Dysapolipoproteinaemia Influences the Relationship Between Very Low-Density Lipoprotein Cholesterol and Intra-Pancreatic Fat Deposition in Humans
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Quantification of Intra-Pancreatic Fat Deposition
2.3. Quantification of Very Low-Density Lipoprotein Cholesterol
2.4. Other Measurements
2.5. Statistical Analysis
3. Results
3.1. Overall Characteristics
3.2. Comparison of Apolipoproteinaemia Subgroups
3.3. Association Between Intra-Pancreatic Fat Deposition and Very Low-Density Lipoprotein Cholesterol Across Apolipoproteinaemia Subgroups
3.4. Association Between Apolipoproteins and Very Low-Density Lipoprotein Cholesterol Across Apolipoproteinaemia Subgroups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petrov, M.S.; Taylor, R. Intra-pancreatic fat deposition: Bringing hidden fat to the fore. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Leybourne, C.B.; Liu, Y.; Petrov, M.S. Excessive intrapancreatic fat deposition and risk of pancreatic diseases: Longitudinal cohort evidence from a systematic review with population-attributable fraction analysis. Am. J. Gastroenterol. 2025. Epub ahead of print. [Google Scholar] [CrossRef]
- Ran, T.; Wang, Y.; Yuan, F.; Liu, R.; Ye, M.; Zhang, M.; Du, X.; Zheng, J. Gender-specific correlations between serum lipid profiles and intra-pancreatic fat deposition: A cross-sectional study. Lipids Health Dis. 2025, 23, 384. [Google Scholar] [CrossRef]
- Petrov, M.S. Fatty change of the pancreas: The Pandora’s box of pancreatology. Lancet Gastroenterol. Hepatol. 2023, 8, 671–682. [Google Scholar] [CrossRef]
- Oyama, H.; Hamada, T.; Nevo, D.; Nakai, Y.; Nakai, Y.; Petrov, M.S. Relationship of intrapancreatic fat deposition with pancreatic cancer differs according to carcinoma types. Gastroenterology 2025, 169, 718–721. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhu, Q.; Yuan, C.; Wang, Y.; Ma, X.; Shi, X.; Chen, W.; Dong, Z.; Chen, L.; Shen, Q.; et al. Associations of intrapancreatic fat deposition with incident diseases of the exocrine and endocrine pancreas: A UK biobank prospective cohort study. Am. J. Gastroenterol. 2024, 119, 1158–1166. [Google Scholar] [CrossRef]
- Skudder-Hill, L.; Sequeira, I.R.; Cho, J.; Ko, J.; Poppitt, S.D.; Petrov, M.S. Fat distribution within the pancreas according to diabetes status and insulin traits. Diabetes 2022, 71, 1182–1192. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Tauchi, S.; Wang, J.; Dohke, M.; Hanawa, N.; Kodama, Y.; Katanuma, A.; Saisho, Y.; Kamitani, T.; Fukuhara, S.; et al. Longitudinal association of fatty pancreas with the incidence of type-2 diabetes in lean individuals: A 6-year computed tomography-based cohort study. J. Gastroenterol. 2020, 55, 712–721. [Google Scholar] [CrossRef]
- Singh, R.G.; Yoon, H.D.; Wu, L.M.; Lu, J.; Plank, L.D.; Petrov, M.S. Ectopic fat accumulation in the pancreas and its clinical relevance: A systematic review, meta-analysis, and meta-regression. Metabolism 2017, 69, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Petrov, M.S. Relationship of fat in the pancreas with cardiovascular disease: A systematic review and meta-analysis. Obes. Rev. 2025, 26, e13914. [Google Scholar] [CrossRef]
- Liu, Y.; Shamaitijiang, X.; Skudder-Hill, L.; Kimita, W.; Sequeira-Bisson, I.R.; Petrov, M.S. Relationship of high-density lipoprotein subfractions and apolipoprotein A-I with fat in the pancreas. Diabetes Obes. Metab. 2025, 27, 123–133. [Google Scholar] [CrossRef]
- Skudder-Hill, L.; Coffey, S.; Sequeira-Bisson, I.R.; Ko, J.; Poppitt, S.D.; Petrov, M.S. Comprehensive analysis of dyslipidemia states associated with fat in the pancreas. Diabetes Metab. Syndr. 2023, 17, 102881. [Google Scholar] [CrossRef] [PubMed]
- Skudder-Hill, L.; Sequeira-Bisson, I.R.; Ko, J.; Cho, J.; Poppitt, S.D.; Petrov, M.S. Remnant cholesterol, but not low-density lipoprotein cholesterol, is associated with intra-pancreatic fat deposition. Diabetes Obes. Metab. 2023, 25, 3337–3346. [Google Scholar] [CrossRef]
- Liu, Y.; Skudder-Hill, L.; Kimita, W.; Shamaitijiang, X.; Sequeira-Bisson, I.R.; Petrov, M.S. Associations of intra-pancreatic fat deposition with triglyceride-rich lipoproteins and lipoprotein lipase. Diabetes Obes. Metab. 2025, 27, 3233–3241. [Google Scholar] [CrossRef]
- Qin, Z.; Zheng, F.W.; Zeng, C.; Zhou, K.; Geng, Y.; Wang, J.L.; Li, Y.P.; Ji, Q.W.; Zhou, Y.J. Elevated levels of very low-density lipoprotein cholesterol independently associated with in-stent restenosis in diabetic patients after drug-eluting stent implantation. Chin. Med. J. 2017, 130, 2326–2332. [Google Scholar] [CrossRef]
- Iannuzzi, A.; Giallauria, F.; Gentile, M.; Rubba, P.; Covetti, G.; Bresciani, A.; Aliberti, E.; Cuomo, G.; Panico, C.; Tripaldella, M.; et al. Association between non-HDL-C/HDL-C ratio and carotid intima-media thickness in post-menopausal women. J. Clin. Med. 2021, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Gentile, M.; Iannuzzi, A.; Giallauria, F.; D’Andrea, A.; Venturini, E.; Pacileo, M.; Covetti, G.; Panico, C.; Mattiello, A.; Vitale, G.; et al. Association between very low-density lipoprotein cholesterol (VLDL-C) and carotid intima-media thickness in postmenopausal women without overt cardiovascular disease and on LDL-C target levels. J. Clin. Med. 2020, 9, 1422. [Google Scholar] [CrossRef]
- Prenner, S.B.; Mulvey, C.K.; Ferguson, J.F.; Rickels, M.R.; Bhatt, A.B.; Reilly, M.P. Very low density lipoprotein cholesterol associates with coronary artery calcification in type 2 diabetes beyond circulating levels of triglycerides. Atherosclerosis 2014, 236, 244–250. [Google Scholar] [CrossRef]
- Lawler, P.R.; Akinkuolie, A.O.; Chu, A.Y.; Shah, S.H.; Kraus, W.E.; Craig, D.; Padmanabhan, L.; Glynn, R.J.; Ridker, P.M.; Chasman, D.I.; et al. Atherogenic lipoprotein determinants of cardiovascular disease and residual risk among individuals with low low-density lipoprotein cholesterol. J. Am. Heart Assoc. 2017, 6, e005549. [Google Scholar] [CrossRef]
- Al-Mrabeh, A. Pathogenesis and remission of type 2 diabetes: What has the twin cycle hypothesis taught us? Cardiovasc. Endocrinol. Metab. 2020, 9, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Petrov, M.S. Fateful fat: Intra-pancreatic lipids cause pancreatic cancer. Cell Rep. Med. 2024, 5, 101428. [Google Scholar] [CrossRef]
- Sacks, F.M.; Alaupovic, P.; Moye, L.A.; Cole, T.G.; Sussex, B.; Stampfer, M.J.; Pfeffer, M.A.; Braunwald, E. VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation 2000, 102, 1886–1892. [Google Scholar] [CrossRef]
- Packard, C.J.; Demant, T.; Stewart, J.P.; Bedford, D.; Caslake, M.J.; Schwertfeger, G.; Bedynek, A.; Shepherd, J.; Seidel, D. Apolipoprotein B metabolism and the distribution of VLDL and LDL subfractions. J. Lipid Res. 2000, 41, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Borén, J.; Packard, C.J.; Taskinen, M.R. The roles of ApoC-III on the metabolism of triglyceride-rich lipoproteins in humans. Front. Endocrinol. 2020, 11, 474. [Google Scholar] [CrossRef]
- Reimund, M.; Wolska, A.; Risti, R.; Wilson, S.; Sviridov, D.; Remaley, A.T.; Lookene, A. Apolipoprotein C-II mimetic peptide is an efficient activator of lipoprotein lipase in human plasma as studied by a calorimetric approach. Biochem. Biophys. Res. Commun. 2019, 519, 67–72. [Google Scholar] [CrossRef]
- Kei, A.A.; Filippatos, T.D.; Tsimihodimos, V.; Elisaf, M.S. A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease. Metabolism 2012, 61, 906–921. [Google Scholar] [CrossRef]
- Wolska, A.; Dunbar, R.L.; Freeman, L.A.; Ueda, M.; Amar, M.J.; Sviridov, D.O.; Remaley, A.T. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis 2017, 267, 49–60. [Google Scholar] [CrossRef]
- Bornfeldt, K.E. Apolipoprotein C3: Form begets function. J. Lipid Res. 2024, 65, 100475. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ko, J.; Skudder-Hill, L.; Shamaitijiang, X.; Sequeira-Bisson, I.R.; Petrov, M.S. Interplay between intra-pancreatic fat deposition, exchangeable apolipoproteins, and lipoprotein subclasses. Nutr. Metab. Cardiovasc. Dis. 2025, 104280. [Google Scholar] [CrossRef]
- Singh, R.G.; Nguyen, N.N.; DeSouza, S.V.; Pendharkar, S.A.; Petrov, M.S. Comprehensive analysis of body composition and insulin traits associated with intra-pancreatic fat deposition in healthy individuals and people with new-onset prediabetes/diabetes after acute pancreatitis. Diabetes Obes. Metab. 2019, 21, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sequeira-Bisson, I.R.; Ko, J.; Shamaitijiang, X.; Skudder-Hill, L.; Petrov, M.S. Relationship of intra-pancreatic fat deposition with low-density lipoprotein subfractions and hepatic lipase. Diabetes Obes. Metab. 2025, 27, 6674–6681. [Google Scholar] [CrossRef] [PubMed]
- Al-Mrabeh, A.; Hollingsworth, K.G.; Steven, S.; Tiniakos, D.; Taylor, R. Quantification of intrapancreatic fat in type 2 diabetes by MRI. PLoS ONE 2017, 12, e0174660. [Google Scholar] [CrossRef] [PubMed]
- Gayoso-Diz, P.; Otero-González, A.; Rodriguez-Alvarez, M.X.; Gude, F.; García, F.; De Francisco, A.; Quintela, A.G. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: Effect of gender and age: EPIRCE cross-sectional study. BMC Endocr. Disord. 2013, 13, 47. [Google Scholar] [CrossRef]
- Singh, R.G.; Pendharkar, S.A.; Gillies, N.A.; Miranda-Soberanis, V.; Plank, L.D.; Petrov, M.S. Associations between circulating levels of adipocytokines and abdominal adiposity in patients after acute pancreatitis. Clin. Exp. Med. 2017, 17, 477–487. [Google Scholar] [CrossRef]
- Skudder-Hill, L.; Sequeira-Bisson, I.R.; Ko, J.; Poppitt, S.D.; Petrov, M.S. Relationship of fat deposition in the liver and pancreas with cholecystectomy. Obes. Facts 2025, 18, 468–480. [Google Scholar] [CrossRef]
- Singh, R.G.; Yoon, H.D.; Poppitt, S.D.; Plank, L.D.; Petrov, M.S. Ectopic fat accumulation in the pancreas and its biomarkers: A systematic review and meta-analysis. Diabetes Metab. Res. Rev. 2017, 33, 2918. [Google Scholar] [CrossRef]
- Ko, J.; Petrov, M.S. Intra-pancreatic fat deposition and pancreatitis: Insights from the COSMOS program. Diabetes Metab. Syndr. Obes. 2025, 18, 1489–1500. [Google Scholar] [CrossRef]
- Luchini, C.; Franzina, C.; Caldart, F.; De Pretis, N.; Crestani, M.; Donadelli, M.; Mattiolo, P.; Fiore, A.; Danzi, F.; De Robertis, R.; et al. Fatty pancreas disease: An integrated study on frozen tissues shows distinct compartments of interlobular/intralobular, intra-acinar, and intra-islet fat deposition. Lab. Investig. 2025, 105, 104214. [Google Scholar] [CrossRef]
- Skudder-Hill, L.; Sequeira-Bisson, I.R.; Ko, J.; Poppitt, S.D.; Petrov, M.S. The moderating effect of cardiometabolic factors on the association between hepatic and intrapancreatic fat. Obesity 2024, 32, 2310–2320. [Google Scholar] [CrossRef]
- De Oliveira-Gomes, D.; Joshi, P.H.; Peterson, E.D.; Rohatgi, A.; Khera, A.; Navar, A.M. Apolipoprotein B: Bridging the gap between evidence and clinical practice. Circulation 2024, 150, 62–79. [Google Scholar] [CrossRef] [PubMed]
- Glavinovic, T.; Thanassoulis, G.; de Graaf, J.; Couture, P.; Hegele, R.A.; Sniderman, A.D. Physiological bases for the superiority of apolipoprotein B over low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol as a marker of cardiovascular risk. J. Am. Heart Assoc. 2022, 11, e025858. [Google Scholar] [CrossRef]
- Richardson, T.G.; Sanderson, E.; Palmer, T.M.; Ala-Korpela, M.; Ference, B.A.; Davey Smith, G.; Holmes, M.V. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis. PLoS Med. 2020, 17, e1003062. [Google Scholar] [CrossRef]
- Morand, J.P.; Macri, J.; Adeli, K. Proteomic profiling of hepatic endoplasmic reticulum-associated proteins in an animal model of insulin resistance and metabolic dyslipidemia. J. Biol. Chem. 2005, 280, 17626–17633. [Google Scholar] [CrossRef]
- Bartels, E.D.; Lauritsen, M.; Nielsen, L.B. Hepatic expression of microsomal triglyceride transfer protein and in vivo secretion of triglyceride-rich lipoproteins are increased in obese diabetic mice. Diabetes 2002, 51, 1233–1239. [Google Scholar] [CrossRef]
- Vergès, B. Abnormal hepatic apolipoprotein B metabolism in type 2 diabetes. Atherosclerosis 2010, 211, 353–360. [Google Scholar] [CrossRef]
- Koo, S.H.; Montminy, M. Fatty acids and insulin resistance: A perfect storm. Mol. Cell 2006, 21, 449–450. [Google Scholar] [CrossRef]
- Sheena, V.; Hertz, R.; Nousbeck, J.; Berman, I.; Magenheim, J.; Bar-Tana, J. Transcriptional regulation of human microsomal triglyceride transfer protein by hepatocyte nuclear factor-4alpha. J. Lipid Res. 2005, 46, 328–341. [Google Scholar] [CrossRef]
- Ng, T.W.; Watts, G.F.; Farvid, M.S.; Chan, D.C.; Barrett, P.H. Adipocytokines and VLDL metabolism: Independent regulatory effects of adiponectin, insulin resistance, and fat compartments on VLDL apolipoprotein B-100 kinetics? Diabetes 2005, 54, 795–802. [Google Scholar] [CrossRef]
- Wong, V.W.; Wong, G.L.; Yeung, D.K.; Abrigo, J.M.; Kong, A.P.; Chan, R.S.; Chim, A.M.; Shen, J.; Ho, C.S.; Woo, J.; et al. Fatty pancreas, insulin resistance, and β-cell function: A population study using fat-water magnetic resonance imaging. Am. J. Gastroenterol. 2014, 109, 589–597. [Google Scholar] [CrossRef]
- Mendivil, C.O.; Zheng, C.; Furtado, J.; Lel, J.; Sacks, F.M. Metabolism of very-low-density lipoprotein and low-density lipoprotein containing apolipoprotein C-III and not other small apolipoproteins. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 239–245. [Google Scholar] [CrossRef]
- Jong, M.C.; Hofker, M.H.; Havekes, L.M. Role of ApoCs in lipoprotein metabolism: Functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 472–484. [Google Scholar] [CrossRef]
- Shachter, N.S.; Hayek, T.; Leff, T.; Smith, J.D.; Rosenberg, D.W.; Walsh, A.; Ramakrishnan, R.; Goldberg, I.J.; Ginsberg, H.N.; Breslow, J.L. Overexpression of apolipoprotein CII causes hypertriglyceridemia in transgenic mice. J. Clin. Investig. 1994, 93, 1683–1690. [Google Scholar] [CrossRef]
- Silbernagel, G.; Chen, Y.Q.; Rief, M.; Kleber, M.E.; Hoffmann, M.M.; Stojakovic, T.; Stang, A.; Sarzynski, M.A.; Bouchard, C.; März, W.; et al. Inverse association between apolipoprotein C-II and cardiovascular mortality: Role of lipoprotein lipase activity modulation. Eur. Heart J. 2023, 44, 2335–2345. [Google Scholar] [CrossRef]
- Sundaram, M.; Zhong, S.; Bou Khalil, M.; Links, P.H.; Zhao, Y.; Iqbal, J.; Hussain, M.M.; Parks, R.J.; Wang, Y.; Yao, Z. Expression of apolipoprotein C-III in McA-RH7777 cells enhances VLDL assembly and secretion under lipid-rich conditions. J. Lipid Res. 2010, 51, 150–161. [Google Scholar] [CrossRef]
- Sundaram, M.; Zhong, S.; Bou Khalil, M.; Zhou, H.; Jiang, Z.G.; Zhao, Y.; Iqbal, J.; Hussain, M.M.; Figeys, D.; Wang, Y.; et al. Functional analysis of the missense APOC3 mutation Ala23Thr associated with human hypotriglyceridemia. J. Lipid Res. 2010, 51, 1524–1534. [Google Scholar] [CrossRef]
- Cohn, J.S.; Patterson, B.W.; Uffelman, K.D.; Davignon, J.; Steiner, G. Rate of production of plasma and very-low-density lipoprotein (VLDL) apolipoprotein C-III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity. J. Clin. Endocrinol. Metab. 2004, 89, 3949–3955. [Google Scholar] [CrossRef]
- Yao, Z. Human apolipoprotein C-III—A new intrahepatic protein factor promoting assembly and secretion of very low density lipoproteins. Cardiovasc. Hematol. Disord. Drug Targets 2012, 12, 133–140. [Google Scholar] [CrossRef]
- Adiels, M.; Olofsson, S.O.; Taskinen, M.R.; Borén, J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1225–1236. [Google Scholar] [CrossRef]
- Ebara, T.; Ramakrishnan, R.; Steiner, G.; Shachter, N.S. Chylomicronemia due to apolipoprotein CIII overexpression in apolipoprotein E-null mice. Apolipoprotein CIII-induced hypertriglyceridemia is not mediated by effects on apolipoprotein E. J. Clin. Investig. 1997, 99, 2672–2681. [Google Scholar] [CrossRef]
- Blankenhorn, D.H.; Alaupovic, P.; Wickham, E.; Chin, H.P.; Azen, S.P. Prediction of angiographic change in native human coronary arteries and aortocoronary bypass grafts. Lipid and nonlipid factors. Circulation 1990, 81, 470–476. [Google Scholar] [CrossRef]
- Jørgensen, A.B.; Frikke-Schmidt, R.; Nordestgaard, B.G.; Tybjærg-Hansen, A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N. Engl. J. Med. 2014, 371, 32–41. [Google Scholar] [CrossRef] [PubMed]
- The TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N. Engl. J. Med. 2014, 371, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Nagamine, T.; Fujita, M.Q.; Ai, M.; Tanaka, A.; Schaefer, E. Apolipoprotein B-48: A unique marker of chylomicron metabolism. Adv. Clin. Chem. 2014, 64, 117–177. [Google Scholar]
- Andersen, C.J.; Fernandez, M.L. Emerging biomarkers and determinants of lipoprotein profiles to predict CVD risk: Implications for precision nutrition. Nutrients 2024, 17, 42. [Google Scholar] [CrossRef]
- Lee, H.C.; Akhmedov, A.; Chen, C.H. Spotlight on very-low-density lipoprotein as a driver of cardiometabolic disorders: Implications for disease progression and mechanistic insights. Front. Cardiovasc. Med. 2022, 9, 993633. [Google Scholar] [CrossRef] [PubMed]

| Characteristic | Overall (n = 128) |
|---|---|
| Age (years) | 57.60 (43.56, 67.29) |
| Ethnicity (%) | |
| n = 50 (39.06%) |
| n = 21 (16.41%) |
| n = 3 (2.34%) |
| n = 27 (21.09%) |
| n = 27 (21.09%) |
| Waist-to-hip ratio | 0.96 (0.88, 1.01) |
| Body mass index (kg/m2) | 27.11 (23.57, 31.12) |
| HbA1c (mmol/mol) | 36.97 (35.16, 40.04) |
| HOMA-IR | 3.37 (1.45, 4.06) |
| Total cholesterol (mg/dL) | 177.68 (151.41, 208.51) |
| LDL-C (mg/dL) | 100.54 (73.47, 126.64) |
| HDL-C (mg/dL) | 50.30 (41.83, 61.90) |
| Triglycerides (mg/dL) | 111.05 (79.84, 169.02) |
| Apolipoprotein B | Apolipoprotein C-II | Apolipoprotein C-III | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Characteristic | Normo- Apolipoproteinaemia (n = 96) | Dys- Apolipoproteinaemia (n = 32) | p | Normo- Apolipoproteinaemia (n = 96) | Dys- Apolipoproteinaemia (n = 32) | p | Normo- Apolipoproteinaemia (n = 96) | Dys- Apolipoproteinaemia (n = 32) | p |
| Age (years) | 58.26 (41.16, 65.86) | 55.98 (40.45, 68.71) | 0.848 | 57.40 (43.49, 64.72) | 55.98 (37.62, 70.46) | 0.781 | 57.40 (42.41, 64.72) | 57.40 (38.67, 69.23) | 0.978 |
| Sex (%) | 0.038 | 0.098 | 0.216 | ||||||
| n = 62 (64.58%) | n = 14 (43.75%) | n = 61 (63.54%) | n = 15 (46.88%) | n = 60 (62.50%) | n = 16 (50%) | |||
| n = 34 (35.42%) | n = 18 (56.25%) | n = 35 (36.46%) | n = 17 (53.13%) | n = 36 (37.50%) | n = 16 (50%) | |||
| Ethnicity (%) | 0.999 | 0.621 | 0.621 | ||||||
| n = 37 (38.54%) | n = 13 (40.63%) | n = 37 (38.54%) | n = 13 (40.63%) | n = 37 (38.54%) | n = 13 (40.63%) | |||
| n = 17 (17.71%) | n = 4 (12.50%) | n = 18 (18.75%) | n = 3 (9.38%) | n = 18 (18.75%) | n = 3 (9.38%) | |||
| n = 2 (2.08%) | n = 1 (3.13%) | n = 2 (2.08%) | n = 1 (3.13%) | n = 2 (2.08%) | n = 1 (3.13%) | |||
| n = 19 (19.79%) | n = 8 (25.0%) | n = 20 (20.83%) | n = 7 (21.88%) | n = 20 (20.83%) | n = 7 (21.88%) | |||
| n = 21 (21.88%) | n = 6 (18.75%) | n = 19 (19.79%) | n = 8 (25.0%) | n = 19 (19.79%) | n = 8 (25.0%) | |||
| Waist-to-hip ratio | 0.96 (0.89, 1.01) | 0.94 (0.87, 0.99) | 0.132 | 0.96 (0.89, 1.01) | 0.95 (0.87, 1.01) | 0.625 | 0.96 (0.89, 1.01) | 0.95 (0.87, 1.01) | 0.546 |
| Body mass index (kg/m2) | 27.11 (24.05, 31.11) | 25.03 (21.76, 31.11) | 0.328 | 27.11 (24.05, 31.11) | 25.28 (22.14, 31.11) | 0.242 | 27.11 (23.87, 30.88) | 26.31 (23.34, 31.19) | 0.430 |
| HOMA-IR | 2.45 (1.56, 4.23) | 2.13 (1.17, 3.95) | 0.159 | 2.46 (1.59, 4.96) | 1.99 (1.07, 3.48) | 0.066 | 2.45 (1.56, 4.96) | 2.17 (1.16, 3.50) | 0.085 |
| HbA1c (mmol/mol) | 36.97 (35.16, 40.65) | 36.97 (34.38, 39.55) | 0.399 | 36.97 (35.16, 40.85) | 36.42 (34.12, 38.09) | 0.077 | 36.97 (35.16, 40.85) | 36.05 (33.36, 38.67) | 0.075 |
| Total cholesterol (mg/dL) | 179.47 (151.41, 211.66) | 175.91 (140.47, 205.41) | 0.472 | 181.27 (151.41, 215.94) | 175.91 (140.47, 205.41) | 0.106 | 181.27 (151.41, 215.94) | 172.43 (140.47, 195.39) | 0.224 |
| LDL-C (mg/dL) | 100.54 (73.47, 122.78) | 102.48 (74.44, 130.51) | 0.736 | 104.41 (77.34, 126.64) | 92.81 (66.71, 125.68) | 0.282 | 102.48 (77.34, 126.64) | 96.68 (66.71, 125.68) | 0.403 |
| HDL-C (mg/dL) | 50.40 (39.06, 57.97) | 50.40 (38.86, 68.55) | 0.303 | 50.40 (38.86, 57.97) | 48.42 (39.75, 71.52) | 0.761 | 50.40 (38.86, 57.97) | 50.40 (39.75, 73.33) | 0.454 |
| Apolipoprotein | Subgroup | Model 1 | Model 2 | Model 3 | |||
|---|---|---|---|---|---|---|---|
| β (95% CI) | p | β (95% CI) | p | β (95% CI) | p | ||
| Apo B | Normoapolipoproteinaemia | −0.09 (−0.26, 0.14) | 0.465 | −0.04 (−0.27, 0.19) | 0.732 | −0.09 (−0.34, 0.17) | 0.507 |
| Dysapolipoproteinaemia | 0.29 (−0.05, 0.64) | 0.104 | 0.50 (0.06, 0.93) | 0.034 | 0.82 (0.23, 1.41) | 0.011 | |
| Apo C-II | Normoapolipoproteinaemia | −0.12 (−0.33, 0.08) | 0.231 | −0.12 (−0.33, 0.10) | 0.291 | −0.17 (−0.41, 0.08) | 0.189 |
| Dysapolipoproteinaemia | 0.26 (−0.39, 0.91) | 0.149 | 0.59 (0.04, 1.13) | 0.025 | 1.05 (0.45, 1.65) | 0.003 | |
| Apo C-III | Normoapolipoproteinaemia | −0.11 (−0.32, 0.11) | 0.309 | −0.11 (−0.35, 0.14) | 0.345 | −0.13 (−0.43, 0.17) | 0.293 |
| Dysapolipoproteinaemia | 0.26 (−0.08, 0.61) | 0.148 | 0.70 (−0.13, 1.52) | 0.007 | 1.00 (−0.11, 2.10) | 0.005 | |
| Apolipoprotein | Subgroup | Model 1 | Model 2 | Model 3 | |||
|---|---|---|---|---|---|---|---|
| β (95% CI) | p | β (95% CI) | p | β (95% CI) | p | ||
| Apo B | Normoapolipoproteinaemia | −0.16 (−0.36, 0.04) | 0.121 | −0.19 (−0.40, 0.02) | 0.078 | −0.18 (−0.40, 0.03) | 0.098 |
| Dysapolipoproteinaemia | −0.30 (−0.64, 0.05) | 0.100 | −0.31 (−0.73, 0.12) | 0.167 | −0.34 (−0.83, 0.16) | 0.197 | |
| Apo C-II | Normoapolipoproteinaemia | 0.04 (−0.17, 0.24) | 0.717 | 0.03 (−0.18, 0.24) | 0.786 | 0.04 (−0.13, 0.20) | 0.732 |
| Dysapolipoproteinaemia | −0.10 (−0.45, 0.26) | 0.587 | −0.07 (−0.46, 0.31) | 0.720 | −0.23 (−0.68, 0.22) | 0.327 | |
| Apo C-III | Normoapolipoproteinaemia | 0.01 (−0.19, 0.22) | 0.892 | 0.01 (−0.19, 0.20) | 0.962 | 0.02 (−0.20, 0.24) | 0.850 |
| Dysapolipoproteinaemia | −0.11 (−0.46, 0.25) | 0.550 | −0.09 (−0.46, 0.29) | 0.648 | −0.14 (−0.54, 0.26) | 0.508 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Skudder-Hill, L.; Ko, J.; Shamaitijiang, X.; Sequeira-Bisson, I.R.; Petrov, M.S. Dysapolipoproteinaemia Influences the Relationship Between Very Low-Density Lipoprotein Cholesterol and Intra-Pancreatic Fat Deposition in Humans. Nutrients 2025, 17, 3718. https://doi.org/10.3390/nu17233718
Liu Y, Skudder-Hill L, Ko J, Shamaitijiang X, Sequeira-Bisson IR, Petrov MS. Dysapolipoproteinaemia Influences the Relationship Between Very Low-Density Lipoprotein Cholesterol and Intra-Pancreatic Fat Deposition in Humans. Nutrients. 2025; 17(23):3718. https://doi.org/10.3390/nu17233718
Chicago/Turabian StyleLiu, Yutong, Loren Skudder-Hill, Juyeon Ko, Xiatiguli Shamaitijiang, Ivana R. Sequeira-Bisson, and Maxim S. Petrov. 2025. "Dysapolipoproteinaemia Influences the Relationship Between Very Low-Density Lipoprotein Cholesterol and Intra-Pancreatic Fat Deposition in Humans" Nutrients 17, no. 23: 3718. https://doi.org/10.3390/nu17233718
APA StyleLiu, Y., Skudder-Hill, L., Ko, J., Shamaitijiang, X., Sequeira-Bisson, I. R., & Petrov, M. S. (2025). Dysapolipoproteinaemia Influences the Relationship Between Very Low-Density Lipoprotein Cholesterol and Intra-Pancreatic Fat Deposition in Humans. Nutrients, 17(23), 3718. https://doi.org/10.3390/nu17233718

