamic–Pituitary–Gonadal Axis
2.3. Hypothalamic–Pituitary–Thyroid Axis
2.4. Hypothalamic–Pituitary–Adrenal Axis
2.5. Renin–Angiotensin–Aldosterone System
2.6. Insulin Sensitivity, Metabolic Flexibility, and Adipokine Modulation
3. Discussion
4. Future Research and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AMPK | AMP-activated protein kinase |
| Ca2+ | Calcium ion |
| CR | Calorie restriction |
| FGF21 | Fibroblast growth factor 21 |
| GH | Growth hormone |
| GHRH | Growth hormone-releasing hormone |
| HPA | Hypothalamic–pituitary–adrenal axis |
| HPG | Hypothalamic–pituitary–gonadal axis |
| HPS | Hypothalamic–pituitary–somatotropic axis |
| HPT | Hypothalamic–pituitary–thyroid axis |
| IF | Intermittent fasting |
| LH | Luteinizing hormone |
| MAPK | Mitogen-activated protein kinase |
| mTOR | Mechanistic target of rapamycin |
| PGC-1α | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha |
| PI3K | Phosphoinositide 3-kinase |
| PKC | Protein kinase C |
| PLC | Phospholipase C |
| PPARα | Peroxisome proliferator-activated receptor alpha |
| RAAS | Renin–angiotensin–aldosterone system |
| STAT | Signal transducer and activator of transcription |
References
- Koppold, D.A.; Breinlinger, C.; Hanslian, E.; Kessler, C.; Cramer, H.; Khokhar, A.R.; Peterson, C.M.; Tinsley, G.; Vernieri, C.; Bloomer, R.J.; et al. International consensus on fasting terminology. Cell Metab. 2024, 36, 1779–1794.e4. [Google Scholar] [CrossRef]
- Redman, L.M.; Ravussin, E. Caloric Restriction in Humans: Impact on Physiological, Psychological, and Behavioral Outcomes. Antioxid. Redox Signal. 2011, 14, 275–287. [Google Scholar] [CrossRef]
- Rothschild, J.; Hoddy, K.K.; Jambazian, P.; Varady, K.A. Time-restricted feeding and risk of metabolic disease: A review of human and animal studies. Nutr. Rev. 2014, 72, 308–318. [Google Scholar] [CrossRef] [PubMed]
- de Cabo, R.; Mattson, M.P. Effects of Intermittent Fasting on Health, Aging, and Disease. N. Engl. J. Med. 2019, 381, 2541–2551. [Google Scholar] [CrossRef] [PubMed]
- Anton, S.D.; Moehl, K.; Donahoo, W.T.; Marosi, K.; Lee, S.A.; Mainous, A.G.; Leeuwenburgh, C.; Mattson, M.P. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity 2018, 26, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Kersten, S. The impact of fasting on adipose tissue metabolism. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2023, 1868, 159262. [Google Scholar] [CrossRef]
- Kolb, H.; Kempf, K.; Röhling, M.; Lenzen-Schulte, M.; Schloot, N.C.; Martin, S. Ketone bodies: From enemy to friend and guardian angel. BMC Med. 2021, 19, 313. [Google Scholar] [CrossRef]
- Grundler, F.; Viallon, M.; Mesnage, R.; Ruscica, M.; von Schacky, C.; Madeo, F.; Hofer, S.J.; Mitchell, S.J.; Croisille, P.; de Toledo, F.W. Long-term fasting: Multi-system adaptations in humans (GENESIS) study—A single-arm interventional trial. Front. Nutr. 2022, 9, 951000. [Google Scholar] [CrossRef]
- Barnosky, A.R.; Hoddy, K.K.; Unterman, T.G.; Varady, K.A. Intermittent fasting vs daily calorie restriction for type 2 diabetes prevention: A review of human findings. Transl. Res. 2014, 164, 302–311. [Google Scholar] [CrossRef]
- Varady, K.A. Intermittent versus daily calorie restriction: Which diet regimen is more effective for weight loss? Obes. Rev. 2011, 12, e593–e601. [Google Scholar] [CrossRef]
- Redman, L.M.; Smith, S.R.; Burton, J.H.; Martin, C.K.; Il’yasova, D.; Ravussin, E. Metabolic Slowing and Reduced Oxidative Damage with Sustained Caloric Restriction Support the Rate of Living and Oxidative Damage Theories of Aging. Cell Metab. 2018, 27, 805–815.e4. [Google Scholar] [CrossRef] [PubMed]
- Stekovic, S.; Hofer, S.J.; Tripolt, N.; Aon, M.A.; Royer, P.; Pein, L.; Stadler, J.T.; Pendl, T.; Prietl, B.; Url, J.; et al. Alternate Day Fasting Improves Physiological and Molecular Markers of Aging in Healthy, Non-obese Humans. Cell Metab. 2019, 30, 462–476.e6. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, W.; Wu, D.; Hu, F. Metabolic Efficacy of Time-Restricted Eating in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Endocrinol. Metab. 2022, 107, 3428–3441. [Google Scholar] [CrossRef] [PubMed]
- Ooi, T.C.; Meramat, A.; Rajab, N.F.; Shahar, S.; Ismail, I.S.; Azam, A.A.; Sharif, R. Intermittent Fasting Enhanced the Cognitive Function in Older Adults with Mild Cognitive Impairment by Inducing Biochemical and Metabolic changes: A 3-Year Progressive Study. Nutrients 2020, 12, 2644. [Google Scholar] [CrossRef]
- Elias, A.; Padinjakara, N.; Lautenschlager, N.T. Effects of intermittent fasting on cognitive health and Alzheimer’s disease. Nutr. Rev. 2023, 81, 1225–1233. [Google Scholar] [CrossRef]
- Hein, Z.M.; Arbain, M.F.F.; Kumar, S.; Mehat, M.Z.; Hamid, H.A.; Che Ramli, M.D.; Che Mohd Nassir, C.M.N. Intermittent Fasting as a Neuroprotective Strategy: Gut–Brain Axis Modulation and Metabolic Reprogramming in Neurodegenerative Disorders. Nutrients 2025, 17, 2266. [Google Scholar] [CrossRef]
- Mattson, M.P.; Moehl, K.; Ghena, N.; Schmaedick, M.; Cheng, A. Intermittent metabolic switching, neuroplasticity and brain health. Nat. Rev. Neurosci. 2018, 19, 63–80. [Google Scholar] [CrossRef]
- Hansen, B.; Roomp, K.; Ebid, H.; Schneider, J.G. Perspective: The Impact of Fasting and Caloric Restriction on Neurodegenerative Diseases in Humans. Adv. Nutr. 2024, 15, 100197. [Google Scholar] [CrossRef]
- Bahr, L.S.; Bellmann-Strobl, J.; Koppold, D.A.; Rust, R.; Schmitz-Hübsch, T.; Olszewska, M.; Stadlbauer, J.; Bock, M.; Scheel, M.; Chien, C.; et al. Fasting, ketogenic, and anti-inflammatory diets in multiple sclerosis: A randomized controlled trial with 18-month follow-up. BMC Nutr. 2025, 11, 167. [Google Scholar] [CrossRef]
- Tiwari, S.; Sapkota, N.; Han, Z. Effect of fasting on cancer: A narrative review of scientific evidence. Cancer Sci. 2022, 113, 3291–3302. [Google Scholar] [CrossRef]
- de Gruil, N.; Pijl, H.; van der Burg, S.H.; Kroep, J.R. Short-Term Fasting Synergizes with Solid Cancer Therapy by Boosting Antitumor Immunity. Cancers 2022, 14, 1390. [Google Scholar] [CrossRef] [PubMed]
- Kikomeko, J.; Schutte, T.; van Velzen, M.J.M.; Seefat, R.; van Laarhoven, H.W.M. Short-term fasting and fasting mimicking diets combined with chemotherapy: A narrative review. Ther. Adv. Med. Oncol. 2023, 15, 17588359231161418. [Google Scholar] [CrossRef] [PubMed]
- Pio, R.; Senent, Y.; Tavira, B.; Ajona, D. Fasting and fasting-mimicking conditions in the cancer immunotherapy era. J. Physiol. Biochem. 2025, 81, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Vernieri, C.; Fucà, G.; Ligorio, F.; Huber, V.; Vingiani, A.; Iannelli, F.; Raimondi, A.; Rinchai, D.; Frigè, G.; Belfiore, A.; et al. Fasting-Mimicking Diet Is Safe and Reshapes Metabolism and Antitumor Immunity in Patients with Cancer. Cancer Discov. 2022, 12, 90–107. [Google Scholar] [CrossRef]
- Stringer, E.J.; Cloke, R.W.G.; Van der Meer, L.; Murphy, R.A.; Macpherson, N.A.; Lum, J.J. The Clinical Impact of Time-restricted Eating on Cancer: A Systematic Review. Nutr. Rev. 2025, 83, e1660–e1676. [Google Scholar] [CrossRef]
- Vitale, G.; Pellegrino, G.; Vollery, M.; Hofland, L.J. ROLE of IGF-1 System in the Modulation of Longevity: Controversies and New Insights from a Centenarians’ Perspective. Front. Endocrinol. 2019, 10, 27. [Google Scholar] [CrossRef]
- Olarescu, N.C.; Gunawardane, K.; Hanson, T.K.; Møller, N.; Jørgensen, J.O.L. Normal Physiology of Growth Hormone in Normal Adults. In Endotext; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: http://www.ncbi.nlm.nih.gov/books/NBK279056/ (accessed on 1 September 2025).
- Fanti, M.; Longo, V.D. Nutrition, GH/IGF-I Signaling, and Cancer. Endocr.-Relat. Cancer 2024, 31, e230048. [Google Scholar] [CrossRef]
- Caputo, M.; Pigni, S.; Agosti, E.; Daffara, T.; Ferrero, A.; Filigheddu, N.; Prodam, F. Regulation of GH and GH Signaling by Nutrients. Cells 2021, 10, 1376. [Google Scholar] [CrossRef]
- Pollak, M. Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 2008, 8, 915–928. [Google Scholar] [CrossRef]
- Samani, A.A.; Yakar, S.; LeRoith, D.; Brodt, P. The role of the IGF system in cancer growth and metastasis: Overview and recent insights. Endocr. Rev. 2007, 28, 20–47. [Google Scholar] [CrossRef]
- Giovannucci, E. Insulin, insulin-like growth factors and colon cancer: A review of the evidence. J. Nutr. 2001, 131, 3109S–3120S. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.S.K.; Chaiban, J.T. The Endocrinology of aging: A key to longevity “Great Expectations”. Endocr. Pract. 2017, 23, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Junnila, R.K.; List, E.O.; Berryman, D.E.; Murrey, J.W.; Kopchick, J.J. The GH/IGF-1 axis in ageing and longevity. Nat. Rev. Endocrinol. 2013, 9, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Holzenberger, M.; Dupont, J.; Ducos, B.; Leneuve, P.; Géloën, A.; Even, P.C.; Cervera, P.; Le Bouc, Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003, 421, 182–187. [Google Scholar] [CrossRef]
- Coschigano, K.T.; Clemmons, D.; Bellush, L.L.; Kopchick, J.J. Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 2000, 141, 2608–2613. [Google Scholar] [CrossRef]
- Bartke, A.; Sun, L.Y.; Longo, V. Somatotropic Signaling: Trade-Offs Between Growth, Reproductive Development, and Longevity. Physiol. Rev. 2013, 93, 571–598. [Google Scholar] [CrossRef]
- List, E.O.; Berryman, D.E.; Buchman, M.; Jensen, E.A.; Funk, K.; Duran-Ortiz, S.; Qian, Y.; Young, J.A.; Slyby, J.; McKenna, S.; et al. GH Knockout Mice Have Increased Subcutaneous Adipose Tissue with Decreased Fibrosis and Enhanced Insulin Sensitivity. Endocrinology 2019, 160, 1743–1756. [Google Scholar] [CrossRef]
- Chhabra, Y.; Waters, M.J.; Brooks, A.J. Role of the growth hormone-IGF-1 axis in cancer. Expert Rev. Endocrinol. Metab. 2011, 6, 71–84. [Google Scholar] [CrossRef]
- Ikeno, Y.; Hubbard, G.B.; Lee, S.; Cortez, L.A.; Lew, C.M.; Webb, C.R.; Berryman, D.E.; List, E.O.; Kopchick, J.J.; Bartke, A. Reduced Incidence and Delayed Occurrence of Fatal Neoplastic Diseases in Growth Hormone Receptor/Binding Protein Knockout Mice. J. Gerontol. Ser. A 2009, 64A, 522–529. [Google Scholar] [CrossRef]
- Vitale, G.; Brugts, M.P.; Ogliari, G.; Castaldi, D.; Fatti, L.M.; Varewijck, A.J.; Lamberts, S.W.; Monti, D.; Bucci, L.; Cevenini, E.; et al. Low circulating IGF-I bioactivity is associated with human longevity: Findings in centenarians’ offspring. Aging 2012, 4, 580–589. [Google Scholar] [CrossRef]
- Sebastiani, P.; Thyagarajan, B.; Sun, F.; Honig, L.S.; Schupf, N.; Cosentino, S.; Feitosa, M.F.; Wojczynski, M.; Newman, A.B.; Montano, M.; et al. Age and Sex Distributions of Age-Related Biomarker Values in Healthy Older Adults from the Long Life Family Study. J. Am. Geriatr. Soc. 2016, 64, e189–e194. [Google Scholar] [CrossRef]
- Sebastiani, P.; Sun, F.X.; Andersen, S.L.; Lee, J.H.; Wojczynski, M.K.; Sanders, J.L.; Yashin, A.; Newman, A.B.; Perls, T.T. Families Enriched for Exceptional Longevity also have Increased Health-Span: Findings from the Long Life Family Study. Front. Public Health 2013, 1, 38. [Google Scholar] [CrossRef] [PubMed]
- Deelen, J.; Uh, H.-W.; Monajemi, R.; van Heemst, D.; Thijssen, P.E.; Böhringer, S.; Akker, E.B.V.D.; de Craen, A.J.M.; Rivadeneira, F.; Uitterlinden, A.G.; et al. Gene set analysis of GWAS data for human longevity highlights the relevance of the insulin/IGF-1 signaling and telomere maintenance pathways. Age 2013, 35, 235–249. [Google Scholar] [CrossRef] [PubMed]
- van Heemst, D.; Beekman, M.; Mooijaart, S.P.; Heijmans, B.T.; Brandt, B.W.; Zwaan, B.J.; Slagboom, P.E.; Westendorp, R.G.J. Reduced insulin/IGF-1 signalling and human longevity. Aging Cell 2005, 4, 79–85. [Google Scholar] [CrossRef]
- Ben-Avraham, D.; Govindaraju, D.R.; Budagov, T.; Fradin, D.; Durda, P.; Liu, B.; Ott, S.; Gutman, D.; Sharvit, L.; Kaplan, R.; et al. The GH receptor exon 3 deletion is a marker of male-specific exceptional longevity associated with increased GH sensitivity and taller stature. Sci. Adv. 2017, 3, e1602025. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, J.; Montesanto, A.; Giovannucci, E.; Zand, H.; Barati, M.; Kopchick, J.J.; Mirisola, M.G.; Lagani, V.; Bawadi, H.; Vardavas, R.; et al. Association between IGF-1 levels ranges and all-cause mortality: A meta-analysis. Aging Cell 2022, 21, e13540. [Google Scholar] [CrossRef]
- Tomlinson, J.W.; Holden, N.; Hills, R.K.; Wheatley, K.; Clayton, R.N.; Bates, A.S.; Sheppard, M.; Stewart, P. Association between premature mortality and hypopituitarism. West Midlands Prospective Hypopituitary Study Group. Lancet 2001, 357, 425–431. [Google Scholar] [CrossRef]
- Pappachan, J.M.; Raskauskiene, D.; Kutty, V.R.; Clayton, R.N. Excess mortality associated with hypopituitarism in adults: A meta-analysis of observational studies. J. Clin. Endocrinol. Metab. 2015, 100, 1405–1411. [Google Scholar] [CrossRef]
- Bolfi, F.; Neves, A.F.; Boguszewski, C.L.; Nunes-Nogueira, V.S. Mortality in acromegaly decreased in the last decade: A systematic review and meta-analysis. Eur. J. Endocrinol. 2018, 179, 59–71. [Google Scholar] [CrossRef]
- Dekkers, O.M.; Biermasz, N.R.; Pereira, A.M.; Romijn, J.A.; Vandenbroucke, J.P. Mortality in acromegaly: A metaanalysis. J. Clin. Endocrinol. Metab. 2008, 93, 61–67. [Google Scholar] [CrossRef]
- Herman, R.; Janez, A.; Mikhailidis, D.P.; Poredos, P.; Blinc, A.; Sabovic, M.; Bajuk Studen, K.; Schernthaner, G.H.; Anagnostis, P.; Antignani, P.L.; et al. Growth Hormone, Atherosclerosis and Peripheral Arterial Disease: Exploring the Spectrum from Acromegaly to Growth Hormone Deficiency. Curr. Vasc. Pharmacol. 2024, 22, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, J.; Varkaneh, H.K.; Clark, C.; Zand, H.; Bawadi, H.; Ryan, P.M.; Fatahi, S.; Zhang, Y. The influence of fasting and energy restricting diets on IGF-1 levels in humans: A systematic review and meta-analysis. Ageing Res. Rev. 2019, 53, 100910. [Google Scholar] [CrossRef] [PubMed]
- Akasheh, R.T.; Ankireddy, A.; Gabel, K.; Ezpeleta, M.; Lin, S.; Tamatam, C.M.; Reddy, S.P.; Spring, B.; Cheng, T.-Y.D.; Fontana, L.; et al. Effect of Time-Restricted Eating on Circulating Levels of IGF1 and Its Binding Proteins in Obesity: An Exploratory Analysis of a Randomized Controlled Trial. Nutrients 2024, 16, 3476. [Google Scholar] [CrossRef] [PubMed]
- Hollstein, T.; Basolo, A.; Unlu, Y.; Ando, T.; Walter, M.; Krakoff, J.; Piaggi, P. Effects of Short-term Fasting on Ghrelin/GH/IGF-1 Axis in Healthy Humans: The Role of Ghrelin in the Thrifty Phenotype. J. Clin. Endocrinol. Metab. 2022, 107, e3769–e3780. [Google Scholar] [CrossRef]
- Salgin, B.; Marcovecchio, M.L.; Hill, N.; Dunger, D.B.; Frystyk, J. The effect of prolonged fasting on levels of growth hormone-binding protein and free growth hormone. Growth Horm. IGF Res. 2012, 22, 76–81. [Google Scholar] [CrossRef]
- Zapf, J.; Hauri, C.; Futo, E.; Hussain, M.; Rutishauser, J.; Maack, C.A.; Froesch, E.R. Intravenously injected insulin-like growth factor (IGF) I/IGF binding protein-3 complex exerts insulin-like effects in hypophysectomized, but not in normal rats. J. Clin. Investig. 1995, 95, 179–186. [Google Scholar] [CrossRef]
- Aimaretti, G.; Colao, A.; Corneli, G.; Pivonello, R.; Maccario, M.; Morrison, K.; Pflaum, C.D.; Strasburger, C.J.; Lombardi, G.; Ghigo, E. The study of spontaneous GH secretion after 36-h fasting distinguishes between GH-deficient and normal adults. Clin. Endocrinol. 1999, 51, 771–777. [Google Scholar] [CrossRef]
- Katz, L.E.L.; DeLeón, D.D.; Zhao, H.; Jawad, A.F. Free and Total Insulin-Like Growth Factor (IGF)-I Levels Decline during Fasting: Relationships with Insulin and IGF-Binding Protein-1. J. Clin. Endocrinol. Metab. 2002, 87, 2978–2983. [Google Scholar] [CrossRef]
- Fontana, L.; Villareal, D.T.; Das, S.K.; Smith, S.R.; Meydani, S.N.; Pittas, A.G.; Klein, S.; Bhapkar, M.; Rochon, J.; Ravussin, E.; et al. Effects of 2-year calorie restriction on circulating levels of IGF-1, IGF-binding proteins and cortisol in nonobese men and women: A randomized clinical trial. Aging Cell 2016, 15, 22–27. [Google Scholar] [CrossRef]
- Kazemi, A.; Speakman, J.R.; Soltani, S.; Djafarian, K. Effect of calorie restriction or protein intake on circulating levels of insulin like growth factor I in humans: A systematic review and meta-analysis. Clin. Nutr. 2020, 39, 1705–1716. [Google Scholar] [CrossRef]
- Wei, M.; Brandhorst, S.; Shelehchi, M.; Mirzaei, H.; Cheng, C.W.; Budniak, J.; Groshen, S.; Mack, W.J.; Guen, E.; Di Biase, S.; et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci. Transl. Med. 2017, 9, eaai8700. [Google Scholar] [CrossRef] [PubMed]
- Laurens, C.; Grundler, F.; Damiot, A.; Chery, I.; Le Maho, A.; Zahariev, A.; Le Maho, Y.; Bergouignan, A.; Gauquelin-Koch, G.; Simon, C.; et al. Is muscle and protein loss relevant in long-term fasting in healthy men? A prospective trial on physiological adaptations. J. Cachexia Sarcopenia Muscle 2021, 12, 1690–1703. [Google Scholar] [CrossRef] [PubMed]
- Pilis, K.; Godlewska, U.; Pilis, A.; Stec, K.; Dolibog, P.; Kruszewski, M.; Kosior-Lara, A.; Kalmatov, R.; Pilis, W.; Letkiewicz, S. Metabolic and hormonal effects of an 8 days water only fasting combined with exercise in middle aged men. Sci. Rep. 2025, 15, 22805. [Google Scholar] [CrossRef] [PubMed]
- Polkowska, J.; Cieślak, M.; Wańkowska, M.; Wójcik-Gładysz, A. The effect of short fasting on the hypothalamic neuronal system of kisspeptin in peripubertal female lambs. Anim. Reprod. Sci. 2015, 159, 184–190. [Google Scholar] [CrossRef]
- Shamas, S.; Khan, S.-U.; Khan, M.Y.; Shabbir, N.; Zubair, H.; Shafqat, S.; Wahab, F.; Shahab, M. Fasting induced kisspeptin signaling suppression is regulated by glutamate mediated cues in adult male rhesus macaque (Macaca mulatta). Neuropeptides 2015, 52, 39–45. [Google Scholar] [CrossRef]
- Mansano, N.D.S.; Vieira, H.R.; Araujo-Lopes, R.; Szawka, R.E.; Donato, J.; Frazao, R. Fasting Modulates GABAergic Synaptic Transmission to Arcuate Kisspeptin Neurons in Female Mice. Endocrinology 2023, 164, bqad150. [Google Scholar] [CrossRef]
- Wahab, F.; Ullah, F.; Chan, Y.-M.; Seminara, S.B.; Shahab, M. Decrease in hypothalamic Kiss1 and Kiss1r expression: A potential mechanism for fasting-induced suppression of the HPG axis in the adult male rhesus monkey (Macaca mulatta). Horm. Metab. Res. 2011, 43, 81–85. [Google Scholar] [CrossRef]
- Cota, D.; Proulx, K.; Blake Smith, K.A.; Kozma, S.C.; Thomas, G.; Woods, S.C.; Seeley, R.J. Hypothalamic mTOR signaling regulates food intake. Science 2006, 312, 927–930. [Google Scholar] [CrossRef]
- Mbiydzenyuy, N.E.; Qulu, L.A. Stress, hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis, and aggression. Metab. Brain Dis. 2024, 39, 1613–1636. [Google Scholar] [CrossRef]
- Cameron, J.L.; Weltzin, T.E.; McConaha, C.; Helmreich, D.L.; Kaye, W.H. Slowing of pulsatile luteinizing hormone secretion in men after forty-eight hours of fasting. J. Clin. Endocrinol. Metab. 1991, 73, 35–41. [Google Scholar] [CrossRef]
- Bergendahl, M.; Aloi, J.A.; Iranmanesh, A.; Mulligan, T.M.; Veldhuis, J.D. Fasting suppresses pulsatile luteinizing hormone (LH) secretion and enhances orderliness of LH release in young but not older men. J. Clin. Endocrinol. Metab. 1998, 83, 1967–1975. [Google Scholar] [CrossRef] [PubMed]
- Klibanski, A.; Beitins, I.Z.; Badger, T.; Little, R.; McArthur, J.W. Reproductive function during fasting in men. J. Clin. Endocrinol. Metab. 1981, 53, 258–263. [Google Scholar] [CrossRef]
- Letkiewicz, S.; Pilis, K.; Ślęzak, A.; Pilis, A.; Pilis, W.; Żychowska, M.; Langfort, J. Eight Days of Water-Only Fasting Promotes Favorable Changes in the Functioning of the Urogenital System of Middle-Aged Healthy Men. Nutrients 2020, 13, 113. [Google Scholar] [CrossRef] [PubMed]
- Aloi, J.A.; Bergendahl, M.; Iranmanesh, A.; Veldhuis, J.D. Pulsatile intravenous gonadotropin-releasing hormone administration averts fasting-induced hypogonadotropism and hypoandrogenemia in healthy, normal weight men. J. Clin. Endocrinol. Metab. 1997, 82, 1543–1548. [Google Scholar] [CrossRef] [PubMed]
- May, K.T.; Behling, J.; Sochiera-Plegniere, K.; Batschari, K.; Kessler, C.S.; Michalsen, A.; Kandil, F.I.; Blakeslee, S.B.; Jeitler, M.; Stritter, W.; et al. Fasting for male fertility—A mixed methods study. Front. Nutr. 2025, 11, 1529466. [Google Scholar] [CrossRef]
- Berga, S.L.; Loucks, T.L.; Cameron, J.L. Endocrine and chronobiological effects of fasting in women. Fertil. Steril. 2001, 75, 926–932. [Google Scholar] [CrossRef]
- Welt, C.K.; Chan, J.L.; Bullen, J.; Murphy, R.; Smith, P.; DePaoli, A.M.; Karalis, A.; Mantzoros, C.S. Recombinant human leptin in women with hypothalamic amenorrhea. N. Engl. J. Med. 2004, 351, 987–997. [Google Scholar] [CrossRef] [PubMed]
- Olson, B.R.; Cartledge, T.; Sebring, N.; Defensor, R.; Nieman, L. Short-term fasting affects luteinizing hormone secretory dynamics but not reproductive function in normal-weight sedentary women. J. Clin. Endocrinol. Metab. 1995, 80, 1187–1193. [Google Scholar]
- Chou, S.H.; Chamberland, J.P.; Liu, X.; Matarese, G.; Gao, C.; Stefanakis, R.; Brinkoetter, M.T.; Gong, H.; Arampatzi, K.; Mantzoros, C.S. Leptin is an effective treatment for hypothalamic amenorrhea. Proc. Natl. Acad. Sci. USA 2011, 108, 6585–6590. [Google Scholar] [CrossRef]
- Velissariou, M.; Athanasiadou, C.R.; Diamanti, A.; Lykeridou, A.; Sarantaki, A. The impact of intermittent fasting on fertility: A focus on polycystic ovary syndrome and reproductive outcomes in Women—A systematic review. Metab. Open 2025, 25, 100341. [Google Scholar] [CrossRef]
- Allard, J.; Duan, C. Comparative Endocrinology of Aging and Longevity Regulation. Front. Endocrinol. 2011, 2, 75. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.S.; Mohanty, S.S.; Panda, S.S.; Sahoo, C.R.; Mohanty, P.K.; Padhy, R.N. Impact of Cumulative Exposure to Circulating Ovarian Sex Hormones on Increasing the Risk of Hormone Receptor-Positive Breast Cancer. J. Bio-X Res. 2024, 7, 0005. [Google Scholar] [CrossRef]
- Drummond, A.E.; Swain, C.T.; Brown, K.A.; Dixon-Suen, S.C.; Boing, L.; van Roekel, E.H.; Moore, M.M.; Gaunt, T.R.; Milne, R.L.; English, D.R.; et al. Linking Physical Activity to Breast Cancer via Sex Steroid Hormones, Part 2: The Effect of Sex Steroid Hormones on Breast Cancer Risk. Cancer Epidemiol. Biomark. Prev. 2022, 31, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Rastrelli, G.; Monami, M.; Guay, A.; Buvat, J.; Sforza, A.; Forti, G.; Mannucci, E.; Maggi, M. Hypogonadism as a risk factor for cardiovascular mortality in men: A meta-analytic study. Eur. J. Endocrinol. 2011, 165, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Kloner, R.A.; Carson, C.; Dobs, A.; Kopecky, S.; Mohler, E.R. Testosterone and Cardiovascular Disease. JACC 2016, 67, 545–557. [Google Scholar] [CrossRef]
- Wade, G.N.; Schneider, J.E. Metabolic fuels and reproduction in female mammals. Neurosci. Biobehav. Rev. 1992, 16, 235–272. [Google Scholar] [CrossRef]
- Douglas, P.M.; Dillin, A. The disposable soma theory of aging in reverse. Cell Res. 2014, 24, 7–8. [Google Scholar] [CrossRef]
- Feldt-Rasmussen, U.; Effraimidis, G.; Klose, M. The hypothalamus-pituitary-thyroid (HPT)-axis and its role in physiology and pathophysiology of other hypothalamus-pituitary functions. Mol. Cell. Endocrinol. 2021, 525, 111173. [Google Scholar] [CrossRef]
- Sui, X.; Jiang, S.; Zhang, H.; Wu, F.; Wang, H.; Yang, C.; Guo, Y.; Wang, L.; Li, Y.; Dai, Z. The influence of extended fasting on thyroid hormone: Local and differentiated regulatory mechanisms. Front. Endocrinol. 2024, 15, 1443051. [Google Scholar] [CrossRef]
- Romijn, J.A.; Adriaanse, R.; Brabant, G.; Prank, K.; Endert, E.; Wiersinga, W.M. Pulsatile secretion of thyrotropin during fasting: A decrease of thyrotropin pulse amplitude. J. Clin. Endocrinol. Metab. 1990, 70, 1631–1636. [Google Scholar] [CrossRef]
- Basolo, A.; Begaye, B.; Hollstein, T.; Vinales, K.L.; Walter, M.; Santini, F.; Krakoff, J.; Piaggi, P. Effects of Short-Term Fasting and Different Overfeeding Diets on Thyroid Hormones in Healthy Humans. Thyroid 2019, 29, 1209–1219. [Google Scholar] [CrossRef] [PubMed]
- Beer, S.F.; Bircham, P.M.; Bloom, S.R.; Clark, P.M.; Hales, C.N.; Hughes, C.M.; Jones, C.T.; Marsh, D.R.; Raggatt, P.R.; Findlay, A.L. The effect of a 72-h fast on plasma levels of pituitary, adrenal, thyroid, pancreatic and gastrointestinal hormones in healthy men and women. J. Endocrinol. 1989, 120, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Boelen, A.; Wiersinga, W.M.; Fliers, E. Fasting-induced changes in the hypothalamus-pituitary-thyroid axis. Thyroid 2008, 18, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Boelen, A.; Kwakkel, J.; Vos, X.G.; Wiersinga, W.M.; Fliers, E. Differential effects of leptin and refeeding on the fasting-induced decrease of pituitary type 2 deiodinase and thyroid hormone receptor β2 mRNA expression in mice. J. Endocrinol. 2006, 190, 537–544. [Google Scholar] [CrossRef]
- Burman, K.D.; Smallridge, R.C.; Osburne, R.; Dimond, R.C.; Whorton, N.E.; Kesler, P.; Wartofsky, L. Nature of suppressed TSH secretion during undernutrition: Effect of fasting and refeeding on TSH responses to prolonged TRH infusions. Metabolism 1980, 29, 46–52. [Google Scholar] [CrossRef]
- Karimi, R.; Yanovich, A.; Elbarbry, F.; Cleven, A. Adaptive Effects of Endocrine Hormones on Metabolism of Macronutrients during Fasting and Starvation: A Scoping Review. Metabolites 2024, 14, 336. [Google Scholar] [CrossRef]
- Shkorfu, W.; Fadel, A.; Hamsho, M.; Ranneh, Y.; Shahbaz, H.M. Intermittent Fasting and Hormonal Regulation: Pathways to Improved Metabolic Health. Food Sci. Nutr. 2025, 13, e70586. [Google Scholar] [CrossRef]
- Minakhina, S.; De Oliveira, V.; Kim, S.Y.; Zheng, H.; Wondisford, F.E. Thyroid hormone receptor phosphorylation regulates acute fasting-induced suppression of the hypothalamic–pituitary–thyroid axis. Proc. Natl. Acad. Sci. USA 2021, 118, e2107943118. [Google Scholar] [CrossRef]
- Martinez, B.; Scheibner, M.; Soñanez-Organis, J.G.; Jaques, J.T.; Crocker, D.E.; Ortiz, R.M. Increased Sensitivity of Thyroid Hormone-Mediated Signaling Despite Prolonged Fasting. Available online: https://escholarship.org/uc/item/60p2j9nb (accessed on 29 August 2025).
- Fontana, L.; Klein, S.; Holloszy, J.O.; Premachandra, B.N. Effect of long-term calorie restriction with adequate protein and micronutrients on thyroid hormones. J. Clin. Endocrinol. Metab. 2006, 91, 3232–3235. [Google Scholar] [CrossRef]
- Dorling, J.L.; Martin, C.K.; Redman, L.M. Calorie restriction for enhanced longevity: The role of novel dietary strategies in the present obesogenic environment. Ageing Res. Rev. 2020, 64, 101038. [Google Scholar] [CrossRef]
- Heilbronn, L.K.; de Jonge, L.; Frisard, M.I.; DeLany, J.P.; Larson-Meyer, D.E.; Rood, J.; Nguyen, T.; Martin, C.K.; Volaufova, J.; Most, M.M.; et al. Effect of 6-Month Calorie Restriction on Biomarkers of Longevity, Metabolic Adaptation, and Oxidative Stress in Overweight Individuals: A Randomized Controlled Trial. JAMA 2006, 295, 1539–1548. [Google Scholar] [CrossRef] [PubMed]
- Soare, A.; Cangemi, R.; Omodei, D.; Holloszy, J.O.; Fontana, L. Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans. Aging 2011, 3, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Dakic, T.; Jevdjovic, T.; Vujovic, P.; Mladenovic, A. The Less We Eat, the Longer We Live: Can Caloric Restriction Help us Become Centenarians? Int. J. Mol. Sci. 2022, 23, 6546. [Google Scholar] [CrossRef] [PubMed]
- Gesing, A. The thyroid gland and the process of aging. Thyroid Res. 2015, 8, A8. [Google Scholar] [CrossRef]
- Douglass, A.M.; Resch, J.M.; Madara, J.C.; Kucukdereli, H.; Yizhar, O.; Grama, A.; Yamagata, M.; Yang, Z.; Lowell, B.B. Neural basis for fasting activation of the hypothalamic-pituitary-adrenal axis. Nature 2023, 620, 154–162. [Google Scholar] [CrossRef]
- Kim, B.H.; Joo, Y.; Kim, M.S.; Choe, H.K.; Tong, Q.; Kwon, O. Effects of Intermittent Fasting on the Circulating Levels and Circadian Rhythms of Hormones. Endocrinol. Metab. 2021, 36, 745–756. [Google Scholar] [CrossRef]
- Nakamura, Y.; Walker, B.R.; Ikuta, T. Systematic review and meta-analysis reveals acutely elevated plasma cortisol following fasting but not less severe calorie restriction. Stress 2016, 19, 151–157. [Google Scholar] [CrossRef]
- Leszczyńska, D.; Szatko, A.; Papierska, L.; Zgliczyński, W.; Glinicki, P. Musculoskeletal complications of Cushing syndrome. Reumatologia 2023, 61, 271–282. [Google Scholar] [CrossRef]
- Guo, W.; Li, F.; Zhu, C.; Wang, B.; Wang, K.; Dai, C.; Jia, H.; Wei, H.; He, Q.; Cui, J.; et al. Effect of hypercortisolism on bone mineral density and bone metabolism: A potential protective effect of adrenocorticotropic hormone in patients with Cushing’s disease. J. Int. Med. Res. 2018, 46, 492–503. [Google Scholar] [CrossRef]
- Reichardt, S.D.; Amouret, A.; Muzzi, C.; Vettorazzi, S.; Tuckermann, J.P.; Lühder, F.; Reichardt, H.M. The Role of Glucocorticoids in Inflammatory Diseases. Cells 2021, 10, 2921. [Google Scholar] [CrossRef]
- Desgeorges, T.; Caratti, G.; Mounier, R.; Tuckermann, J.; Chazaud, B. Glucocorticoids Shape Macrophage Phenotype for Tissue Repair. Front. Immunol. 2019, 10, 1591. [Google Scholar] [CrossRef] [PubMed]
- Khalafi, M.; Maleki, A.H.; Mojtahedi, S.; Ehsanifar, M.; Rosenkranz, S.K.; Symonds, M.E.; Tarashi, M.S.; Fatolahi, S.; Fernandez, M.L. The Effects of Intermittent Fasting on Inflammatory Markers in Adults: A Systematic Review and Pairwise and Network Meta-Analyses. Nutrients 2025, 17, 2388. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Hachemi, Y.; Paxian, K.; Mengele, F.; Koenen, M.; Tuckermann, J. A Jack of All Trades: Impact of Glucocorticoids on Cellular Cross-Talk in Osteoimmunology. Front. Immunol. 2019, 10, 2460. [Google Scholar] [CrossRef]
- Gjerstad, J.K.; Lightman, S.L.; Spiga, F. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress 2018, 21, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Hussain, S.; Mohammed, R.; Meeran, K.; Ghouri, N. Fasting with adrenal insufficiency: Practical guidance for healthcare professionals managing patients on steroids during Ramadan. Clin. Endocrinol. 2020, 93, 87–96. [Google Scholar] [CrossRef]
- Triebel, H.; Castrop, H. The renin angiotensin aldosterone system. Pflüg. Arch.-Eur. J. Physiol. 2024, 476, 705–713. [Google Scholar] [CrossRef]
- Conti, S.; Cassis, P.; Benigni, A. Aging and the Renin-Angiotensin System. Hypertension 2012, 60, 878–883. [Google Scholar] [CrossRef]
- Heyman, S.N.; Bursztyn, M.; Szalat, A.; Muszkat, M.; Abassi, Z. Fasting-Induced Natriuresis and SGLT: A New Hypothesis for an Old Enigma. Front. Endocrinol. 2020, 11, 217. [Google Scholar] [CrossRef]
- Bleich, H.L.; Boro, E.S.; Spark, R.F.; Arky, R.A.; Boulter, P.R.; Saudek, C.D.; O’Brian, J.T. Renin, Aldosterone and Glucagon in the Natriuresis of Fasting. N. Engl. J. Med. 1975, 292, 1335–1340. [Google Scholar] [CrossRef]
- Boulter, P.R.; Spark, R.F.; Arky, R.A. Dissociation of the renin-aldosterone system and refractoriness to the sodium-retaining action of mineralocorticoid during starvation in man. J. Clin. Endocrinol. Metab. 1974, 38, 248–254. [Google Scholar] [CrossRef]
- Chinn, R.H.; Brown, J.J.; Fraser, R.; Heron, S.M.; Lever, A.F.; Murchison, L.; Robertson, J.I.S. The Natriuresis of Fasting: Relationship to Changes in Plasma Renin and Plasma Aldosterone Concentrations. Clin. Sci. 1970, 39, 437–455. [Google Scholar] [CrossRef] [PubMed]
- Boulter, P.R.; Spark, R.F.; Arky, R.A. Effect of aldosterone blockade during fasting and refeeding. Am. J. Clin. Nutr. 1973, 26, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Andersson, B.; Wallin, G.; Hedner, T.; Ahlberg, A.C.; Andersson, O.K. Acute effects of short-term fasting on blood pressure, circulating noradrenaline and efferent sympathetic nerve activity. Acta Med. Scand. 1988, 223, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Goldhamer, A.; Lisle, D.; Parpia, B.; Anderson, S.V.; Campbell, T.C. Medically supervised water-only fasting in the treatment of hypertension. J. Manip. Physiol. Ther. 2001, 24, 335–339. [Google Scholar] [CrossRef]
- Goldhamer, A.C.; Lisle, D.J.; Sultana, P.; Anderson, S.V.; Parpia, B.; Hughes, B.; Campbell, T.C. Medically supervised water-only fasting in the treatment of borderline hypertension. J. Altern. Complement. Med. 2002, 8, 643–650. [Google Scholar] [CrossRef]
- Scharf, E.; Zeiler, E.; Ncube, M.; Kolbe, P.; Hwang, S.-Y.; Goldhamer, A.; Myers, T.R. The Effects of Prolonged Water-Only Fasting and Refeeding on Markers of Cardiometabolic Risk. Nutrients 2022, 14, 1183. [Google Scholar] [CrossRef]
- Gabriel, S.; Ncube, M.; Zeiler, E.; Thompson, N.; Karlsen, M.C.; Goldman, D.M.; Glavas, Z.; Beauchesne, A.; Scharf, E.; Goldhamer, A.C.; et al. A Six-Week Follow-Up Study on the Sustained Effects of Prolonged Water-Only Fasting and Refeeding on Markers of Cardiometabolic Risk. Nutrients 2022, 14, 4313. [Google Scholar] [CrossRef]
- Grundler, F.; Mesnage, R.; Michalsen, A.; Wilhelmi de Toledo, F. Blood Pressure Changes in 1610 Subjects with and without Antihypertensive Medication During Long-Term Fasting. J. Am. Heart Assoc. 2020, 9, e018649. [Google Scholar] [CrossRef]
- Demirci, E.; Çalapkorur, B.; Celik, O.; Koçer, D.; Demirelli, S.; Şimsek, Z. Improvement in Blood Pressure After Intermittent Fasting in Hipertension: Could Renin-Angiotensin System and Autonomic Nervous System Have a Role? Arq. Bras. Cardiol. 2023, 120, e20220756. [Google Scholar] [CrossRef]
- Badreh, F.; Joukar, S.; Badavi, M.; Rashno, M. Fasting recovers age-related hypertension in the rats: Reset of renal renin-angiotensin system components and klotho. BMC Nephrol. 2024, 25, 470. [Google Scholar] [CrossRef]
- Camelo, L.; Marinho, T.D.S.; Águila, M.B.; Souza-Mello, V.; Barbosa-Da-Silva, S. Intermittent fasting exerts beneficial metabolic effects on blood pressure and cardiac structure by modulating local renin-angiotensin system in the heart of mice fed high-fat or high-fructose diets. Nutr. Res. 2019, 63, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Frederich, R.C.; Kahn, B.B.; Peach, M.J.; Flier, J.S. Tissue-specific nutritional regulation of angiotensinogen in adipose tissue. Hypertension 1992, 19, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Goodpaster, B.H.; Sparks, L.M. Metabolic flexibility in health and disease. Cell Metab. 2017, 25, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Zhang, H.; Sui, X.; Wu, F.; Zhang, C.; Fan, Z.; Wang, H.; Guo, Y.; Yang, C.; Jiang, S.; et al. Analysis of physiological and biochemical changes and metabolic shifts during 21-Day fasting hypometabolism. Sci. Rep. 2024, 14, 28550. [Google Scholar] [CrossRef]
- Longo, V.D.; Di Tano, M.; Mattson, M.P.; Guidi, N. Intermittent and periodic fasting, longevity and disease. Nat. Aging 2021, 1, 47–59. [Google Scholar] [CrossRef]
- Sanvictores, T.; Casale, J.; Huecker, M.R. Physiology, Fasting. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK534877/ (accessed on 14 October 2025).
- Grundler, F.; Mesnage, R.; Ruppert, P.M.M.; Kouretas, D.; Wilhelmi de Toledo, F. Long-Term Fasting-Induced Ketosis in 1610 Subjects: Metabolic Regulation and Safety. Nutrients 2024, 16, 1849. [Google Scholar] [CrossRef]
- Harvie, M.N.; Pegington, M.; Mattson, M.P.; Frystyk, J.; Dillon, B.; Evans, G.; Cuzick, J.; Jebb, S.A.; Martin, B.; Cutler, R.G.; et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: A randomized trial in young overweight women. Int. J. Obes. 2011, 35, 714–727. [Google Scholar] [CrossRef]
- Halberg, N.; Henriksen, M.; Söderhamn, N.; Stallknecht, B.; Ploug, T.; Schjerling, P.; Dela, F. Effect of intermittent fasting and refeeding on insulin action in healthy men. J. Appl. Physiol. 2005, 99, 2128–2136. [Google Scholar] [CrossRef]
- Dote-Montero, M.; Sanchez-Delgado, G.; Ravussin, E. Effects of Intermittent Fasting on Cardiometabolic Health: An Energy Metabolism Perspective. Nutrients 2022, 14, 489. [Google Scholar] [CrossRef]
- Knufinke, M.; Lebbing, M.; Mesnage, R. Case Report: Sustained weight loss and glycemic control from repeated long-term fasting in type 2 diabetes. Front. Clin. Diabetes Healthc. 2025, 6, 1572245. [Google Scholar] [CrossRef]
- Wijngaarden, M.A.; van der Zon, G.C.; van Dijk, K.W.; Pijl, H.; Guigas, B. Effects of prolonged fasting on AMPK signaling, gene expression, and mitochondrial respiratory chain content in skeletal muscle from lean and obese individuals. Am. J. Physiol. Metab. 2013, 304, E1012–E1021. [Google Scholar] [CrossRef]
- Dedual, M.A.; Wueest, S.; Borsigova, M.; Konrad, D. Intermittent fasting improves metabolic flexibility in short-term high-fat diet-fed mice. Am. J. Physiol. Metab. 2019, 317, E773–E782. [Google Scholar] [CrossRef]
- Tripolt, N.J.; Hofer, S.J.; Pferschy, P.N.; Aziz, F.; Durand, S.; Aprahamian, F.; Nirmalathasan, N.; Waltenstorfer, M.; Eisenberg, T.; Obermayer, A.M.A.; et al. Glucose Metabolism and Metabolomic Changes in Response to Prolonged Fasting in Individuals with Obesity, Type 2 Diabetes and Non-Obese People-A Cohort Trial. Nutrients 2023, 15, 511. [Google Scholar] [CrossRef] [PubMed]
- Hwangbo, D.S.; Lee, H.Y.; Abozaid, L.S.; Min, K.J. Mechanisms of Lifespan Regulation by Calorie Restriction and Intermittent Fasting in Model Organisms. Nutrients 2020, 12, 1194. [Google Scholar] [CrossRef] [PubMed]
- Marko, D.M.; Conn, M.O.; Schertzer, J.D. Intermittent fasting influences immunity and metabolism. Trends Endocrinol. Metab. 2024, 35, 821–833. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmi de Toledo, F.; Grundler, F.; Mesnage, R. World’s Longest Medically Documented Repeated Fasting History in a 92 Years Old Man Who Fasted 21 Days Yearly for 45 Years: A Case Report. J. Integr. Complement. Med. 2024, 30, 487–491. [Google Scholar] [CrossRef]
- Varkaneh Kord, H.; Tinsley, G.M.; Santos, H.O.; Zand, H.; Nazary, A.; Fatahi, S.; Mokhtari, Z.; Salehi-Sahlabadi, A.; Cheng Tan, S.; Rahmani, J.; et al. The influence of fasting and energy-restricted diets on leptin and adiponectin levels in humans: A systematic review and meta-analysis. Clin. Nutr. 2021, 40, 1811–1821. [Google Scholar] [CrossRef]
- Thaler, J.P.; Yi, C.X.; Schur, E.A.; Guyenet, S.J.; Hwang, B.H.; Dietrich, M.O.; Zhao, X.; Sarruf, S.A.; Izgur, V.; Maravilla, K.R.; et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Investig. 2012, 122, 153–162. [Google Scholar] [CrossRef]
- Yoon, M.J.; Lee, G.Y.; Chung, J.J.; Ahn, Y.H.; Hong, S.H.; Kim, J.B. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes 2006, 55, 2562–2570. [Google Scholar] [CrossRef]
- Holland, W.L.; Miller, R.A.; Wang, Z.V.; Sun, K.; Barth, B.M.; Bui, H.H.; Davis, K.E.; Bikman, B.T.; Halberg, N.; Rutkowski, J.M.; et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 2011, 17, 55–63. [Google Scholar] [CrossRef]
- Yamauchi, T.; Kamon, J.; Minokoshi, Y.; Ito, Y.; Waki, H.; Uchida, S.; Yamashita, S.; Noda, M.; Kita, S.; Ueki, K.; et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 2002, 8, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Mesnage, R.; Grundler, F.; Wilhelmi de Toledo, F. Revisiting the (anti)inflammatory effects of prolonged fasting: The importance of baseline-dependent responses. Front. Nutr. 2025, 12, 1715341. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.K.; Adya, R.; Randeva, H.S. Omentin: A novel link between inflammation, diabesity, and cardiovascular disease. Trends Cardiovasc. Med. 2010, 20, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Fisher, F.M.; Maratos-Flier, E. Understanding the Physiology of FGF21. Annu. Rev. Physiol. 2016, 78, 223–241. [Google Scholar] [CrossRef]
- Bertrand, C.; Valet, P.; Castan-Laurell, I. Apelin and energy metabolism. Front. Physiol. 2015, 6, 115. [Google Scholar] [CrossRef]
- Potthoff, M.J.; Inagaki, T.; Satapati, S.; Ding, X.; He, T.; Goetz, R.; Mohammadi, M.; Finck, B.N.; Mangelsdorf, D.J.; Kliewer, S.A.; et al. FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl. Acad. Sci. USA 2009, 106, 10853–10858. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, Y.; Berglund, E.D.; Coate, K.; He, T.T.; Katafuchi, T.; Xiao, G.; Potthoff, M.; Wei, W.; Wan, Y.; et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife 2012, 1, e00065. [Google Scholar] [CrossRef]
- Bookout, A.L.; de Groot, M.H.M.; Owen, B.M.; Lee, S.; Gautron, L.; Lawrence, H.L.; Ding, X.; Elmquist, J.K.; Takahashi, J.S.; Mangelsdorf, D.J.; et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med. 2013, 19, 1147–1152. [Google Scholar] [CrossRef]
- Grundler, F.; Séralini, G.E.; Mesnage, R.; Peynet, V.; Wilhelmi de Toledo, F. Excretion of Heavy Metals and Glyphosate in Urine and Hair Before and After Long-Term Fasting in Humans. Front. Nutr. 2021, 8, 708069. [Google Scholar] [CrossRef]
- Finnell, J.S.; Saul, B.C.; Goldhamer, A.C.; Myers, T.R. Is fasting safe? A chart review of adverse events during medically supervised, water-only fasting. BMC Complement. Altern. Med. 2018, 18, 67. [Google Scholar] [CrossRef]
- Zhong, F.; Zhu, T.; Jin, X.; Chen, X.; Wu, R.; Shao, L.; Wang, S. Adverse events profile associated with intermittent fasting in adults with overweight or obesity: A systematic review and meta-analysis of randomized controlled trials. Nutr. J. 2024, 23, 72. [Google Scholar] [CrossRef]
- Ezpeleta, M.; Cienfuegos, S.; Lin, S.; Pavlou, V.; Gabel, K.; Varady, K.A. Efficacy and safety of prolonged water fasting: A narrative review of human trials. Nutr. Rev. 2024, 82, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Aguirre, J.; Balasubramanian, P.; Guevara-Aguirre, M.; Wei, M.; Madia, F.; Cheng, C.W.; Hwang, D.; Martin-Montalvo, A.; Saavedra, J.; Ingles, S.; et al. Growth Hormone Receptor Deficiency is Associated with a Major Reduction in Pro-aging Signaling, Cancer and Diabetes in Humans. Sci. Transl. Med. 2011, 3, 70ra13. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmi de Toledo, F.; Grundler, F.; Bergouignan, A.; Drinda, S.; Michalsen, A. Safety, health improvement and well-being during a 4 to 21-day fasting period in an observational study including 1422 subjects. PLoS ONE 2019, 14, e0209353. [Google Scholar] [CrossRef] [PubMed]
- Rachner, T.D.; Khosla, S.; Hofbauer, L.C. Osteoporosis: Now and the future. Lancet 2011, 377, 1276–1287. [Google Scholar] [CrossRef]
- Russell, J.K.; Jones, C.K.; Newhouse, P.A. The Role of Estrogen in Brain and Cognitive Aging. Neurotherapeutics 2019, 16, 649–665. [Google Scholar] [CrossRef]
- Dwyer, A.A.; Chavan, N.R.; Lewkowitz-Shpuntoff, H.; Plummer, L.; Hayes, F.J.; Seminara, S.B.; Crowley, W.F.; Pitteloud, N.; Balasubramanian, R. Functional Hypogonadotropic Hypogonadism in Men: Underlying Neuroendocrine Mechanisms and Natural History. J. Clin. Endocrinol. Metab. 2019, 104, 3403–3414. [Google Scholar] [CrossRef]
- Kelly, D.M.; Jones, T.H. Testosterone and cardiovascular risk in men. Front. Horm. Res. 2014, 43, 1–20. [Google Scholar]
- Sawicka-Gutaj, N.; Erampamoorthy, A.; Zybek-Kocik, A.; Kyriacou, A.; Zgorzalewicz-Stachowiak, M.; Czarnywojtek, A.; Ruchała, M. The Role of Thyroid Hormones on Skeletal Muscle Thermogenesis. Metabolites 2022, 12, 336. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, M.H.; Lim, D.J.; Lee, J.M.; Chang, S.A.; Lee, J. Exploring the Association between Thyroid Function and Frailty: Insights from Representative Korean Data. Endocrinol. Metab. 2023, 38, 729–738. [Google Scholar] [CrossRef]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar]
- Tentolouris, N.; Liatis, S.; Katsilambros, N. Sympathetic system activity in obesity and metabolic syndrome. Ann. N. Y. Acad. Sci. 2006, 1083, 129–152. [Google Scholar] [CrossRef] [PubMed]
- Berger, B.; Jenetzky, E.; Köblös, D.; Stange, R.; Baumann, A.; Simstich, J.; Michalsen, A.; Schmelzer, K.-M.; Martin, D.D. Seven-day fasting as a multimodal complex intervention for adults with type 1 diabetes: Feasibility, benefit and safety in a controlled pilot study. Nutrition 2021, 86, 111169. [Google Scholar] [CrossRef] [PubMed]
- Grundler, F.; Mesnage, R.; Cerrada, A.; Wilhelmi de Toledo, F. Improvements during long-term fasting in patients with long COVID—A case series and literature review. Front. Nutr. 2023, 10, 1195270. [Google Scholar] [CrossRef] [PubMed]
- Grundler, F.; Plonné, D.; Mesnage, R.; Müller, D.; Sirtori, C.R.; Ruscica, M.; Wilhelmi de Toledo, F. Long-term fasting improves lipoprotein-associated atherogenic risk in humans. Eur. J. Nutr. 2021, 60, 4031–4044. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herman, R.; Trsan, J.; Lipar, L.; Jensterle, M.; Janez, A. Endocrine Adaptations to Prolonged Fasting: From Physiology, Clinical Uncertainties, Translational Challenges to Healthspan Implications. Nutrients 2025, 17, 3949. https://doi.org/10.3390/nu17243949
Herman R, Trsan J, Lipar L, Jensterle M, Janez A. Endocrine Adaptations to Prolonged Fasting: From Physiology, Clinical Uncertainties, Translational Challenges to Healthspan Implications. Nutrients. 2025; 17(24):3949. https://doi.org/10.3390/nu17243949
Chicago/Turabian StyleHerman, Rok, Jure Trsan, Luka Lipar, Mojca Jensterle, and Andrej Janez. 2025. "Endocrine Adaptations to Prolonged Fasting: From Physiology, Clinical Uncertainties, Translational Challenges to Healthspan Implications" Nutrients 17, no. 24: 3949. https://doi.org/10.3390/nu17243949
APA StyleHerman, R., Trsan, J., Lipar, L., Jensterle, M., & Janez, A. (2025). Endocrine Adaptations to Prolonged Fasting: From Physiology, Clinical Uncertainties, Translational Challenges to Healthspan Implications. Nutrients, 17(24), 3949. https://doi.org/10.3390/nu17243949

