Effects of Greek Yogurt Supplementation and Exercise on Markers of Bone Turnover and Inflammation in Older Adult Exercisers: An 8-Week Pilot Intervention Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Intervention
2.4. Measurements
2.5. Statistical Analysis
3. Results
3.1. Dietary Intake and Body Composition
3.2. Markers and Regulators of Bone Turnover
3.3. Inflammatory Cytokines
4. Discussion
4.1. Dietary Intake and Body Composition
4.2. Markers and Regulators of Bone Turnover
4.3. Inflammatory Cytokines
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GY | Greek Yogurt |
| GYEX | Greek Yogurt + Exercise group |
| NYEX | No Yogurt Exercise group |
| GYNE | Greek Yogurt No Exercise group |
| BMD | Bone Mineral Density |
| IL-1β | Interleukin-1 beta |
| IL-6 | Interleukin-6 |
| TNF-α | Tumor Necrosis Factor-alpha |
| REB | Research Ethics Board |
| TCPS2 | Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans (2nd edition) |
| ASA24 | Automated Self-Administered 24-Hour Dietary Recall |
| BIA | Bioelectrical Impedance Analysis |
| LBM | Lean Body Mass |
| FM | Fat Mass |
| %BF | Percent Body Fat |
| P1NP | Procollagen Type I N-terminal Propeptide |
| CTX-I | C-Terminal Telopeptide of Type I Collagen |
| OC | Osteocalcin |
| OPG | Osteoprotegerin |
| RANKL | Receptor Activator of Nuclear Factor κB Ligand |
| SOST | Sclerostin |
| DKK-1 | Dickkopf-1 |
| PTH | Parathyroid Hormone |
| ELISA | Enzyme-Linked Immunosorbent Assay |
| ANOVA | Analysis of Variance |
| FDR | False Discovery Rate |
| SEM | Standard Error of the Mean |
| %CV | Coefficient of Variation (percentage) |
References
- Chang, X.; Xu, S.; Zhang, H. Regulation of bone health through physical exercise: Mechanisms and types. Front. Endocrinol. 2022, 13, 1029475. [Google Scholar] [CrossRef]
- Vincent, K.R.; Braith, R.W. Resistance exercise and bone turnover in elderly men and women. Med. Sci. Sports Exerc. 2002, 34, 17. [Google Scholar] [CrossRef]
- Armamento-Villareal, R.; Sadler, C.; Napoli, N.; Shah, K.; Chode, S.; Sinacore, D.R.; Qualls, C.; Villareal, D.T. Weight loss in obese older adults increases serum sclerostin and impairs hip geometry but both are prevented by exercise training. J. Bone Miner. Res. 2012, 27, 1215–1221. [Google Scholar] [CrossRef]
- Cheng, N.; Josse, A.R. Dairy and exercise for bone health: Evidence from randomized controlled trials and recommendations for future research. Curr. Osteoporos. Rep. 2024, 22, 502–514. [Google Scholar] [CrossRef]
- Heaney, R.P.; Rafferty, K.; Dowell, M.S. Effect of yogurt on a urinary marker of bone resorption in postmenopausal women. J. Am. Diet. 2002, 102, 1672–1674. [Google Scholar] [CrossRef]
- Houston, D.K.; Nicklas, B.J.; Ding, J.; Harris, T.B.; Tylavsky, F.A.; Newman, A.B.; Lee, J.S.; Sahyoun, N.R.; Visser, M.; Kritchevsky, S.B.; et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: The Health, Aging, and Body Composition (Health ABC) Study. Am. J. Clin. Nutr. 2008, 87, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Ilesanmi-Oyelere, B.L.; Kruger, M.C. The role of milk components, pro-, pre-, and synbiotic foods in calcium absorption and bone health maintenance. Front. Nutr. 2020, 7, 578702. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef]
- Laird, E.; Molloy, A.M.; McNulty, H.; Ward, M.; McCarroll, K.; Hoey, L.; Hughes, C.F.; Cunningham, C.; Strain, J.J.; Casey, M.C. Greater yogurt consumption is associated with increased bone mineral density and physical function in older adults. Osteoporos. Int. 2017, 28, 2409–2419. [Google Scholar] [CrossRef] [PubMed]
- Daly, R.M.; Ahlborg, H.G.; Ringsberg, K.; Gardsell, P.; Sernbo, I.; Karlsson, M.K. Association between changes in habitual physical activity and changes in bone density, muscle strength, and functional performance in elderly men and women. J. Am. Geriatr. Soc. 2008, 56, 2252–2260. [Google Scholar] [CrossRef]
- Campisi, J.; Kapahi, P.; Lithgow, G.J.; Melov, S.; Newman, J.C.; Verdin, E. From discoveries in ageing research to therapeutics for healthy ageing. Nature 2019, 571, 183–192. [Google Scholar] [CrossRef]
- Bridge, A.; Brown, J.; Snider, H.; Nasato, M.; Ward, W.E.; Roy, B.D.; Josse, A.R. Greek Yogurt and 12 Weeks of Exercise Training on Strength, Muscle Thickness and Body Composition in Lean, Untrained, University-Aged Males. Front. Nutr. 2019, 6, 55. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; Ma, T.; Liang, Q.; Sun, J.; Wu, X.; Song, Y.; Nie, H.; Huang, J.; Mu, G. Fermented Dairy Products as Precision Modulators of Gut Microbiota and Host Health: Mechanistic Insights, Clinical Evidence, and Future Directions. Foods 2025, 14, 1946. [Google Scholar] [CrossRef]
- Pei, R.; DiMarco, D.M.; Putt, K.K.; Martin, D.A.; Gu, Q.; Chitchumroonchokchai, C.; White, H.M.; Bruno, R.S. Pre-meal yogurt consumption alters postprandial exogenous endotoxin exposure and markers of inflammation in healthy women. Br. J. Nutr. 2017, 118, 261–268. [Google Scholar] [CrossRef]
- Fraschetti, E.C.; Abdul-Sater, A.A.; Perry, C.G.R.; Josse, A.R. Resistance exercise training and Greek yogurt consumption modulate markers of systemic inflammation in healthy young males—A Secondary Analysis of a Randomized Controlled Trial. Nutrients 2025, 17, 2816. [Google Scholar] [CrossRef] [PubMed]
- Bridge, A.D.; Brown, J.; Snider, H.; Ward, W.E.; Roy, B.D.; Josse, A.R. Consumption of Greek yogurt during 12 weeks of high-impact loading exercise increases bone formation in young, adult males—A secondary analysis from a randomized trial. Appl. Physiol. Nutr. Metab. 2020, 45, 91–100. [Google Scholar] [CrossRef] [PubMed]
- McGrail, L.; Vargas-Robles, D.; Correa, M.R.; Pierre, M.R.; Garcia, L.; Mattei, J. Daily yogurt consumption does not affect bone turnover markers in men and postmenopausal women of Caribbean Latino descent: A randomized controlled trial. BMC Nutr. 2024, 10, 12. [Google Scholar] [CrossRef]
- Prokopidis, K.; Mazidi, M.; Sankaranarayanan, R.; Tajik, B.; McArdle, A.; Isanejad, M. Effects of whey and soy protein supplementation on inflammatory cytokines in older adults: A systematic review and meta-analysis. Br. J. Nutr. 2023, 129, 759–770. [Google Scholar] [CrossRef]
- Prowting, J.L.; Fraschetti, E.C.; Pereira, T.J.; Tucker, J.A.L.; Gagnon, S.; Cheng, N.; Edgell, H.; Wright, D.C.; Klentrou, P.; Perry, C.G.R.; et al. Inflammatory cytokine responses to six weeks of increased dairy intake in individuals with overweight and obesity—A randomized crossover trial. J. Nutr. 2025; advance online publication. [Google Scholar] [CrossRef]
- Canadian Society for Exercise Physiology. Get Active Questionnaire for Adults; Canadian Society for Exercise Physiology: Ottawa, ON, Canada, 2021; Available online: https://csep.ca/gaq (accessed on 10 July 2025).
- Ettienne-Gittens, R.; Boushey, C.; Au, D.; Murphy, S.; Lim, U.; Wilkens, L. Evaluating the feasibility of utilizing the Automated Self-Administered 24-hour (ASA24) dietary recall in a sample of multiethnic older adults. Procedia Food Sci. 2013, 2, 134–144. [Google Scholar] [CrossRef]
- Sandby, K.; Magkos, F.; Chabanova, E.; Petersen, E.T.; Krarup, T.; Bertram, H.C.; Kristiansen, K.; Geiker, N.R. The effect of dairy products on liver fat and metabolic risk markers in males with abdominal obesity—A four-arm randomized controlled trial. Clin. Nutr. 2024, 43, 534–542. [Google Scholar] [CrossRef]
- Peng, L.N.; Lin, M.H.; Tseng, S.H.; Yen, K.H.; Lee, H.F.; Hsiao, F.Y.; Chen, L.K. Protein-enriched soup and weekly exercise improve muscle health: A randomized trial in mid-to-old age with inadequate protein intake. J. Cachexia Sarcopenia Muscle 2024, 15, 1348–1357. [Google Scholar] [CrossRef]
- Peng, L.N.; Yu, P.C.; Lee, H.F.; Lin, M.H.; Chen, L.K. Protein-enriched diet improved muscle endurance and marginally reduced intramuscular adiposity: Results from a randomized controlled trial among middle-aged and older adults. Arch. Gerontol. Geriatr. 2021, 96, 104436. [Google Scholar] [CrossRef]
- Ioannidou, P.; Dóró, Z.; Schalla, J.; Wätjen, W.; Diel, P.; Isenmann, E. Analysis of combinatory effects of free weight resistance training and a high-protein diet on body composition and strength capacity in postmenopausal women—A 12-week randomized controlled trial. J. Nutr. Health Aging 2024, 28, 100349. [Google Scholar] [CrossRef]
- Josse, A.R.; Tang, J.E.; Tarnopolsky, M.A.; Phillips, S.M. Body Composition and Strength Changes in Women with Milk and Resistance Exercise. Med. Sci. Sports Exerc. 2010, 42, 1122. [Google Scholar] [CrossRef]
- Josse, A.R.; Atkinson, S.A.; Tarnopolsky, M.A.; Phillips, S.M. Increased consumption of dairy foods and protein during diet- and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women. J. Nutr. 2011, 141, 1626–1634. [Google Scholar] [CrossRef] [PubMed]
- Calleja, M.; Caetano Feitoza, N.; Falk, B.; Klentrou, P.; Ward, W.E.; Sullivan, P.J.; Josse, A.R. Increased dairy product consumption as part of a diet and exercise weight management program improves body composition in adolescent females with overweight and obesity-A randomized controlled trial. Pediatr. Obes. 2020, 15, e12690. [Google Scholar] [CrossRef]
- Bergström, I.; Parini, P.; Gustafsson, S.A.; Andersson, G.; Brinck, J. Physical training increases osteoprotegerin in postmenopausal women. J. Bone Miner. Metab. 2012, 30, 202–207. [Google Scholar] [CrossRef]
- Tenta, R.; Moschonis, G.; Koutsilieris, M.; Manios, Y. Calcium and vitamin D supplementation through fortified dairy products counterbalances seasonal variations of bone metabolism indices: The Postmenopausal Health Study. Eur. J. Nutr. 2011, 50, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Delaisse, J.M.; Andersen, T.L.; Kristensen, H.B.; Jensen, P.R.; Andreasen, C.M.; Søe, K. Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone 2020, 141, 115628. [Google Scholar] [CrossRef] [PubMed]
- Josse, A.R.; Atkinson, S.A.; Tarnopolsky, M.A.; Phillips, S.M. Diets Higher in Dairy Foods and Dietary Protein Support Bone Health during Diet- and Exercise-Induced Weight Loss in Overweight and Obese Premenopausal Women. J. Clin. Endocrinol. Metab. 2012, 97, 251–260. [Google Scholar] [CrossRef]
- Williams, B.O.; Insogna, K.L. Where Wnts Went: The Exploding Field of Lrp5 and Lrp6 Signaling in Bone. J. Bone Min. Res. 2009, 24, 171–178. [Google Scholar] [CrossRef]
- Hidayat, K.; Chen, J.S.; Wang, T.C.; Liu, Y.J.; Shi, Y.J.; Su, H.W.; Liu, B.; Qin, L.Q. The Effects of Milk Supplementation on Bone Health Indices in Adults: A Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2022, 13, 1186–1199. [Google Scholar] [CrossRef] [PubMed]
- Van Loan, M.D.; Keim, N.L.; Adams, S.H.; Souza, E.; Woodhouse, L.R.; Thomas, A.; Witbracht, M.; Gertz, E.R.; Piccolo, B.; Bremer, A.A.; et al. Dairy Foods in a Moderate Energy Restricted Diet Do Not Enhance Central Fat, Weight, and Intra-Abdominal Adipose Tissue Losses nor Reduce Adipocyte Size or Inflammatory Markers in Overweight and Obese Adults: A Controlled Feeding Study. J. Obes. 2011, 2011, 989657. [Google Scholar] [CrossRef] [PubMed]
- Fried, S.K.; Bunkin, D.A.; Greenberg, A.S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: Depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab. 1998, 83, 847–850. [Google Scholar] [CrossRef]
- Bruun, J.M.; Lihn, A.S.; Madan, A.K.; Pedersen, S.B.; Schiøtt, K.M.; Fain, J.N.; Richelsen, B. Higher production of IL-8 in visceral vs. subcutaneous adipose tissue: Implication of nonadipose cells in adipose tissue. Am. J. Physiol. Endocrinol. Metab. 2004, 286, E8–E13. [Google Scholar] [CrossRef]
- Van Meijl, L.E.C.; Mensink, R.P. Effects of low-fat dairy consumption on markers of low-grade systemic inflammation and endothelial function in overweight and obese subjects: An intervention study. Br. J. Nutr. 2010, 104, 1523–1527. [Google Scholar] [CrossRef]
- Gjevestad, G.O.; Ottestad, I.; Biong, A.S.; Iversen, P.O.; Retterstøl, K.; Raastad, T.; Skålhegg, B.S.; Ulven, S.M.; Holven, K.B. Consumption of protein-enriched milk has minor effects on inflammation in older adults—A 12-week double-blind randomized controlled trial. Mech. Ageing Dev. 2017, 162, 1–8. [Google Scholar] [CrossRef] [PubMed]

| Week 0 | Week 8 | Time | Group | Time × Group | ||
|---|---|---|---|---|---|---|
| Energy Intake (kcal) | GYEX | 1883 ± 400 | 1926 ± 505 * | 0.333 | 0.093 | 0.041 |
| GYNE | 1502 ± 403 | 1783 ± 381 * | ||||
| NYEX | 1832 ± 327 | 1695 ± 345 * | ||||
| Carbohydrate Intake (g/kg) | GYEX # | 3.35 ± 0.73 | 3.46 ± 0.81 | 0.101 | 0.036 | 0.057 |
| GYNE # | 2.57 ± 0.67 | 3.07 ± 0.58 | ||||
| NYEX | 3.06 ± 0.71 | 2.95 ± 0.72 | ||||
| Protein Intake (g/kg) | GYEX ## | 1.22 ± 0.35 | 1.30 ± 0.30 * | 0.019 | 0.003 | 0.015 |
| GYNE | 0.87 ± 0.25 | 1.10 ± 0.23 * | ||||
| NYEX | 1.02 ± 0.15 | 0.97 ± 0.27 | ||||
| Fat intake (g) | GYEX | 67.9 ± 18.9 | 65.6 ± 22.4 | 0.884 | 0.55 | 0.195 |
| GYNE | 51.6 ± 18.2 | 59.2 ± 16.5 | ||||
| NYEX | 69.9 ± 16.4 | 63.2 ± 15.1 | ||||
| Vitamin D Intake (mcg) | GYEX | 8.66 ± 5.0 | 11.38 ± 5.15 * | 0.604 | 0.445 | 0.052 |
| GYNE | 8.48 ± 6.09 | 10.00 ± 4.63 * | ||||
| NYEX | 9.64 ± 5.15 | 6.86 ± 4.49 | ||||
| Calcium Intake (mg) | GYEX ## | 1010 ± 405 | 1522 ± 1156 * | <0.001 | 0.003 | <0.001 |
| GYNE | 734 ± 296 | 1156 ± 276 * | ||||
| NYEX | 1137 ± 320 | 932 ± 339 |
| Week 0 | Week 8 | Time | Group | Time × Group | ||
|---|---|---|---|---|---|---|
| Body Mass (kg) | GYEX | 72.4 ± 15.6 | 73.0 ± 15.8 | 0.033 | 0.222 | 0.421 |
| GYNE | 76.5 ± 15.5 | 77.4 ± 15.9 | ||||
| NYEX | 75.3 ± 14.8 | 75.8 ± 14.9 | ||||
| BMI (kg/m2) | GYEX | 26.5 ± 5.1 | 26.7 ± 5.1 | 0.135 | 0.132 | 0.370 |
| GYNE | 29.6 ± 5.9 | 29.9 ± 5.9 | ||||
| NYEX | 27.6 ± 5.2 | 27.8 ± 5.3 | ||||
| Body Fat (%) | GYEX | 31.7 ± 8.6 | 31.9 ± 8.7 | 0.599 | 0.006 | 0.542 |
| GYNE ## | 39.3 ± 7.2 | 39.0 ± 7.4 | ||||
| NYEX | 34.7 ± 8.4 | 34.4 ± 8.1 |
| Week 0 | Week 8 | Time | Group | Time × Group Interaction | ||
|---|---|---|---|---|---|---|
| OC (pg/mL) | GYEX | 3074 ± 1245 | 2839 ± 955 | 0.111 | 0.733 | 0.709 |
| GYNE | 2261 ± 1055 | 2193 ± 1248 | ||||
| NYEX | 3430 ± 1900 | 3199 ± 1742 | ||||
| P1NP (ng/mL) | GYEX | 1075 ± 382 | 1064 ± 411 | 0.102 | 0.680 | 0.482 |
| GYNE | 949 ± 460 | 873 ± 504 | ||||
| NYEX | 1075 ± 382 | 1064 ± 411 | ||||
| CTX-I (pg/mL) | GYEX | 0.26 ± 0.16 | 0.29 ± 0.17 * | 0.426 | 0.500 | 0.038 |
| GYNE | 0.18 ± 0.18 | 0.16 ± 0.11 | ||||
| NYEX | 0.21 ± 0.19 | 0.19 ± 0.15 | ||||
| PTH (pg/mL) | GYEX | 17.3 ± 9.2 | 16.9 ± 7.3 | 0.080 | 0.854 | 0.738 |
| GYNE | 18.0 ± 14.3 | 18.2 ± 14.7 | ||||
| NYEX | 19.0 ± 10.9 | 17.4 ± 9.7 | ||||
| OPG (pg/mL) | GYEX | 493 ± 233 | 465 ± 190 | 0.002 | 0.349 | 0.169 |
| GYNE | 563 ± 197 | 520 ± 231 | ||||
| NYEX | 411 ± 101 | 411 ± 116 | ||||
| RANKL (pg/mL) | GYEX | 27.0 ± 23.5 | 28.0 ± 22.6 | 0.837 | 0.653 | 0.591 |
| GYNE | 23.8 ± 16.0 | 26.0 ± 16.4 | ||||
| NYEX | 39.3 ± 25.1 | 32.7 ± 19.6 | ||||
| SOST (pg/mL) | GYEX | 581 ± 229 | 576 ± 206 | 0.360 | 0.895 | 0.675 |
| GYNE | 565 ± 187 | 555 ± 204 | ||||
| NYEX | 506 ± 141 | 475 ± 136 | ||||
| DKK-1 (pg/mL) | GYEX | 903 ± 180 | 880 ± 195 | 0.018 | 0.254 | 0.030 |
| GYNE | 749 ± 215 | 850 ± 226 * | ||||
| NYEX | 670 ± 221 | 733 ± 155 |
| Week 0 | Week 8 | Time | Group | Time × Group Interaction | ||
|---|---|---|---|---|---|---|
| IL-1β (pg/mL) | GYEX | 0.33 ± 0.18 | 0.20 ± 0.18 | 0.107 | 0.378 | 0.043 |
| GYNE | 0.24 ± 0.10 | 1.13 ± 2.15 * | ||||
| NYEX | 0.26 ± 0.09 | 0.46 ± 0.81 | ||||
| IL-6 (pg/mL) | GYEX | 0.54 ± 0.81 | 0.29 ± 0.16 | <0.001 | 0.076 | 0.023 |
| GYNE | 1.56 ± 2.55 | 0.21 ± 0.10 * | ||||
| NYEX | 1.10 ± 1.88 | 0.23 ± 0.09 | ||||
| TNF–α (pg/mL) | GYEX | 2.84 ± 1.06 | 2.68 ± 1.10 | 0.408 | 0.971 | 0.905 |
| GYNE | 2.43 ± 0.90 | 2.43 ± 1.01 | ||||
| NYEX | 2.69 ± 1.00 | 2.68 ± 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bell, M.; Narciso, P.H.; Baker, E.; Falk, B.; Roy, B.D.; Josse, A.R.; Klentrou, P. Effects of Greek Yogurt Supplementation and Exercise on Markers of Bone Turnover and Inflammation in Older Adult Exercisers: An 8-Week Pilot Intervention Trial. Nutrients 2025, 17, 3902. https://doi.org/10.3390/nu17243902
Bell M, Narciso PH, Baker E, Falk B, Roy BD, Josse AR, Klentrou P. Effects of Greek Yogurt Supplementation and Exercise on Markers of Bone Turnover and Inflammation in Older Adult Exercisers: An 8-Week Pilot Intervention Trial. Nutrients. 2025; 17(24):3902. https://doi.org/10.3390/nu17243902
Chicago/Turabian StyleBell, Madison, Pedro Henrique Narciso, Elizabeth Baker, Bareket Falk, Brian D. Roy, Andrea R. Josse, and Panagiota Klentrou. 2025. "Effects of Greek Yogurt Supplementation and Exercise on Markers of Bone Turnover and Inflammation in Older Adult Exercisers: An 8-Week Pilot Intervention Trial" Nutrients 17, no. 24: 3902. https://doi.org/10.3390/nu17243902
APA StyleBell, M., Narciso, P. H., Baker, E., Falk, B., Roy, B. D., Josse, A. R., & Klentrou, P. (2025). Effects of Greek Yogurt Supplementation and Exercise on Markers of Bone Turnover and Inflammation in Older Adult Exercisers: An 8-Week Pilot Intervention Trial. Nutrients, 17(24), 3902. https://doi.org/10.3390/nu17243902

