Olfactory Capacity and Obesity in Chilean Adolescents †
Abstract
1. Introduction
2. Materials and Methods
Olfactory Capacity Tests
3. Results
3.1. Characteristics of the Participants
3.2. Olfactory Capacity by Nutritional Status
3.3. Anthropometric Variables and Eating Behavior Based on Olfactory Status
3.4. Correlations Between Anthropometric Measurements, Olfaction, and Eating Behavior Traits
3.4.1. Normal-Weight Subgroup
3.4.2. Overweight/Obesity Subgroup
4. Discussion
Bidirectional Association Between Olfaction and Eating Behavior
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Besser, G.; Erlacher, B.; Aydinkoc-Tuzcu, K.; Liu, D.T.; Pablik, E.; Niebauer, V.; Koenighofer, M.; Renner, B.; Mueller, C.A. Body-Mass-Index Associated Differences in Ortho- and Retronasal Olfactory Function and the Individual Significance of Olfaction in Health and Disease. J. Clin. Med. 2020, 9, 366. [Google Scholar] [CrossRef]
- Peng, M.; Coutts, D.; Wang, T.; Cakmak, Y.O. Systematic review of olfactory shifts related to obesity. Obes. Rev. 2019, 20, 325–338. [Google Scholar] [CrossRef]
- Zheng, H.; Lenard, N.R.; Shin, A.C.; Berthoud, H.-R. Appetite control and energy balance regulation in the modern world: Reward-driven brain overrides repletion signals. Int. J. Obes. 2009, 33, S8–S13. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, G.M. Smell images and the flavour system in the human brain. Nature 2006, 444, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, R.J. An Initial Evaluation of the Functions of Human Olfaction. Chem. Senses 2010, 35, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Palouzier-Paulignan, B.; Lacroix, M.-C.; Aime, P.; Baly, C.; Caillol, M.; Congar, P.; Julliard, A.K.; Tucker, K.; Fadool, D.A. Olfaction Under Metabolic Influences. Chem. Senses 2012, 37, 769–797. [Google Scholar] [CrossRef]
- González-García, I.; Freire-Agulleiro, Ó.; Nakaya, N.; Ortega, F.J.; Garrido-Gil, P.; Liñares-Pose, L.; Fernø, J.; Labandeira-Garcia, J.L.; Diéguez, C.; Sultana, A.; et al. Olfactomedin 2 deficiency protects against diet-induced obesity. Metabolism 2022, 129, 155122. [Google Scholar] [CrossRef]
- López, M.; Fernández-Real, J.M.; Tomarev, S.I. Obesity wars: May the smell be with you. Am. J. Physiol. Endocrinol. Metab. 2023, 324, E569–E576. [Google Scholar] [CrossRef]
- Pastor, A.; Fernández-Aranda, F.; Fitó, M.; Jiménez-Murcia, S.; Botella, C.; Fernández-Real, J.M.; Frühbeck, G.; Tinahones, F.J.; Fagundo, A.B.; Rodriguez, J.; et al. A Lower Olfactory Capacity Is Related to Higher Circulating Concentrations of Endocannabinoid 2-Arachidonoylglycerol and Higher Body Mass Index in Women. PLoS ONE 2016, 11, e0148734. [Google Scholar] [CrossRef]
- Skrandies, W.; Zschieschang, R. Olfactory and gustatory functions and its relation to body weight. Physiol. Behav. 2015, 142, 1–4. [Google Scholar] [CrossRef]
- Obrebowski, A.; Obrebowska-Karsznia, Z.; Gawliński, M. Smell and taste in children with simple obesity. Int. J. Pediatr. Otorhinolaryngol. 2000, 55, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Karaoglan, M.; Colakoglu Er, H. Radiological evidence to changes in the olfactory bulb volume depending on body mass index in the childhood. Int. J. Pediatr. Otorhinolaryngol. 2020, 139, 110415. [Google Scholar] [CrossRef] [PubMed]
- Sobel, N.; Prabhakaran, V.; Zhao, Z.; Desmond, J.E.; Glover, G.H.; Sullivan, E.V.; Gabrieli, J.D. Time course of odorant-induced activation in the human primary olfactory cortex. J. Neurophysiol. 2000, 83, 537–551. [Google Scholar] [CrossRef]
- Trellakis, S.; Tagay, S.; Fischer, C.; Rydleuskaya, A.; Scherag, A.; Bruderek, K.; Schlegl, S.; Greve, J.; Canbay, A.E.; Lang, S.; et al. Ghrelin, leptin and adiponectin as possible predictors of the hedonic value of odors. Regul. Pept. 2011, 167, 112–117. [Google Scholar] [CrossRef]
- Tschöp, M.; Weyer, C.; Tataranni, P.A.; Devanarayan, V.; Ravussin, E.; Heiman, M.L. Circulating ghrelin levels are decreased in human obesity. Diabetes 2001, 50, 707–709. [Google Scholar] [CrossRef]
- Thiebaud, N.; Johnson, M.C.; Butler, J.L.; Bell, G.A.; Ferguson, K.L.; Fadool, A.R.; Fadool, J.C.; Gale, A.M.; Gale, D.S.; Fadool, D.A. Hyperlipidemic diet causes loss of olfactory sensory neurons, reduces olfactory discrimination, and disrupts odor-reversal learning. J. Neurosci. 2014, 34, 6970–6984. [Google Scholar] [CrossRef]
- Gordon, C.; Chumlea, W.; Roche, A. Stature, recumbent length and weight. In Anthropometric Standardization Reference Manual Abridged Edition; Human Kinetics: Champaign, IL, USA, 1991; pp. 3–8. [Google Scholar]
- The WHO Child Growth Standards. Available online: https://www.who.int/tools/child-growth-standards (accessed on 6 June 2024).
- Sorokowska, A.; Albrecht, E.; Haehner, A.; Hummel, T. Extended version of the “Sniffin’ Sticks” identification test: Test-retest reliability and validity. J. Neurosci. Methods 2015, 243, 111–114. [Google Scholar] [CrossRef]
- Hummel, T.; Kobal, G.; Gudziol, H.; Mackay-Sim, A. Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: An upgrade based on a group of more than 3000 subjects. Eur. Arch. Otorhinolaryngol. 2007, 264, 237–243. [Google Scholar] [CrossRef]
- Haehner, A.; Mayer, A.-M.; Landis, B.N.; Pournaras, I.; Lill, K.; Gudziol, V.; Hummel, T. High test-retest reliability of the extended version of the “Sniffin’ Sticks” test. Chem. Senses 2009, 34, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Hedner, M.; Larsson, M.; Arnold, N.; Zucco, G.M.; Hummel, T. Cognitive factors in odor detection, odor discrimination, and odor identification tasks. J. Clin. Exp. Neuropsychol. 2010, 32, 1062–1067. [Google Scholar] [CrossRef] [PubMed]
- Schriever, V.A.; Mori, E.; Petters, W.; Boerner, C.; Smitka, M.; Hummel, T. The “Sniffin’ Kids” Test—A 14-Item Odor Identification Test for Children. PLoS ONE 2014, 9, e101086. [Google Scholar] [CrossRef] [PubMed]
- Wardle, J.; Guthrie, C.A.; Sanderson, S.; Rapoport, L. Development of the Children’s Eating Behaviour Questionnaire. J. Child Psychol. Psychiatry 2001, 42, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Goldfield, G.S.; Epstein, L.H.; Davidson, M.; Saad, F. Validation of a questionnaire measure of the relative reinforcing value of food. Eat. Behav. 2005, 6, 283–292. [Google Scholar] [CrossRef]
- Hill, C.; Saxton, J.; Webber, L.; Blundell, J.; Wardle, J. The relative reinforcing value of food predicts weight gain in a longitudinal study of 7–10-y-old children. Am. J. Clin. Nutr. 2009, 90, 276–281. [Google Scholar] [CrossRef]
- Dong, J.; Pinto, J.M.; Guo, X.; Alonso, A.; Tranah, G.; Cauley, J.A.; Garcia, M.; Satterfield, S.; Huang, X.; Harris, T.; et al. The Prevalence of Anosmia and Associated Factors Among U.S. Black and White Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 1080–1086. [Google Scholar] [CrossRef]
- Allis, T.J.; Leopold, D.A. Smell and taste disorders. Facial Plast. Surg. Clin. North Am. 2012, 20, 93–111. [Google Scholar] [CrossRef]
- Kalogjera, L.; Dzepina, D. Management of Smell Dysfunction. Curr. Allergy Asthma Rep. 2012, 12, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Obregón, A.; Durán, S.; Oyarce, K.; Goldfield, G. Association between olfactory capacity, body mass index and eating behaviors in adolescents. In Proceedings of the 23rd IUNS-ICN 2025, Paris, France, 24–29 August 2025. [Google Scholar]
- Podchinenova, D.V.; Samoilova, I.G.; Matveeva, M.V.; Oleynik, O.A.; Vachadze, T.D.; Kanev, A. Patterns of olfactory perception, eating behavior and body composition in adolescents with different body weights. Endocrine 2025, 88, 711–716. [Google Scholar] [CrossRef]
- López-Dávalos, P.C.; Requena, T.; Pozo-Bayón, M.Á.; Muñoz-González, C. Decreased retronasal olfaction and taste perception in obesity are related to saliva biochemical and microbiota composition. Food Res. Int. 2023, 167, 112660. [Google Scholar] [CrossRef]
- Korsching, S. Olfactory maps and odor images. Curr. Opin. Neurobiol. 2002, 12, 387–392. [Google Scholar] [CrossRef]
- Proserpio, C.; Laureati, M.; Bertoli, S.; Battezzati, A.; Pagliarini, E. Determinants of Obesity in Italian Adults: The Role of Taste Sensitivity, Food Liking, and Food Neophobia. Chem. Senses 2016, 41, 169–176. [Google Scholar] [CrossRef]
- Patel, Z.M.; DelGaudio, J.M.; Wise, S.K. Higher Body Mass Index Is Associated with Subjective Olfactory Dysfunction. Behav. Neurol. 2015, 2015, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Stafford, L.D.; Whittle, A. Obese individuals have higher preference and sensitivity to odor of chocolate. Chem. Senses 2015, 40, 279–284. [Google Scholar] [CrossRef]
- Agnieszka, S.; Dominika, C.; Aleksandra, K.; Sabina, B.; Katarzyna, B.; Klaudia, F.; Arkadiusz, U.; Anna, O. Olfactory performance and odor liking are negatively associated with food neophobia in children aged between 3 and 9 years. Nutr. J. 2024, 23, 105, Correction in Nutr. J. 2024, 23, 111. https://doi.org/10.1186/s12937-024-01015-2. [Google Scholar] [CrossRef]
- Marty, L.; Bentivegna, H.; Nicklaus, S.; Monnery-Patris, S.; Chambaron, S. Non-Conscious Effect of Food Odors on Children’s Food Choices Varies by Weight Status. Front. Nutr. 2017, 4, 16. [Google Scholar] [CrossRef]
- Wrobel, B.B.; Leopold, D.A. Clinical assessment of patients with smell and taste disorders. Otolaryngol. Clin. N. Am. 2004, 37, 1127–1142. [Google Scholar] [CrossRef]
- Blundell, J.E.; Finlayson, G. Is susceptibility to weight gain characterized by homeostatic or hedonic risk factors for overconsumption? Physiol. Behav. 2004, 82, 21–25. [Google Scholar] [CrossRef]
- Yeomans, M.R. Olfactory influences on appetite and satiety in humans. Physiol. Behav. 2006, 89, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Malnic, B.; Hirono, J.; Sato, T.; Buck, L.B. Combinatorial receptor codes for odors. Cell 1999, 96, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Morquecho-Campos, P.; Bikker, F.J.; Nazmi, K.; de Graaf, K.; Laine, M.L.; Boesveldt, S. Impact of food odors signaling specific taste qualities and macronutrient content on saliva secretion and composition. Appetite 2019, 143, 104399. [Google Scholar] [CrossRef]
- Fine, L.G.; Riera, C.E. Sense of Smell as the Central Driver of Pavlovian Appetite Behavior in Mammals. Front. Physiol. 2019, 10, 1151. [Google Scholar] [CrossRef]
- Stark, R. The olfactory bulb: A neuroendocrine spotlight on feeding and metabolism. J. Neuroendocrinol. 2024, 36, e13382. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, H.; Wong, H.-X.K.; Auld, N.; Conde, K.M.; Li, Y.; Yu, M.; Deng, Y.; Liu, Q.; Fang, X.; et al. Prolonged exposure to food odors suppresses feeding via an olfactory bulb-to-hypothalamus circuit. Nat. Commun. 2025, 16, 7892. [Google Scholar] [CrossRef]
- Jovanovic, P.; Riera, C.E. Olfactory system and energy metabolism: A two-way street. Trends Endocrinol. Metab. 2022, 33, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Shanahan, L.K.; Bhutani, S.; Kahnt, T. Olfactory perceptual decision-making is biased by motivational state. PLoS Biol. 2021, 19, e3001374. [Google Scholar] [CrossRef] [PubMed]
- Janet, R.; Fournel, A.; Fouillen, M.; Derrington, E.; Corgnet, B.; Bensafi, M.; Dreher, J.C. Cognitive and hormonal regulation of appetite for food presented in the olfactory and visual modalities. NeuroImage 2021, 230, 117811. [Google Scholar] [CrossRef]
- Concas, M.P.; Morgan, A.; Tesolin, P.; Santin, A.; Girotto, G.; Gasparini, P. Sensory Capacities and Eating Behavior: Intriguing Results from a Large Cohort of Italian Individuals. Foods 2022, 11, 735. [Google Scholar] [CrossRef]
| All Children (n = 204) Median [IQR] | Girls (n = 99) Median [IQR] | Boys (n = 105) Median [IQR] | p-Value | |
|---|---|---|---|---|
| Age (years) | 12.0 (11–14) | 12.0 (11–14) | 12.0 (11–14) | 0.57 |
| Weight (kg) | 57 (46.1–67.4) | 54.9 (46.6–65.7) | 58.2 (45.3–68.7) | 0.48 |
| height (m) | 155 (149–163) | 153.5 (149–158.5) | 157 (150–168.5) | 0.001 * |
| BMI (kg/m2) | 22.8 (19.7–26.6) | 24.1 (20.1–26.6) | 22.41 (19.3–26.5) | 0.16 |
| z-score for BMI | 1.5 (0.45–2.2) | 1.5 (0.65–2.2) | 1.3 (0.39–2.2) | 0.53 |
| z-score for height | 0.14 (−0.4–0.75) | −0.03 (−0.63–0.61) | 0.28 (−0.12–0.79) | 0.006 * |
| Waist circumference (cm) | 76 (69.2–84.3) | 78 (69.5–83) | 76 (69–86) | 0.83 |
| Waist-to-height ratio | 0.49 (0.43–0.54) | 0.50 (0.45–0.55) | 0.45 (0.43–0.53) | 0.18 |
| Body fat mass (%) | 28.2 (19.1–36.2) | 33.4 (28.1–38.7) | 20.6 (14.6–29.4) | 0.0001 * |
| Olfactory capacity | ||||
| Odor threshold | 8.3 (6.1–11) | 8.5 (6.5–11.5) | 8.25 (5.75–10.7) | 0.28 |
| Odor discrimination | 12 (10–14) | 12 (10–14) | 12 (10–14) | 0.51 |
| Odor identification | 11 (10–12) | 11 (10–13) | 11 (10–12) | 0.07 |
| TDI score | 31.5 (27.5–34.6) | 32.5 (29.5–34.5) | 30.5 (25.0–34.7) | 0.07 |
| Odor identification Child | 83.3 (75.0–91.0) | 83.3 (75.0–91.0) | 83.3 (75.0–91.0) | 0.01 * |
| Eating behavior (CEBQ) | ||||
| Food Responsiveness | 2.8 (2.2–3.8) | 2.6 (2–3.2) | 3 (2.2–4.2) | 0.008 * |
| Emotional Overeating | 2.25 (1.75–3.2) | 2.25 (1.75–3.25) | 2.25 (2.0–3.0) | 0.95 |
| Enjoyment of Food | 3.75 (3.2–4.5) | 3.5 (3.0–4.0) | 4.25 (3.5–4.7) | 0.001 * |
| Desire to Drink | 2.3 (1.3–4.0) | 2 (1.33–3.6) | 2.3 (1.6–4.0) | 0.07 |
| Satiety Responsiveness | 2.4 (1.8–3.0) | 2.8 (2–3.4) | 2.2 (1.6–2.6) | 0.001 * |
| Slowness in Eating | 2.2 (1.5–2.8) | 2.5 (1.75–3.5) | 2 (1.25–2.5) | 0.001 * |
| Emotional Under-Eating | 2.25 (2.0–2.8) | 2.5 (2–3.25) | 2.25 (1.5–3.0) | 0.007 * |
| Food Fussiness | 2.83 (2.1–3.6) | 3 (2.5–3.6) | 2.83 (2.16–3.5) | 0.15 |
| Food approach | 2.92 (2.35–3.5) | 2.78 (2.29–3.20) | 3.07 (2.61–3.7) | 0.002 * |
| Food avoidance | 2.47 (2.1–2.86) | 2.74 (2.27–3.11) | 2.29 (1.98–2.64) | 0.001 * |
| Food ratio | 116.8 (91.9–157.6) | 102.69 (79.4–136.8) | 129.9 (106.6–173.7) | 0.0001 * |
| Eating behavior (FRVQ) | ||||
| % Food choice | 25.0 (8.33–58.3) | 16.6 (0–50) | 33.3 (8.3–66.6) | 0.007 |
| Nutritional Status | p-Value | |||
|---|---|---|---|---|
| Normal Weight (n = 81) Median [IQR] | Overweight (n = 53) Median [IQR] | Obesity (n = 71) Median [IQR] | ||
| Age (years) | 13 (11–14) | 13 (11–15) | 12 (10–13) | 0.009 |
| Weight (kg) | 47.5 (40.9–54.8) | 59.4 (47.7–65.5) | 67.8 (57.7–78.3) | 0.0001 |
| Height (m) | 157 (149.15–165.5) | 156 (147–162) | 153 (149.5–158.9) | 0.28 |
| Body mass index (kg/m2) | 19.22 (18.0–20.6) | 23.91 (21.7–25.3) | 27.71 (25–30.36) | 0.0001 |
| z-score for BMI | 0.35 (−0.27–0.65) | 1.58 (1.3–1.7) | 2.44 (2.19–2.9) | 0.0001 |
| Waist-to-height ratio | 0.43 (0.41–0.44) | 0.5 (0.47–0.52) | 0.56 (0.53–0.60) | 0.0001 |
| Abdominal circumference (cm) | 67.65 (64–72) | 78 (73.5–81) | 86.5 (81–93) | 0.0001 |
| Body fat % | 17.7 (13.6–24.0) | 28.6 (22.1–35.2) | 37.6 (31.7–41.9) | 0.0001 |
| Olfactory capacity | ||||
| Odor threshold | 8.25 (6.2–11.5) | 7.25 (5.5–9.5) | 8.7 (7.0–11.5) | 0.07 |
| Odor discrimination | 12 (11–14) | 12 (10–14) | 12 (9–13) | 0.08 |
| Odor identification | 11 (10–12 | 11 (9–12) | 11 (10–12) | 0.86 |
| TDI score | 32 (29–34.7) | 31.5 (27–33.7) | 31 (27.2–31.7) | 0.29 |
| Odor identification Child | 83.3 (75.0–91.0) | 83.3 (75.0–91.0) | 83.3 (75.0–91.0) | 0.16 |
| Eating behavior (CEBQ) | ||||
| Food Responsiveness | 2.8 (2–3.5) a | 2.6 (2.0–3.0) a | 3.4 (2.4–4.2) b | 0.01 |
| Emotional Overeating | 2.25 (1.5–2.75) a | 2.25 (2.0–2.5) a | 3 (2.25–3.5) b | 0.001 |
| Enjoyment of Food | 3.75 (3–4.25) a | 3.75 (3.0–4.25) a | 4.25 (3.5–4.75) b | 0.003 |
| Desire to Drink | 2.33 (1.33–4.0) | 2.0 (1.0–3.0) | 2.33 (1.66–4.0) | 0.13 |
| Satiety Responsiveness | 2.5 (2.0–3.0) a | 2.6 (2.0–3.0) a | 2.2 (1.8–2.6) b | 0.005 |
| Slowness in Eating | 2.25 (1.75–3.0) | 2.0 (1.5–2.75) | 2.0 (1.5–2.75) | 0.15 |
| Emotional Under-Eating | 2.25 (1.75–30) | 2.5 (2.0–3.25) | 2.5 (2.0–3.0) | 0.12 |
| Food Fussiness | 2.66 (2.0–3.58) | 3.16 (2.66–4.0) | 3 (2.16–3.5) | 0.08 |
| Food approach | 2.81 (2.32–3.18) a | 2.67 (2.27–3.17) a | 3.22 (2.77–3.84) b | 0.0005 |
| Food avoidance | 2.48 (2.13–2.82) | 2.49 (2.12–3.11) | 2.4 (2.04–2.81) | 0.47 |
| Food ratio | 102.8 (92.8–146.0) a | 102.6 (79.3–136.0) a | 138.31 (101.8–175.0) b | 0.006 |
| Eating behavior (FRVQ) | ||||
| % Food choice | 41.6 (16.6–62.5) a | 16.6 (0–41.6) b | 25 (0–50) b | 0.005 |
| Total | Girls | Boys | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Normal Weight (n = 77) Median [IQR] | Excess Malnutrition (n = 123) Median [IQR] | p-Value | Normal Weight (n = 35) Median [IQR] | Excess Malnutrition (n = 63) Median [IQR] | p-Value | Normal Weight (n = 42) Median [IQR] | Excess Malnutrition (n = 60) Median [IQR] | p-Value | |
| OLFACTORY FUNCTIONS | |||||||||
| Odor threshold | 8.25 (6.25–11.5) | 8.5 (6–10.5) | 0.66 | 8.5 (7.5–12) | 8.5 (6.25–11.5) | 0.36 | 7.5 (6–11) | 8.5 (5.75–10.3) | 0.91 |
| Odor discrimination | 12 (11–14) | 12 (10–13) | 0.05 | 13 (11–14) * | 12 (10–13) * | 0.04 | 12 (11–14) | 12 (9.5–13.5) | 0.37 |
| Odor identification | 11 (10–12) | 11 (10–12) | 0.6 | 11 (10–13) | 11 (10–13) | 0.81 | 11 (10–12) | 11 (9–12) | 0.27 |
| TDI score | 32 (29–34.75) | 31.2 (27.2–34.5) | 0.1 | 33.2 (30.7–35.7) | 32 (28.2–34.2) | 0.12 | 30.6 (28.7–34.2) | 20.2 (26.0–34.8) | 0.42 |
| Girls | Boys | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Anosmic (n = 1) Median [IQR] | Hyposmic (n = 18) Median [IQR] | Normosmic (n = 61) Median [IQR] | Supersmeller (n = 18) Median [IQR] | p-Value | Anosmic (n = 1) Median [IQR] | Hyposmic (n = 23) Median [IQR] | Normosmic (n = 61) Median [IQR] | Supersmeller (n = 17) Median [IQR] | p-Value | |
| Age (years) | 14 | 12 (11–13) | 12 (11–14) | 10.5 (10–13) | 0.11 | 13 | 12 (11–14) | 13 (12–14) | 10 (10–14) | 0.24 |
| Weight (kg) | 65.5 | 57.8 (47.6–68.3) | 56.1 (48–65.7) | 49.05 (37.8–61.5) | 0.28 | 82.3 | 60.3 (41.9–69.2) | 59.4 (48.2–70.4) a | 48.8 (42.2–56.6) b | 0.02 |
| Height (m) | 160 | 154.55 (152–158.2) | 154 (150–158.9) | 146.25 (142.5–156) | 0.03 | 175 | 157 (150–168.5) | 161.6 (152–169.5) | 146.4 (143.5–165) | 0.08 |
| Body mass index (kg/m2) | 25.58 | 24.57 (19.5–27.3) | 23.84 (20.6–26.6) | 22.13 (19.0–25.8) | 0.81 | 26.8 | 22.71 (13.3–27.0) | 22.78 (20.0–27.1) | 21.53 (19.1–22.4) | 0.21 |
| z-score for BMI | 1.6 | 1.69 (0.34–2.25) | 1.5 (0.66–2.22) | 1.54 (0.68–2.41) | 0.99 | 2.32 | 1.3 (0.31–2.22) | 1.44 (0.45–2.23) | 0.88 (−0.12–2.03) | 0.47 |
| Waist-to-height ratio | 0.55 | 0.50 (0.43–0.52) | 0.50 (0.45–0.54) | 0.51 (0.44–0.58) | 0.69 | 1.53 | 0.48 (0.43–0.53) | 0.48 (0.43–0.55) | 0.45 (0.42–0.51) | 0.43 |
| Abdominal circumference (cm) | 88 | 56.9 (69.5–83) | 78 (71–83) | 75 (68.0–84.2) | 0.55 | 93 | 75.3 (68–88) | 78 (71–87) a | 72 (66.5–75.5) b | 0.05 |
| Body fat % | 25.2 | 31.8 (26.4–38.7) | 34.2 (29.2–38) | 32.9 (22.9–41.6) | 0.8 | 27.6 | 21.9 (14.2–28.9) | 21.2 (14.7–32) | 17.8 (14.6–26.7) | 0.58 |
| Eating Behavior (CEBQ) | ||||||||||
| Food Responsiveness | 2.8 | 3 (2.0–4.2) | 2.4 (2.0–2.8) | 2.7 (2.4–3.6) | 0.23 | 4.4 | 2.8 (2.0–4.4) | 3.2 (2.6–4.4) | 2.8 (1.8–3.8) | 0.44 |
| Emotional Overeating | 1.25 | 2.5 (1.75–3.75) | 2.25 (1.75–3.25) | 2.37 (2.0–3.25) | 0.41 | 3.5 | 2.25 (1.75–3.0) | 2.25 (2.0–3.25) | 2.25 (1.5–2.5) | 0.18 |
| Enjoyment of Food | 4 | 4.0 (3.25–4.5) | 3.25 (3.0–3.75) | 3.75 (3.5–4.0) | 0.08 | 4.25 | 4.25 (3.25–4.5) | 4.25 (3.5–5.0) | 4.25 (3.5–4.5) | 0.98 |
| Desire to Drink | 1.33 | 3 (1.66–4.66) | 2.0 (1.0–3.0) | 2.16 (1.33–3.33) | 0.12 | 4.66 | 2.33 (1.0–4.0) | 2.66 (2.0–4.0) a | 1.6 (1.0–2.6) b | 0.04 |
| Satiety Responsiveness | 2.2 | 2.3 (1.8–3.6) | 2.8 (2.2–3.4) | 2.5 (2.0–2.8) | 0.25 | 1.2 | 2.4 (2.0–2.8) | 2.0 (1.6–2.6) | 2.2 (1.8–3.2) | 0.08 |
| Slowness in Eating | 2.25 | 2.12 (1.5–3.5) | 2.5 (1.75–3.5) | 2.5 (2.25–2.75) | 0.64 | 1.75 | 2.0 (1.25–2.5) | 1.75 (1.25–2.25) | 2.25 (1.75–3.0) | 0.26 |
| Emotional Under-Eating | 1.75 | 2.87 (2.0–3.75) | 2.5 (2.25–3.25) | 2.12 (2.0–2.75) | 0.36 | 2.5 | 2.5 (2.0–3.0) | 2.25 (1.5–3.0) | 2.0 (1.5–2.25) | 0.23 |
| Food Fussiness | 1.66 | 2.66 (1.83–3.66) | 3.16 (2.5–3.83) | 2.83 (2.5–3.33) | 0.25 | 1.66 | 3.16 (2.33–3.83) a | 2.66 (1.83–3.16) b | 1.33 (2.3–4.0) | 0.04 |
| Food approach | 2.34 | 3.15 (2.33–3.89) | 2.69 (2.13–3.08) | 2.85 (2.4–3.62) | 0.08 | 4.20 | 2.99 (2.39–3.5) | 3.11 (2.72–3.92) | 2.72 (2.3–3.2) | 0.11 |
| Food avoidance | 1.96 | 2.4 (2.14–3.10) | 2.80 (2.4–3.17) | 2.58 (2.38–2.78) | 0.1 | 1.77 | 2.49 (2.07–2.86) | 2.21 (1.91–2.49) | 2.40 (2–2.7) | 0.05 |
| Food ratio | 119.2 | 110.8 (97.6–165.2) | 99.26 (70.3–120.7) | 111.4 (92.0–139.3) | 0.11 | 236.2 a | 128.62 (93.7–157.6) | 149.0 (111.67–197.3) | 116.01 (94.0–141.2) b | 0.03 |
| % Food choice (FRVQ) | 83.3 | 16.6 (0.0–41.6) | 16.66 (0.0–41.6) | 25 (8.33–50) | 0.37 | 58.3 | 33.33 (16.6–50.0) | 41.6 (8.3–75) | 33.33 (0.0–66.6) | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duran Agüero, S.; Goldfield, G.; Oyarce, K.; Riquelme, C.; Pozo, J.; Obregón-Rivas, A.M. Olfactory Capacity and Obesity in Chilean Adolescents. Nutrients 2025, 17, 3903. https://doi.org/10.3390/nu17243903
Duran Agüero S, Goldfield G, Oyarce K, Riquelme C, Pozo J, Obregón-Rivas AM. Olfactory Capacity and Obesity in Chilean Adolescents. Nutrients. 2025; 17(24):3903. https://doi.org/10.3390/nu17243903
Chicago/Turabian StyleDuran Agüero, Samuel, Gary Goldfield, Karina Oyarce, Camila Riquelme, Julia Pozo, and Ana María Obregón-Rivas. 2025. "Olfactory Capacity and Obesity in Chilean Adolescents" Nutrients 17, no. 24: 3903. https://doi.org/10.3390/nu17243903
APA StyleDuran Agüero, S., Goldfield, G., Oyarce, K., Riquelme, C., Pozo, J., & Obregón-Rivas, A. M. (2025). Olfactory Capacity and Obesity in Chilean Adolescents. Nutrients, 17(24), 3903. https://doi.org/10.3390/nu17243903

