Dietary Patterns Influence Chronic Disease Risk and Health Outcomes in Older Adults: A Narrative Review
Abstract
1. Introduction
2. Cardiovascular Disease
2.1. Protective Dietary Patterns
2.2. Adverse Dietary Patterns
3. Cancer
3.1. Protective Dietary Patterns
3.2. Adverse Dietary Patterns
4. Alzheimer’s Disease and Related Dementias
4.1. Protective Dietary Patterns
4.2. Adverse Dietary Patterns
5. Type 2 Diabetes and Insulin Resistance
5.1. Protective Dietary Patterns
5.2. Adverse Dietary Patterns
6. Frailty
6.1. Protective Dietary Patterns
6.2. Adverse Dietary Patterns
7. Liver Disease
7.1. Protective Dietary Patterns
7.2. Adverse Dietary Patterns
8. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hambleton, I.R.; Caixeta, R.; Jeyaseelan, S.M.; Luciani, S.; Hennis, A.J.M. The rising burden of non-communicable diseases in the Americas and the impact of population aging: A secondary analysis of available data. Lancet Reg. Health Am. 2023, 21, 100483. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.Y.; Lin, X.; Hao, Y.T. Measurement and projection of the burden of disease attributable to population aging in 188 countries, 1990–2050: A population-based study. J. Glob. Health 2022, 12, 04093. [Google Scholar] [CrossRef] [PubMed]
- Watson, K.B.; Carlson, S.A.; Loustalot, F.; Town, M.; Eke, P.I.; Thomas, C.W.; Greenlund, K.J. Chronic Conditions Among Adults Aged 18 horizontal line 34 Years—United States, 2019. MMWR. Morb. Mortal. Wkly. Rep. 2022, 71, 964–970. [Google Scholar] [CrossRef] [PubMed]
- El-Khoury, C.; Jannasch, F.; Schulze, M.B. Scoping Review of Dietary Quality Indices: Heterogeneity of Definitions and Health Associations among Adults. Nutr. Rev. 2025, nuaf231. [Google Scholar] [CrossRef]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Barnes, L.L.; Bennett, D.A.; Aggarwal, N.T. MIND diet slows cognitive decline with aging. Alzheimers Dement. 2015, 11, 1015–1022. [Google Scholar] [CrossRef]
- Cena, H.; Calder, P.C. Defining a Healthy Diet: Evidence for The Role of Contemporary Dietary Patterns in Health and Disease. Nutrients 2020, 12, 334. [Google Scholar] [CrossRef]
- Gil, A.; Martinez de Victoria, E.; Olza, J. Indicators for the evaluation of diet quality. Nutr. Hosp. 2015, 31, 128–144. [Google Scholar] [CrossRef] [PubMed]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef]
- Snetselaar, L.G.; de Jesus, J.M.; DeSilva, D.M.; Stoody, E.E. Dietary Guidelines for Americans, 2020–2025: Understanding the Scientific Process, Guidelines, and Key Recommendations. Nutr. Today 2021, 56, 287–295. [Google Scholar] [CrossRef]
- Asadi, Z.; Bahrami, A.; Zarban, A.; Asadian, A.H.; Ferns, G.A.; Karbasi, S. Association of healthy eating index (HEI), alternative healthy eating index (AHEI) with antioxidant capacity of maternal breast milk and infant’s urine: A cross-sectional study. Sci. Rep. 2024, 14, 24053. [Google Scholar] [CrossRef]
- Marx, W.; Veronese, N.; Kelly, J.T.; Smith, L.; Hockey, M.; Collins, S.; Trakman, G.L.; Hoare, E.; Teasdale, S.B.; Wade, A.; et al. The Dietary Inflammatory Index and Human Health: An Umbrella Review of Meta-Analyses of Observational Studies. Adv. Nutr. 2021, 12, 1681–1690. [Google Scholar] [CrossRef]
- Wolfson, J.A.; Tucker, A.C.; Leung, C.W.; Rebholz, C.M.; Garcia-Larsen, V.; Martinez-Steele, E. Trends in Adults’ Intake of Un-processed/Minimally Processed, and Ultra-processed foods at Home and Away from Home in the United States from 2003–2018. J Nutr 2025, 155, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Valicente, V.M.; Peng, C.H.; Pacheco, K.N.; Lin, L.; Kielb, E.I.; Dawoodani, E.; Abdollahi, A.; Mattes, R.D. Ultraprocessed Foods and Obesity Risk: A Critical Review of Reported Mechanisms. Adv. Nutr. 2023, 14, 718–738. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77.e63. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suarez, V.J.; Beltran-Velasco, A.I.; Redondo-Florez, L.; Martin-Rodriguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef]
- Martini, D.; Godos, J.; Bonaccio, M.; Vitaglione, P.; Grosso, G. Ultra-Processed Foods and Nutritional Dietary Profile: A Meta-Analysis of Nationally Representative Samples. Nutrients 2021, 13, 3390. [Google Scholar] [CrossRef]
- Chavda, V.P.; Feehan, J.; Apostolopoulos, V. Inflammation: The Cause of All Diseases. Cells 2024, 13, 1906. [Google Scholar] [CrossRef]
- Ciaffi, J.; Mancarella, L.; Ripamonti, C.; Brusi, V.; Pignatti, F.; Lisi, L.; Ursini, F. Ultra-Processed Food Consumption and Systemic Inflammatory Biomarkers: A Scoping Review. Nutrients 2025, 17, 3012. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Otin, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.B.; Cisewski, J.A.; Anderson, R.N. Leading Causes of Death in the US, 2019–2023. JAMA 2024, 332, 957–958. [Google Scholar] [CrossRef]
- Clark, J.S.; Dyer, K.A.; Davis, C.R.; Shivappa, N.; Hebert, J.R.; Woodman, R.; Hodgson, J.M.; Murphy, K.J. Adherence to a Mediterranean Diet for 6 Months Improves the Dietary Inflammatory Index in a Western Population: Results from the MedLey Study. Nutrients 2023, 15, 366. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Lista, J.; Alcala-Diaz, J.F.; Torres-Pena, J.D.; Quintana-Navarro, G.M.; Fuentes, F.; Garcia-Rios, A.; Ortiz-Morales, A.M.; Gonzalez-Requero, A.I.; Perez-Caballero, A.I.; Yubero-Serrano, E.M.; et al. Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): A randomised controlled trial. Lancet 2022, 399, 1876–1885. [Google Scholar] [CrossRef] [PubMed]
- Clayton-Chubb, D.; Vaughan, N.V.; George, E.S.; Chan, A.T.; Roberts, S.K.; Ryan, J.; Phyo, A.Z.Z.; McNeil, J.J.; Beilin, L.J.; Tran, C.; et al. Mediterranean Diet and Ultra-Processed Food Intake in Older Australian Adults-Associations with Frailty and Cardiometabolic Conditions. Nutrients 2024, 16, 2978. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferre, M.; Li, Y.; Willett, W.C.; Sun, Q.; Sampson, L.; Salas-Salvado, J.; Martinez-Gonzalez, M.A.; Stampfer, M.J.; Hu, F.B. Consumption of Olive Oil and Risk of Total and Cause-Specific Mortality Among U.S. Adults. J. Am. Coll. Cardiol. 2022, 79, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvado, J.; Covas, M.I.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Celis-Morales, C.; Ozanne, S.E.; Burden, S.; Gray, S.R.; Morrison, D.J. Protein Source, Dietary Fibre Intake, and Inflammation in Older Adults: A UK Biobank Study. Nutrients 2025, 17, 1454. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, W.; Dan, L.; Tang, J.; Yue, J.; Hoogendijk, E.O.; Wu, C. Associations between meat consumption and all-cause and cause-specific mortality in middle-aged and older adults with frailty. J. Nutr. Health Aging 2024, 28, 100191. [Google Scholar] [CrossRef]
- Vogtschmidt, Y.D.; Soedamah-Muthu, S.S.; Imamura, F.; Givens, D.I.; Lovegrove, J.A. Replacement of Saturated Fatty Acids from Meat by Dairy Sources in Relation to Incident Cardiovascular Disease: The European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk Study. Am. J. Clin. Nutr. 2024, 119, 1495–1503. [Google Scholar] [CrossRef]
- Canhada, S.L.; Vigo, A.; Giatti, L.; Fonseca, M.J.; Lopes, L.J.; Cardoso, L.O.; Monteiro, C.A.; Schmidt, M.I.; Duncan, B.B. Associations of Ultra-Processed Food Intake with the Incidence of Cardiometabolic and Mental Health Outcomes Go Beyond Specific Subgroups-The Brazilian Longitudinal Study of Adult Health. Nutrients 2024, 16, 4291. [Google Scholar] [CrossRef]
- Wang, J.; Chen, T.; Zhu, W.; Shi, Z.; Yan, X.; Lei, Z.; Wang, Q. Ultra-processed food, genetic risk, and the risk of cardiometabolic diseases and cardiometabolic multimorbidity: A prospective study. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 2799–2806. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.E.; LIewellyn, C.H.; Katsoulis, M.; Akbaraly, T.N.; Dicken, S.J.; Liu, J.; Brown, A.; Britton, A. Ten-year trajectories of ultra-processed food intake and prospective associations with cardiovascular diseases and all-cause mortality: Findings from the Whitehall II cohort study. Nutr. J. 2025, 24, 79. [Google Scholar] [CrossRef] [PubMed]
- Heidari Seyedmahalleh, M.; Nasli-Esfahani, E.; Zeinalabedini, M.; Azadbakht, L. Association of ultra-processed food consumption with cardiovascular risk factors among patients with type-2 diabetes mellitus. Nutr. Diabetes 2024, 14, 89. [Google Scholar] [CrossRef] [PubMed]
- Millar, S.R.; Harrington, J.M.; Perry, I.J.; Phillips, C.M. Associations between ultra-processed food and drink consumption and biomarkers of chronic low-grade inflammation: Exploring the mediating role of adiposity. Eur. J. Nutr. 2025, 64, 150. [Google Scholar] [CrossRef] [PubMed]
- Al Nahas, A.; Yammine Ghantous, S.; Morales Berstein, F.; Cakmak, E.K.; Biessy, C.; Nicolas, G.; Kliemann, N.; Lopez, J.B.; Jacobs, I.; Gonzalez-Gil, E.M.; et al. Associations between degree of food processing and colorectal cancer risk in a large-scale European cohort. Int. J. Cancer 2025, 157, 260–276. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.R.; Abar, L.; Chan, D.S.M.; Vingeliene, S.; Polemiti, E.; Stevens, C.; Greenwood, D.; Norat, T. Foods and beverages and colorectal cancer risk: A systematic review and meta-analysis of cohort studies, an update of the evidence of the WCRF-AICR Continuous Update Project. Ann. Oncol. 2017, 28, 1788–1802. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Rodriguez, J.; Delgado-Velandia, M.; Ortola, R.; Perez-Cornago, A.; Kales, S.N.; Rodriguez-Artalejo, F.; Sotos-Prieto, M. Association of a Mediterranean Lifestyle With All-Cause and Cause-Specific Mortality: A Prospective Study from the UK Biobank. Mayo Clin. Proc. 2024, 99, 551–563. [Google Scholar] [CrossRef]
- Stasiewicz, B.; Biernacki, M.; Slowinska, M.A.; Wadolowska, L. Associations of nutritional knowledge with dietary patterns and breast cancer occurrence. Sci. Rep. 2025, 15, 24656. [Google Scholar] [CrossRef]
- Zalaquett, N.; Lidoriki, I.; Lampou, M.; Saab, J.; Hadkhale, K.; Christophi, C.; Kales, S.N. Adherence to the Mediterranean Diet and the Risk of Head and Neck Cancer: A Systematic Review and Meta-Analysis of Case-Control Studies. Nutrients 2025, 17, 287. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, L.; Jung, S.Y.; Pichardo, M.S.; Lopez-Pentecost, M.; Rohan, T.E.; Saquib, N.; Sun, Y.; Tabung, F.K.; Zheng, T.; et al. Diabetes risk reduction diet and risk of liver cancer and chronic liver disease mortality: A prospective cohort study. J. Intern. Med. 2024, 296, 410–421. [Google Scholar] [CrossRef]
- Feng, M.; Wang, F.; Bao, M.; Zhu, L. Environmental risk factors, protective factors and lifestyles for lung cancer: An umbrella review. Front. Public Health 2025, 13, 1623840. [Google Scholar] [CrossRef] [PubMed]
- Schwedhelm, C.; Boeing, H.; Hoffmann, G.; Aleksandrova, K.; Schwingshackl, L. Effect of diet on mortality and cancer recurrence among cancer survivors: A systematic review and meta-analysis of cohort studies. Nutr. Rev. 2016, 74, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Campanella, A.; Tatoli, R.; Bonfiglio, C.; Donghia, R.; Cuccaro, F.; Giannelli, G. Ultra-Processed Food Consumption as a Risk Factor for Gastrointestinal Cancer and Other Causes of Mortality in Southern Italy: A Competing Risk Approach. Nutrients 2024, 16. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Yu, D.; Wang, L.; Shrubsole, M.J.; Zheng, W.; Sudenga, S.L.; Zhang, X. Ultra-processed products and risk of liver cancer: A prospective cohort study. Clin. Nutr. 2024, 43, 2298–2304. [Google Scholar] [CrossRef]
- Chang, K.; Gunter, M.J.; Rauber, F.; Levy, R.B.; Huybrechts, I.; Kliemann, N.; Millett, C.; Vamos, E.P. Ultra-processed food consumption, cancer risk and cancer mortality: A large-scale prospective analysis within the UK Biobank. EClinicalMedicine 2023, 56, 101840. [Google Scholar] [CrossRef] [PubMed]
- Cao, A.; Esserman, D.A.; Cartmel, B.; Irwin, M.L.; Ferrucci, L.M. Association between diet quality and ovarian cancer risk and survival. J. Natl. Cancer Inst. 2024, 116, 1095–1104. [Google Scholar] [CrossRef]
- Mahmoudi-Zadeh, M.; Jalilpiran, Y.; Maghsoudi, Z.; Nouri, M.; Faghih, S. The association between ultra-processed foods intake and the odds of prostate cancer: A case-control study. J. Health Popul. Nutr. 2025, 44, 97. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, A.; Rebholz, C.M.; Lemaitre, R.N.; Fretts, A.M.; Wiggins, K.; Sotoodehnia, N.; Psaty, B.M.; Kim, H. Ultra-processed foods, plant and animal sources, and all-cause, cardiovascular, and cancer mortality in older adults in the United States: Results from the Cardiovascular Health Study. Am. J. Clin. Nutr. 2025, 122, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Stern, M.C.; Sanchez Mendez, J.; Kim, A.E.; Obon-Santacana, M.; Moratalla-Navarro, F.; Martin, V.; Moreno, V.; Lin, Y.; Bien, S.A.; Qu, C.; et al. Genome-Wide Gene-Environment Interaction Analyses to Understand the Relationship between Red Meat and Processed Meat Intake and Colorectal Cancer Risk. Cancer Epidemiol. Biomark. Prev. 2024, 33, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Turati, F.; Alicandro, G.; Collatuzzo, G.; Pelucchi, C.; Malvezzi, M.; Parazzini, F.; Negri, E.; Boffetta, P.; La Vecchia, C.; Di Maso, M. Cancers attributable to diet in Italy. Int. J. Cancer 2025, 156, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, R.P.; Blair, J.; Shatz, R.; Manly, J.J.; Judd, S.E. Association of Adherence to a MIND-Style Diet With the Risk of Cognitive Impairment and Decline in the REGARDS Cohort. Neurology 2024, 103, e209817. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, S.; Gouldson, A.; Wirth, J.; Cherbuin, N.; Eramudugolla, R.; Anstey, K.J. Onset of cognitive impairment, diet quality and adherence to dietary guidelines over 12 years: The Personality and Total Health Cohort Study. Br. J. Nutr. Publ. Online 2024, 1–8. [Google Scholar] [CrossRef]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Bennett, D.A.; Aggarwal, N.T. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2015, 11, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Youn, J.E.; Kwon, Y.J.; Lee, Y.J.; Heo, S.J.; Lee, J.W. Association of Mediterranean, high-quality, and anti-inflammatory diet with dementia in UK Biobank cohort. J. Nutr. Health Aging 2025, 29, 100564. [Google Scholar] [CrossRef]
- Park, S.Y.; Setiawan, V.W.; Crimmins, E.M.; White, L.R.; Haiman, C.A.; Wilkens, L.R.; Le Marchand, L.; Lim, U. Dietary patterns and risk of Alzheimer’s disease and related dementias across 5 racial and ethnic groups in the Multiethnic Cohort Study. Am. J. Clin. Nutr. 2025, 122, 923–931. [Google Scholar] [CrossRef]
- Seago, E.R.; Davy, B.M.; Davy, K.P.; Katz, B. Neuroprotective Dietary Patterns and Longitudinal Changes in Cognitive Function in Older Adults. J. Acad. Nutr. Diet. 2025, 125, 785–795 e789. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Ryan, C.P.; Caspi, A.; Liu, Z.; Moffitt, T.E.; Sugden, K.; Zhou, J.; Belsky, D.W.; Gu, Y. Diet, Pace of Biological Aging, and Risk of Dementia in the Framingham Heart Study. Ann. Neurol. 2024, 95, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Chen, H.; Gu, Y.; Shen, J.; Shen, T.; Ding, Y.; Lu, M.; Huang, L.; Yan, M.; Song, P.; et al. Healthy dietary patterns in relation to cognitive performance and Alzheimer’s disease mortality. J. Prev. Alzheimers Dis. 2025, 12, 100100. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Marin, F.; Parra-Soto, S.; Guerrero-Wyss, M.; Araya-Bastias, C.; Boonpor, J.; Villagran-Cerro, C.; Petermann-Rocha, F.; Shannon, O.M.; Mathers, J.C.; Livingstone, K.M.; et al. Adherence to four dietary indices and the risk of all-cause and cause-specific dementia: Findings from the UK Biobank study. Diabetes Obes. Metab. 2025, 27, 5612–5621. [Google Scholar] [CrossRef] [PubMed]
- Mrhar, A.; Carballo-Casla, A.; Grande, G.; Valletta, M.; Fredolini, C.; Fratiglioni, L.; Gregoric Kramberger, M.; Kuhar, A.; Winblad, B.; Calderon-Larranaga, A.; et al. Dietary patterns and blood-based biomarkers of Alzheimer’s disease in cognitively intact older adults: Findings from a population-based study. J. Prev. Alzheimers Dis. 2025, 12, 100124. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, X.; Li, Y.; Wang, F.; Vyas, C.M.; Peng, C.; Dong, D.; Li, Y.; Zhang, Y.; Zhang, Y.; et al. Interplay of genetic predisposition, plasma metabolome and Mediterranean diet in dementia risk and cognitive function. Nat. Med. 2025, 31, 3790–3800. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Chen, L.; Bao, Y.; Yang, X.; Chen, X.; Han, Z.; Zhou, Y.; Deng, X.; Li, Y.; Ran, J. Ultra-processed food intake and brain health in middle-aged and older adults. J. Nutr. Health Aging 2025, 29, 100644. [Google Scholar] [CrossRef]
- Boughanem, H.; Gutierrez-Mariscal, F.M.; Arenas-de Larriva, A.P.; Torres-Pena, J.D.; Romero-Cabrera, J.L.; Rangel-Zuniga, O.A.; Garcia-Fernandez, H.; Podadera-Herreros, A.; Rodriguez-Cantalejo, F.; Soehnlein, O.; et al. Effect of long-term Mediterranean versus low-fat diet on neutrophil count, and type 2 diabetes mellitus remission in patients with coronary heart disease: Results from the CORDIOPREV study. Nutr. Diabetes 2025, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Wang, D.; Rebholz, C.M.; Echouffo-Tcheugui, J.B.; Tang, O.; Wang, N.Y.; Mitchell, C.M.; Pilla, S.J.; Appel, L.J.; Selvin, E. DASH4D diet for glycemic control and glucose variability in type 2 diabetes: A randomized crossover trial. Nat. Med. 2025, 31, 3309–3316. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zuurmond, M.G.; van der Schaft, N.; Nano, J.; Wijnhoven, H.A.H.; Ikram, M.A.; Franco, O.H.; Voortman, T. Plant versus animal based diets and insulin resistance, prediabetes and type 2 diabetes: The Rotterdam Study. Eur. J. Epidemiol. 2018, 33, 883–893. [Google Scholar] [CrossRef]
- Chen, Z.; Khandpur, N.; Desjardins, C.; Wang, L.; Monteiro, C.A.; Rossato, S.L.; Fung, T.T.; Manson, J.E.; Willett, W.C.; Rimm, E.B.; et al. Ultra-Processed Food Consumption and Risk of Type 2 Diabetes: Three Large Prospective U.S. Cohort Studies. Diabetes Care 2023, 46, 1335–1344. [Google Scholar] [CrossRef]
- Li, C.; Bishop, T.R.P.; Imamura, F.; Sharp, S.J.; Pearce, M.; Brage, S.; Ong, K.K.; Ahsan, H.; Bes-Rastrollo, M.; Beulens, J.W.J.; et al. Meat consumption and incident type 2 diabetes: An individual-participant federated meta-analysis of 1.97 million adults with 100 000 incident cases from 31 cohorts in 20 countries. Lancet Diabetes Endocrinol. 2024, 12, 619–630. [Google Scholar] [CrossRef]
- Zupo, R.; Donghia, R.; Castellana, F.; Bortone, I.; De Nucci, S.; Sila, A.; Tatoli, R.; Lampignano, L.; Sborgia, G.; Panza, F.; et al. Ultra-processed food consumption and nutritional frailty in older age. Geroscience 2023, 45, 2229–2243. [Google Scholar] [CrossRef]
- Gross, D.C.; Dahringer, J.C.; Bramblett, P.; Sun, C.; Spangler, H.B.; Lynch, D.H.; Batsis, J.A. The Relationship Between a Mediterranean Diet and Frailty in Older Adults: NHANES 2007–2017. Nutrients 2025, 17, 326. [Google Scholar] [CrossRef] [PubMed]
- Benetou, V.; Orfanos, P.; Feskanich, D.; Michaelsson, K.; Pettersson-Kymmer, U.; Byberg, L.; Eriksson, S.; Grodstein, F.; Wolk, A.; Jankovic, N.; et al. Mediterranean diet and hip fracture incidence among older adults: The CHANCES project. Osteoporos. Int. 2018, 29, 1591–1599. [Google Scholar] [CrossRef]
- Su, Y.; Orchard, T.S.; Shadyab, A.H.; Skiba, M.B.; Snetselaar, L.; Vitolins, M.Z.; Richey, P.A.; Coday, M.; Zaslavsky, O. Mediterranean Diet and Change in Physical Function Over Time In Older Women. J. Nutr. Gerontol. Geriatr. 2025, 44, 73–89. [Google Scholar] [CrossRef]
- Sandoval-Insausti, H.; Blanco-Rojo, R.; Graciani, A.; Lopez-Garcia, E.; Moreno-Franco, B.; Laclaustra, M.; Donat-Vargas, C.; Ordovas, J.M.; Rodriguez-Artalejo, F.; Guallar-Castillon, P. Ultra-processed Food Consumption and Incident Frailty: A Prospective Cohort Study of Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 1126–1133. [Google Scholar] [CrossRef]
- Laclaustra, M.; Rodriguez-Artalejo, F.; Guallar-Castillon, P.; Banegas, J.R.; Graciani, A.; Garcia-Esquinas, E.; Ordovas, J.; Lopez-Garcia, E. Prospective association between added sugars and frailty in older adults. Am. J. Clin. Nutr. 2018, 107, 772–779. [Google Scholar] [CrossRef]
- Commins, I.; Clayton-Chubb, D.; Fitzpatrick, J.A.; George, E.S.; Schneider, H.G.; Phyo, A.Z.Z.; Majeed, A.; Janko, N.; Vaughan, N.; Woods, R.L.; et al. Associations Between MASLD, Ultra-Processed Food and a Mediterranean Dietary Pattern in Older Adults. Nutrients 2025, 17, 1415. [Google Scholar] [CrossRef]
- Callans, L.E.; Ivey, K.L.; Chang, K.M.; Kaplan, D.E.; Program, V.A.M.V. Diet composition impacts the natural history of steatotic liver disease. Hepatol. Commun. 2025, 9, e0746. [Google Scholar] [CrossRef]
- Rezaei, S.; Akhlaghi, M.; Sasani, M.R.; Barati Boldaji, R. Olive oil lessened fatty liver severity independent of cardiometabolic correction in patients with non-alcoholic fatty liver disease: A randomized clinical trial. Nutrition 2019, 57, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Mo, J.; Wan, X.; Fan, Y.; Zhuang, P. Meat and fish consumption, genetic risk and risk of severe metabolic-associated fatty liver disease: A prospective cohort of 487,875 individuals. Nutr. J. 2025, 24, 65. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; Qiao, W.; Zhuang, J.; Feng, H.; Zhang, Z.; Zhang, Y. Association of ultra-processed food intake with severe non-alcoholic fatty liver disease: A prospective study of 143073 UK Biobank participants. J. Nutr. Health Aging 2024, 28, 100352. [Google Scholar] [CrossRef]
- Henney, A.E.; Gillespie, C.S.; Alam, U.; Hydes, T.J.; Cuthbertson, D.J. Ultra-Processed Food Intake Is Associated with Non-Alcoholic Fatty Liver Disease in Adults: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 2266. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Huang, H.; Zeng, Y.; Chen, Y.; Xu, C. Association between ultra-processed foods consumption and risk of non-alcoholic fatty liver disease: A population-based analysis of NHANES 2011–2018. Br. J. Nutr. 2023, 130, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Tan, L.J.; Shin, S. Consumption of Ultra-Processed Food and Risk of Non-Alcoholic Fatty Liver Disease: A Prospective Analysis of the Korean Genome and Epidemiology Study. Mol. Nutr. Food Res. 2025, 69, e70099. [Google Scholar] [CrossRef]
- Park, W.Y.; Yiannakou, I.; Petersen, J.M.; Hoffmann, U.; Ma, J.; Long, M.T. Sugar-Sweetened Beverage, Diet Soda, and Nonalcoholic Fatty Liver Disease Over 6 Years: The Framingham Heart Study. Clin. Gastroenterol. Hepatol. 2022, 20, 2524–2532.e2522. [Google Scholar] [CrossRef]
- Collaborators, G.B.D.C.D. Global, Regional, and National Burden of Cardiovascular Diseases and Risk Factors in 204 Countries and Territories, 1990–2023. J. Am. Coll. Cardiol. 2025, 86, 22. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M.; Allen, N.B.; Anderson, C.A.M.; Black, T.; Brewer, L.C.; Foraker, R.E.; Grandner, M.A.; Lavretsky, H.; Perak, A.M.; Sharma, G.; et al. Life’s Essential 8: Updating and Enhancing the American Heart Association’s Construct of Cardiovascular Health: A Presidential Advisory From the American Heart Association. Circulation 2022, 146, e18–e43. [Google Scholar] [CrossRef] [PubMed]
- Annalisa, N.; Alessio, T.; Claudette, T.D.; Erald, V.; de Antonino, L.; Nicola, D.D. Gut microbioma population: An indicator really sensible to any change in age, diet, metabolic syndrome, and life-style. Mediat. Inflamm. 2014, 2014, 901308. [Google Scholar] [CrossRef] [PubMed]
- Vinelli, V.; Biscotti, P.; Martini, D.; Del Bo, C.; Marino, M.; Merono, T.; Nikoloudaki, O.; Calabrese, F.M.; Turroni, S.; Taverniti, V.; et al. Effects of Dietary Fibers on Short-Chain Fatty Acids and Gut Microbiota Composition in Healthy Adults: A Systematic Review. Nutrients 2022, 14, 2559. [Google Scholar] [CrossRef] [PubMed]
- Na, L.; Chang, J.; Li, X.; Che, X.; Sun, Y.; Cui, W.; Xue, X. The association between the dietary index for gut microbiota and its components with cardiovascular disease risk: A cross-sectional study based on NHANES. Front. Nutr. 2025, 12, 1610560. [Google Scholar] [CrossRef]
- Li, S.Y.; Lu, Z.H.; Leung, J.C.S.; Su, Y.; Yu, B.W.M.; Kwok, T.C.Y. Dietary inflammatory index and the risk of cardiovascular disease and mortality: A prospective cohort study of Chinese community-dwelling older adults. J. Nutr. Health Aging 2025, 29, 100624. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Li, X.; Yang, L.; Men, L. Dietary inflammatory index and mortality in middle-aged and elderly patients with metabolic syndrome. Diabetol. Metab. Syndr. 2025, 17, 245. [Google Scholar] [CrossRef]
- Patel, I.; Tang, X.; Song, Z.; Zhou, J. Relationship between dietary inflammatory index and chronic diseases in older U.S. Adults: NHANES 1999–2018. BMC Public Health 2025, 25, 1498. [Google Scholar] [CrossRef]
- Ahmad, F.B.; Anderson, R.N. The Leading Causes of Death in the US for 2020. JAMA 2021, 325, 1829–1830. [Google Scholar] [CrossRef]
- Islami, F.; Goding Sauer, A.; Miller, K.D.; Siegel, R.L.; Fedewa, S.A.; Jacobs, E.J.; McCullough, M.L.; Patel, A.V.; Ma, J.; Soerjomataram, I.; et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J. Clin. 2018, 68, 31–54. [Google Scholar] [CrossRef]
- Psaltopoulou, T.; Kosti, R.I.; Haidopoulos, D.; Dimopoulos, M.; Panagiotakos, D.B. Olive oil intake is inversely related to cancer prevalence: A systematic review and a meta-analysis of 13,800 patients and 23,340 controls in 19 observational studies. Lipids Health Dis. 2011, 10, 127. [Google Scholar] [CrossRef]
- Kim, M.; Kim, H.; Kim, K.; Cho, J.; Jeong, W.; Baek, S.; Lee, J.; Bae, S. Effect of Preoperative Inflammatory Diet on Clinical and Oncologic Outcomes Following Colorectal Cancer Surgery. Nutrients 2025, 17, 1522. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Tabung, F.K.; Zhang, J.; Murphy, E.A.; Shivappa, N.; Ockene, J.K.; Caan, B.; Kroenke, C.H.; Hebert, J.R.; Steck, S.E. Post-cancer diagnosis dietary inflammatory potential is associated with survival among women diagnosed with colorectal cancer in the Women’s Health Initiative. Eur. J. Nutr. 2020, 59, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Compton, S.L.E.; Yang, S.; Madere, J.; Weltzien, E.K.; Caan, B.J.; Meyerhardt, J.A.; Schmitz, K.H.; Brown, J.C. Dietary quality and chemotherapy-induced peripheral neuropathy in colon cancer. Cancer 2025, 131, e35599. [Google Scholar] [CrossRef]
- Xia, X.; Cao, X.; Gong, C.; Liu, Y.; Zhang, X.; Liao, L. Adherence to the Mediterranean diet is associated with lower cancer-related fatigue: A cross-sectional analysis from NHANES 2017–2020. Front. Nutr. 2025, 12, 1506055. [Google Scholar] [CrossRef]
- Skulsky, S.L.; Koutoukidis, D.A.; Carter, J.L.; Piernas, C.; Jebb, S.A.; Gao, M.; Astbury, N.M. Associations between Dietary Patterns and Incident Colorectal Cancer in 114,443 Individuals from the UK Biobank: A Prospective Cohort Study. Cancer Epidemiol. Biomark. Prev. 2024, 33, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Appunni, S.; Rubens, M.; Ramamoorthy, V.; Tonse, R.; Saxena, A.; McGranaghan, P.; Kaiser, A.; Kotecha, R. Emerging Evidence on the Effects of Dietary Factors on the Gut Microbiome in Colorectal Cancer. Front. Nutr. 2021, 8, 718389. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Tan, W.; Xiao, Y.; Peng, L.; Xu, Z.; Liu, H.; Wei, Q.; Wang, Y.; Xiang, L.; Gu, H. The association between energy-adjusted dietary inflammatory index (E-DII) and lung cancer in 101,755 participants aged 55 years and above: A large prospective cohort. BMC Public Health 2025, 25, 2373. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The Amyloid-beta Pathway in Alzheimer’s Disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef]
- Kciuk, M.; Kruczkowska, W.; Galeziewska, J.; Wanke, K.; Kaluzinska-Kolat, Z.; Aleksandrowicz, M.; Kontek, R. Alzheimer’s Disease as Type 3 Diabetes: Understanding the Link and Implications. Int. J. Mol. Sci. 2024, 25, 1955. [Google Scholar] [CrossRef]
- Wengreen, H.; Munger, R.G.; Cutler, A.; Quach, A.; Bowles, A.; Corcoran, C.; Tschanz, J.T.; Norton, M.C.; Welsh-Bohmer, K.A. Prospective study of Dietary Approaches to Stop Hypertension- and Mediterranean-style dietary patterns and age-related cognitive change: The Cache County Study on Memory, Health and Aging. Am. J. Clin. Nutr. 2013, 98, 1263–1271. [Google Scholar] [CrossRef]
- Barnes, L.L.; Dhana, K.; Liu, X.; Carey, V.J.; Ventrelle, J.; Johnson, K.; Hollings, C.S.; Bishop, L.; Laranjo, N.; Stubbs, B.J.; et al. Trial of the MIND Diet for Prevention of Cognitive Decline in Older Persons. N. Engl. J. Med. 2023, 389, 602–611. [Google Scholar] [CrossRef]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levalahti, E.; Ahtiluoto, S.; Antikainen, R.; Backman, L.; Hanninen, T.; Jula, A.; Laatikainen, T.; et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet 2015, 385, 2255–2263. [Google Scholar] [CrossRef] [PubMed]
- Hayden, K.M.; Beavers, D.P.; Steck, S.E.; Hebert, J.R.; Tabung, F.K.; Shivappa, N.; Casanova, R.; Manson, J.E.; Padula, C.B.; Salmoirago-Blotcher, E.; et al. The association between an inflammatory diet and global cognitive function and incident dementia in older women: The Women’s Health Initiative Memory Study. Alzheimers Dement. 2017, 13, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Arikawa, A.Y.; Waterman, A.; Mishra, S.P.; Labyak, C.; Williams, C.; Chaudhari, D.S.; Shukla, R.; Kumar, V.; Masternak, M.; Holland, P.; et al. Cognitive Impairment Is Associated with Alterations in Diet Quality and Inflammatory Biomarkers in Older Adults: A Cross-Sectional Analysis of Data Collected from the Microbiome in Aging Gut and Brain (MiaGB) Consortium Cohort. J. Nutr. 2025, 155, 3048–3056. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.C.; Han, M.L.; Chiu, T.H.T.; Lee, M.S.; Chiou, J.M.; Chen, J.H.; Chen, Y.C. Longitudinal Association of Inflammatory Diets on Cognition in Older Adults: Insights from the Oral-Gut-Brain Axis. J. Am. Geriatr. Soc. 2025, 73, 2747–2756. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Figares Vicioso, M.P.; Riutord Sbert, P.; Ramirez-Manent, J.I.; Lopez-Gonzalez, A.A.; Del Barrio Fernandez, J.L.; Vicente Herrero, M.T. Association Between Sociodemographic and Lifestyle Factors and Type 2 Diabetes Risk Scores in a Large Working Population: A Comparative Study Between the Commerce and Industry Sectors. Nutrients 2025, 17, 2420. [Google Scholar] [CrossRef]
- Jayanama, K.; Theou, O.; Godin, J.; Cahill, L.; Shivappa, N.; Hebert, J.R.; Wirth, M.D.; Park, Y.M.; Fung, T.T.; Rockwood, K. Relationship between diet quality scores and the risk of frailty and mortality in adults across a wide age spectrum. BMC Med. 2021, 19, 64. [Google Scholar] [CrossRef]
- Zhu, S.M.; Chang, P.; Wang, Z.; Yang, B.; Ye, H.F. Association of the dietary inflammation index with frailty in middle-aged and older adults: A systematic review and meta-analysis. Front. Nutr. 2025, 12, 1607110. [Google Scholar] [CrossRef]
- Lin, Y.; Cao, X.; Zhu, H.; Chen, X. Association of dietary inflammatory index, composite dietary antioxidant index, and frailty in elderly adults with diabetes. Eur. J. Med. Res. 2024, 29, 480. [Google Scholar] [CrossRef]
- Heidarzadeh-Esfahani, N.; Eskandarzadeh, S.; Mahmoodi, M.; Makhtoomi, M.; Alavi, S.M.; Shateri, Z.; Nasimi, N.; Nouri, M.; Dabbaghmanesh, M.H. Diet-induced inflammation and its association with sarcopenia in an Iranian population: A case-control study. J. Health Popul. Nutr. 2025, 44, 182. [Google Scholar] [CrossRef]
- Son, B.K.; Lyu, W.; Tanaka, T.; Yoshizawa, Y.; Akishita, M.; Iijima, K. Impact of the anti-inflammatory diet on serum high-sensitivity C-Reactive protein and new-onset frailty in community-dwelling older adults: A 7-year follow-up of the Kashiwa cohort study. Geriatr. Gerontol. Int. 2024, 24, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Shi, L. Association of energy-adjusted dietary inflammatory index and frailty in older adults with nonalcoholic fatty liver disease. Exp. Gerontol. 2023, 182, 112296. [Google Scholar] [CrossRef] [PubMed]
- Barta, S.B.; Bozkus, R.; Simsek, H.; Kosal, B.; Ucar, A. Dietary inflammatory index as a modifiable risk factor for sarcopenia in adults with type 2 diabetes: A cross-sectional study. Nutr. Res. 2025, 140, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.H.; Kisseleva, T.; Brenner, D.A. Aging and liver disease. Curr. Opin. Gastroenterol. 2015, 31, 184–191. [Google Scholar] [CrossRef]

| Noncommunicable Disease/Condition | Protective Dietary Patterns and Foods | Adverse Dietary Patterns and Foods |
|---|---|---|
| Cardiovascular disease | ||
| Cancer | ||
| Alzheimer’s disease and related dementias |
| |
| Type 2 diabetes |
| |
| Frailty |
|
|
| Liver disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunning, J.A.; Converse, M.F.; Gudarzi, B.; Lotfallah, W.; Racette, S.B. Dietary Patterns Influence Chronic Disease Risk and Health Outcomes in Older Adults: A Narrative Review. Nutrients 2025, 17, 3910. https://doi.org/10.3390/nu17243910
Gunning JA, Converse MF, Gudarzi B, Lotfallah W, Racette SB. Dietary Patterns Influence Chronic Disease Risk and Health Outcomes in Older Adults: A Narrative Review. Nutrients. 2025; 17(24):3910. https://doi.org/10.3390/nu17243910
Chicago/Turabian StyleGunning, Jordan A., Madeline F. Converse, Behzad Gudarzi, Wanees Lotfallah, and Susan B. Racette. 2025. "Dietary Patterns Influence Chronic Disease Risk and Health Outcomes in Older Adults: A Narrative Review" Nutrients 17, no. 24: 3910. https://doi.org/10.3390/nu17243910
APA StyleGunning, J. A., Converse, M. F., Gudarzi, B., Lotfallah, W., & Racette, S. B. (2025). Dietary Patterns Influence Chronic Disease Risk and Health Outcomes in Older Adults: A Narrative Review. Nutrients, 17(24), 3910. https://doi.org/10.3390/nu17243910

