Association Between the Lifestyle Inflammation Score and Gestational Diabetes Mellitus and Postpartum Glucose Metabolism Alterations
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Anthropometric and Clinical Measurements
2.3. Lifestyle Factors
2.4. Lifestyle Inflammation Score (LIS)
2.5. Biochemical Analyses
2.6. Postpartum Reclassification
- Glucose metabolism alterations (GMA): fasting serum glucose (FSG) > 100 mg/dL, and/or 2-h OGTT glucose > 140 mg/dL, and/or HbA1c > 5.7%.
- Normal glycemia: FSG < 100 mg/dL and 2-h OGTT glucose < 140 mg/dL [33].
2.7. Dietary Assessment
2.8. Statistical Analysis
3. Results
3.1. Results (Part 1)
3.2. Results (Part 2)
3.2.1. Clinical and Anthropometric Findings
3.2.2. Biochemical Parameters
3.2.3. Dietary Parameters
3.2.4. Association Between LIS and Postpartum Glucose Metabolism Alterations
4. Discussion
4.1. Lifestyle and Anthropometric Factors
4.2. Metabolic Severity and Treatment
4.3. Physical Activity and Smoking
4.4. Dietary Factors and Oxidative Stress
5. Strengths and Limitations
5.1. Strengths
- Our findings suggest that the LIS could identify women at risk of developing GDM and GMA, but more prospective studies with sensitivity and specificity analyses, discrimination, and receiver operating characteristic (ROC) curves are needed to evaluate its utility as a screening tool.
- It identifies modifiable lifestyle factors—BMI, smoking, and physical activity—as critical targets for prevention.
- All the statistical models were adjusted for major potential confounders.
- Physical activity was assessed using a validated standardized questionnaire (IPAQ) administered by trained professionals.
5.2. Limitations
- Self-reported dietary data from FFQs may be subject to recall or social desirability bias, although participants were encouraged to report accurately.
- Alcohol intake was excluded from the LIS because of negligible consumption, which might affect construct validity. Although consumption was negligible in this population, including this variable could introduce noise into the score.
- Despite adjustments for several covariates, residual confounding from unmeasured variables cannot be ruled out.
- The LIS was originally validated in a U.S. population, and its direct application to the Mexican population may not fully capture cultural or environmental differences. Nonetheless, studies in diverse populations have reported consistent associations. Additionally, the results pertain to women attending the IMSS in Mexico City, so their applicability to other populations should be considered with caution.
- The LIS was constructed on the basis of physical activity and smoking status reported at the end of pregnancy, which focuses on habits during pregnancy, so this does not allow us to make causal inferences, since it might have occurred simultaneously with the diagnosis of GDM.
- We did not evaluate diet qualitatively, such as dietary patterns or the Dietary Inflammatory Index, which might be more appropriate.
- Adiponectin was included to assess its effects on LIS and GDM and to identify which metabolic and inflammatory pathways may mediate these effects. This could underestimate the model’s total effect, so the model should be considered an adjusted association, rather than a causal effect. When we removed adiponectin from the regression model, the OR for the highest LIS decreased from (OR 3.723, CI 95%: 1.191–11.640, p = 0.024) to (OR 3.033, CI 95%: 1.108–8.302, p = 0.031). Therefore, adjustment for adiponectin does not underestimate the effect of LIS.
- Another limitation is that we did not use a specific inflammatory biomarker, such as TNF-α, to validate the LIS. However, it was used to construct the β coefficients of the original LIS.
- Although we do not have inter-rater reliability, all participating health professionals were standardized and used valid measurements and questionnaires.
- We do not have the intra- or interassay coefficient of variation, since calculation was only performed once.
5.3. Implications and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| IMSS | Instituto Mexicano del Seguro Social |
| GMA | Glucose Metabolism Alterations |
| GDM | Gestational Diabetes Mellitus |
| LIS | Lifestyle Inflammation Score |
| BMI | Body Mass Index |
| T2D | Type 2 Diabetes |
| LGI | Low-Grade Inflammation |
| CRP | C-Reactive Protein |
| IPAQ | International Physical Activity Questionnaire |
| T | Tertile |
| OGTT | Oral Glucose Tolerance Test |
| FSG | Fasting Serum Glucose |
| FFQ | Food Frequency Questionnaire |
| IQR | Interquartile Range |
| TE | Total Energy |
| HOMA-IR | Homeostasis Model Assessment of Insulin Resistance |
References
- Takele, W.W.; Vesco, K.K.; Josefson, J.; Redman, L.M.; Hannah, W.; Bonham, M.P.; Chen, M.; Chivers, S.C.; Fawcett, A.J.; Grieger, J.A.; et al. Effective interventions in preventing gestational diabetes mellitus: A systematic review and meta-analysis. Commun. Med. 2024, 4, 75. [Google Scholar] [CrossRef] [PubMed]
- Tsironikos, G.I.; Potamianos, P.; Zakynthinos, G.E.; Tsolaki, V.; Tatsioni, A.; Bargiota, A. Effectiveness of lifestyle interventions during pregnancy on preventing gestational diabetes mellitus in high-risk women: A systematic review and meta-analysis of RCTs. J. Clin. Med. 2023, 12, 7038. [Google Scholar] [CrossRef]
- Teymoori, F.; Farhadnejad, H.; Mokhtari, E.; Sohouli, M.H.; Moslehi, N.; Mirmiran, P.; Azizi, F. Dietary and lifestyle inflammatory scores and risk of incident diabetes: A prospective cohort among participants of the Tehran Lipid and Glucose Study. BMC Public Health 2021, 21, 1293. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Saber, N.; Shab-Bidar, S.; Hashemi, S.; Teymoori, F.; Mirzaei, M.; Nadjarzadeh, A.; Rahideh, S.T. Association of dietary and lifestyle inflammatory indices with type 2 diabetes risk in Iranian adults. BMC Endocr. Disord. 2024, 24, 131. [Google Scholar] [CrossRef]
- Bruckner, F.; Gruber, J.R.; Ruf, A.; Thanarajah, S.E.; Reif, A.; Matura, S. Exploring the link between lifestyle, inflammation, and insulin resistance through an improved Healthy Living Index. Nutrients 2024, 16, 388. [Google Scholar] [CrossRef]
- Semnani-Azad, Z.; Gaillard, R.; Hughes, A.E.; Boyle, K.E.; Tobias, D.K.; Perng, W. Precision stratification of prognostic risk factors associated with outcomes in gestational diabetes mellitus: A systematic review. Commun. Med. 2024, 4, 9. [Google Scholar] [CrossRef]
- Li, N.; Yang, Y.; Cui, D.; Li, C.; Ma, R.C.W.; Li, J.; Yang, X. Effects of lifestyle intervention on long-term risk of diabetes in women with prior gestational diabetes: A systematic review and meta-analysis. Obes. Rev. 2021, 22, e13122. [Google Scholar] [CrossRef]
- Magni, O.; Arnaoutis, G.; Panagiotakos, D. The impact of exercise on chronic systemic inflammation: A systematic review and meta-meta-analysis. Sport Sci. Health 2025, 21, 1405–1417. [Google Scholar] [CrossRef]
- Byrd, D.A.; Judd, S.E.; Flanders, W.D.; Hartman, T.J.; Fedirko, V.; Bostick, R.M. Development and validation of novel dietary and lifestyle inflammation scores. J. Nutr. 2019, 149, 2206–2218. [Google Scholar] [CrossRef] [PubMed]
- Farhadnejad, H.; Parastouei, K.; Rostami, H.; Mirmiran, P.; Azizi, F. Dietary and lifestyle inflammatory scores are associated with increased risk of metabolic syndrome in Iranian adults. Diabetol. Metab. Syndr. 2021, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Saber, N.; Hosseinzadeh, M.; Shab-Bidar, S.; Mirzaei, M.; Najarzadeh, A.; Rahideh, S.T. Empirical dietary inflammatory index and lifestyle inflammation score relationship with obesity: A population-based cross-sectional study. Food Sci. Nutr. 2023, 11, 7341–7351. [Google Scholar] [CrossRef]
- Byrd, D.; Bostick, R.; Judd, S.; Flanders, W.; Hartman, T.; Fedirko, V. Associations of novel dietary and lifestyle inflammation scores with incident colorectal cancer in the NIH-AARP Diet and Health Study. Cancer Res. 2019, 77, 3287. [Google Scholar] [CrossRef]
- Byrd, D.A.; Judd, S.; Flanders, W.D.; Hartman, T.J.; Fedirko, V.; Bostick, R.M. Associations of novel dietary and lifestyle inflammation scores with incident, sporadic colorectal adenoma. Cancer Epidemiol. Biomarkers Prev. 2020, 29, 2300–2308. [Google Scholar] [CrossRef] [PubMed]
- Bakhshimoghaddam, F.; Jafarirad, S.; Maraghi, E.; Ghorat, F. Association of dietary and lifestyle inflammation score with type 2 diabetes mellitus and cardiometabolic risk factors in Iranian adults: Sabzevar Persian Cohort Study. Br. J. Nutr. 2024, 131, 521–530. [Google Scholar] [CrossRef]
- Li, H.; Meng, Y.; He, S.; Tan, X.; Zhang, Y.; Zhang, X.; Wang, L.; Zheng, W. Macrophages, Chronic Inflammation, and Insulin Resistance. Cells 2022, 11, 3001. [Google Scholar] [CrossRef]
- Hosseini, E.; Mokhtari, Z.; Salehi-Abargouei, A.; Mishra, G.D.; Amani, R. Maternal circulating leptin, tumor necrosis factor-alpha, and interleukine-6 in association with gestational diabetes mellitus: A systematic review and meta-analysis. Gynecol. Endocrinol. 2023, 3, 2183049. [Google Scholar] [CrossRef] [PubMed]
- Alzamil, H. Elevated Serum TNF-α Is Related to Obesity in Type 2 Diabetes Mellitus and Is Associated with Glycemic Control and Insulin Resistance. J. Obes. 2020, 2020, 5076858. [Google Scholar] [CrossRef]
- Pellegrini, V.; La Grotta, R.; Carreras, F.; Giuliani, A.; Sabbatinelli, J.; Olivieri, F.; Berra, C.C.; Ceriello, A.; Prattichizzo, F. Inflammatory trajectory of type 2 diabetes: Novel opportunities for early and late treatment. Cells 2024, 13, 1662. [Google Scholar] [CrossRef]
- Tumurbaatar, B.; Poole, A.; Olson, G.; Makhlouf, M.; Sallam, H.S.; Thukuntla, S.; Kankanala, S.; Ekhaese, O.; Gomez, G.; Chandalia, M.; et al. Adipose tissue insulin resistance in gestational diabetes. Metab. Syndr. Relat. Disord. 2017, 15, 86–92. [Google Scholar] [CrossRef]
- Sun, C.; Shen, J.; Fang, R.; Huang, H.; Lai, Y.; Hu, Y.; Zheng, J. The impact of environmental and dietary exposure on gestational diabetes mellitus: A comprehensive review emphasizing the role of oxidative stress. Front. Endocrinol. 2025, 16, 1393883. [Google Scholar] [CrossRef]
- Moyce-Gruber, B.L.; Dolinsky, V.W. The role of adiponectin during pregnancy and gestational diabetes. Life 2023, 13, 301. [Google Scholar] [CrossRef] [PubMed]
- Retnakaran, R.; Qi, Y.; Connelly, P.W.; Sermer, M.; Hanley, A.J.; Zinman, B. Low adiponectin concentration during pregnancy predicts postpartum insulin resistance, beta-cell dysfunction, and fasting glycemia. Diabetologia 2010, 53, 268–276. [Google Scholar] [CrossRef]
- Pérez-Pérez, A.; Vilariño-García, T.; Guadix, P.; Dueñas, J.L.; Sánchez-Margalet, V. Leptin and nutrition in gestational diabetes. Nutrients 2020, 12, 1970. [Google Scholar] [CrossRef]
- Vilariño-García, T.; Polonio-González, M.L.; Pérez-Pérez, A.; Ribalta, J.; Arrieta, F.; Aguilar, M.; Obaya, J.C.; Gimeno-Orna, J.A.; Iglesias, P.; Navarro, J.; et al. Role of leptin in obesity, cardiovascular disease, and type 2 diabetes. Int. J. Mol. Sci. 2024, 25, 2338. [Google Scholar] [CrossRef]
- Caturano, A.; D’Angelo, M.; Mormone, A.; Russo, V.; Mollica, M.P.; Salvatore, T.; Galiero, R.; Rinaldi, L.; Vetrano, E.; Marfella, R.; et al. Oxidative stress in type 2 diabetes: Impacts from pathogenesis to lifestyle modifications. Curr. Issues Mol. Biol. 2023, 45, 6651–6666. [Google Scholar] [CrossRef] [PubMed]
- Hecker, M.; Wagner, A.H. Role of protein carbonylation in diabetes. J. Inherit. Metab. Dis. 2018, 41, 29–38. [Google Scholar] [CrossRef]
- Suverza, A.; Haua, K. El ABCD de la Evaluación del Estado de Nutrición; McGraw-Hill: Mexico City, Mexico, 2010; pp. 29–68. [Google Scholar]
- Institute of Medicine (US) and National Research Council (US) Committee to Reexamine IOM Pregnancy Weight Guidelines. Weight Gain During Pregnancy: Reexamining the Guidelines; National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.L.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.S.; Blaha, M.J.; Elshazly, M.B.; Toth, P.P.; Kwiterovich, P.O.; Blumenthal, R.S.; Jones, S.R. Comparison of a novel method vs the Friedewald equation for estimating low-density lipoprotein cholesterol levels from the standard lipid profile. JAMA 2013, 310, 2061–2068. [Google Scholar] [CrossRef]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of HOMA modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.G.; Ahn, B.W.; Shaltiel, S.; Stadtman, E.R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990, 186, 464–478. [Google Scholar] [CrossRef]
- American Diabetes Association. Chapter 2: Diagnosis and classification of diabetes: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48 (Suppl. 1), S27–S49. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ávila, M.; Romieu, I.; Parra, S.; Hernández-Ávila, J.; Madrigal, H.; Willett, W. Validity and reproducibility of a food frequency questionnaire to assess dietary intake of women living in Mexico City. Salud Pública Mex. 1998, 40, 133–140. [Google Scholar] [CrossRef]
- Dennison, R.A.; Chen, E.S.; Green, M.E.; Legard, C.; Kotecha, D.; Farmer, G.; Sharp, S.J.; Ward, R.J.; Usher-Smith, J.A.; Griffin, S.J. The absolute and relative risk of type 2 diabetes after gestational diabetes: A systematic review and meta-analysis of 129 studies. Diabetes Res. Clin. Pract. 2021, 171, 108625. [Google Scholar] [CrossRef]
- Domazet, S.L.; Olesen, T.B.; Stidsen, J.V.; Svensson, C.K.; Nielsen, J.S.; Thomsen, R.W.; Jessen, N.; Vestergaard, P.; Andersen, M.K.; Hansen, T.; et al. Low-grade inflammation in persons with recently diagnosed type 2 diabetes: The role of abdominal adiposity and putative mediators. Diabetes Obes. Metab. 2024, 26, 2092–2101. [Google Scholar] [CrossRef]
- Kirwan, J.P.; Hauguel-De Mouzon, S.; Lepercq, J.; Challier, J.C.; Huston-Presley, L.; Friedman, J.E.; Kalhan, S.C.; Catalano, P.M. TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes 2002, 51, 2207–2213. [Google Scholar] [CrossRef] [PubMed]
- Lizárraga, D.; García-Gasca, A. The Placenta as a Target of Epigenetic Alterations in Women with Gestational Diabetes Mellitus and Potential Implications for the Offspring. Epigenomes 2021, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.J.; Parra, H.; Santeliz, R.; Bautista, J.; Luzardo, E.; Villasmil, N.; Martínez, M.S.; Chacín, M.; Cano, C.; Checa-Ros, A.; et al. The Placental Role in Gestational Diabetes Mellitus: A Molecular Perspective. touchREV Endocrinol. 2024, 20, 10–18. [Google Scholar] [CrossRef]
- Ferrari, N.; Joisten, C. Impact of physical activity on the course and outcome of pregnancy from pre- to postnatal. Eur. J. Clin. Nutr. 2021, 75, 1698–1709. [Google Scholar] [CrossRef]
- McDonnell, B.P.; Regan, C. Smoking in pregnancy: Pathophysiology of harm and current evidence for monitoring and cessation. TOG 2019, 21, 169–175. [Google Scholar] [CrossRef]
- Athanasiadou, K.I.; Paschou, S.A.; Papakonstantinou, E.; Vasileiou, V.; Kanouta, F.; Kazakou, P.; Stefanaki, K.; Kassi, G.N.; Psaltopoulou, T.; Goulis, D.G.; et al. Smoking during pregnancy and gestational diabetes mellitus: A systematic review and meta-analysis. Endocrine 2023, 82, 250–262. [Google Scholar] [CrossRef]
- Masalin, S.; Kautiainen, H.; Gissler, M.; Pennanen, P.; Eriksson, J.G.; Laine, M.K. Impact of smoking on gestational diabetes mellitus and offspring birthweight in primiparous women. Acta Obstet. Gynecol. Scand. 2020, 99, 1632–1639. [Google Scholar] [CrossRef]
- Zhang, C.; Tobias, D.K.; Chavarro, J.E.; Bao, W.; Wang, D.; Ley, S.H.; Hu, F.B. Adherence to healthy lifestyle and risk of gestational diabetes mellitus: Prospective cohort study. BMJ 2014, 349, g5450. [Google Scholar] [CrossRef]
- The InterAct Consortium; Spijkerman, A.M.; van der A, D.L.; Nilsson, P.M.; Ardanaz, E.; Gavrila, D.; Agudo, A.; Arriola, L.; Balkau, B.; Beulens, J.W.; et al. Smoking and long-term risk of type 2 diabetes: The EPIC-InterAct study in European populations. Diabetes Care 2014, 37, 3164–3171. [Google Scholar] [CrossRef]
- Maddatu, J.; Anderson-Baucum, E.; Evans-Molina, C. Smoking and the risk of type 2 diabetes. Transl. Res. 2017, 184, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Sun, J.; Zhi, M.; Han, M.; Lin, H.; Yu, H.; Li, L. Effect of gestational weight gain on insulin resistance mediated by serum adipokine concentrations in advanced maternal age. Arch. Med. Sci. 2021, 17, 1575–1582. [Google Scholar] [CrossRef] [PubMed]
| LIS Components 1 | Rationale for Inclusion | β Coefficients |
|---|---|---|
| Alcohol consumption | Heavy drinker: >14 g of ethanol/day for women vs. nondrinker | 0.30 |
| Moderate drinker: 14 g of ethanol/day for women vs. non-drinker | −0.66 | |
| Physical activity | Moderately physically active: exercises 1–3 times a week vs. does not exercise | −0.18 |
| Heavily physically active: exercises ≥4 times a week vs. does not exercise | −0.41 | |
| Current smoker | Currently smokes tobacco vs. does not currently smoke tobacco | 0.50 |
| Overweight and obese BMI | Overweight BMI vs. normal BMI | 0.89 |
| Obese BMI vs. normal BMI | 1.57 |
| LIS T1 n = 120 Median (IQR) | LIS T2 n = 127 Median (IQR) | LIS T3 n = 131 Median (IQR) | p | Effect Size | |
|---|---|---|---|---|---|
| At the end of pregnancy (38 gestational weeks) | |||||
| Age (years) | 32 (26.2–35) | 33 (29–36) | 33 (29–37) | 0.053 | 0.010 † |
| Family history of diabetes, n (%) * | 87 (72.5) | 91 (71.7) | 107 (81.7) | 0.086 | 0.107 †† |
| Cesarean section delivery, n (%) * | 89 (74.2) | 99 (78) | 97 (74) | 0.966 | 0.042 †† |
| Gravidity | 2 (1–3) | 2 (1–3) | 2 (1–3) | 0.128 | 0.005 † |
| Apgar | 8 (8–8.7) | 8 (8–9) | 8 (8–8) | 0.644 | <0.001 † |
| Pregestational BMI (kg/m2) | 23.3 (21.6–24.2) | 27.4 (26.1–28.8) | 32.8 (31–35) | <0.001 | 0.763 † |
| At the end of pregnancy BMI (kg/m2) | 26.6 (25.1–29.5) | 30.8 (29.1–32.1) | 34.6 (31.7–37.8) | <0.001 | 0.464 † |
| Physical Activity, n (%) * | 0.001 | 0.208 †† | |||
| Physically inactive | 32 (26.7) | 36 (28.3) | 40 (30.5) | ||
| Moderately active | 63 (52.5) | 83 (65.4) | 90 (68.7) | ||
| Heavily active | 25 (20.8) | 8 (6.3) | 1 (0.8) | ||
| Actively smoking, n (%) * | 8 (6.7) | 1 (0.8) | 32 (24.4) | <0.001 | 0.327 †† |
| Postpartum | |||||
| Weight gain during pregnancy (Kg) | 10 (6–14.3) | 8 (4–12) | 4 (0.7, 8) | <0.001 | 0.149 † |
| Postpartum BMI ** | 24.2 ± 3.7 | 27.9 ± 3.0 | 33.3 ± 4.3 | <0.001 | 0.541 † |
| Fat mass (%) | 30.8 (28.3–33.5) | 36.0 (33.2–39.1) | 42.5 (38.7–45.4) | <0.001 | 0.512 † |
| Waist/Hip ratio ** | 0.83 ± 0.05 | 0.86 ± 0.06 | 0.87 ± 0.06 | <0.001 | 0.086 † |
| Systolic blood pressure (mmHg) | 108.5 (100–113) | 110 (104–118) | 112 (110–120) | <0.001 | 0.072 † |
| Diastolic blood pressure (mmHg) | 70 (65–76.7) | 72 (68–80) | 74 (70–80) | <0.001 | 0.038 † |
| Exclusive breastfeeding, n (%) * | 79 (65.8) | 81 (63.8) | 74 (56.5) | 0.125 | 0.083 †† |
| LIS T1 n = 120 Median (IQR) | LIS T2 n = 127 Median (IQR) | LIS T3 n = 131 Median (IQR) | p | Effect Size | |
|---|---|---|---|---|---|
| At the end of pregnancy (38 gestational weeks) | |||||
| Fasting serum glucose (mg/dL) | 67.5 (56–84.7) | 67 (59–78) | 69 (57–88) | 0.706 | <0.001 † |
| Triglycerides (mg/dL) | 318.5 (256.2–401) | 321 (275–407) | 340 (284–416) | 0.156 | 0.005 † |
| LDL cholesterol (mg/dL) | 144.8 (110.6–171.9) | 135 (111.4–167.7) | 130.4 (105.1–163.4) | 0.310 | 0.001 † |
| HDL cholesterol (mg/dL) | 54.5 (47–65) | 54 (46–62) | 53 (42–62) | 0.313 | 0.001 † |
| Uric acid (mg/dL) | 5 (4.3–5.9) | 5.1 (4.5–5.8) | 5.2 (4.7–6.1) | 0.127 | 0.006 † |
| Fasting serum Insulin (U/mL) | 10.2 (6.8–16.8) | 10.2 (6.7–17.1) | 13.2 (8.7–26.5) | 0.002 | 0.027 † |
| HbA1c (%) | 5.4 (5.2–5.8) | 5.6 (5.3–5.8) | 5.6 (5.2–6) | 0.015 | 0.017 † |
| HOMA-IR | 1.5 (0.9–3.4) | 1.7 (0.9–3.1) | 2.1 (1.2–5.6) | 0.015 | 0.017 † |
| Leptin (pg/mL) | 7088.4 (4918.3–8741.8) | 6921.6 (5399.3–8542.2) | 7279.6 (4920.8–8710.2) | 0.985 | <0.001 † |
| Adiponectin (pg/mL) | 2956.8 (2404.2–3744.1) | 3306 (2448.5–3828.8) | 3402.5 (2736.1–4100.7) | 0.005 | 0.023 † |
| Carbonylated proteins (nmol/mL) | 25.6 (17.5–30.9) | 28.6 (19–35.4) | 29.5 (25.2–34.7) | 0.002 | 0.028 † |
| Postpartum | |||||
| Fasting serum glucose (mg/dL) | 84 (76.2–91.7) | 86 (77–94) | 92 (82–101) | <0.001 | 0.057 † |
| Triglycerides (mg/dL) | 91 (69.2–152) | 117 (86–187) | 143 (109–198) | <0.001 | 0.079 † |
| LDL cholesterol (mg/dL) | 104.7 (88.9–122.6) | 114.2 (97.5–135) | 114.6 (101–132.5) | 0.014 | 0.017 † |
| HDL cholesterol (mg/dL) | 52 (44–60.5) | 49 (42–56) | 46 (39–53) | <0.001 | 0.040 † |
| Uric acid (mg/dL) | 4.5 (4–5.3) | 5 (4.4–5.7) | 5.4 (4.7–6) | <0.001 | 0.076 † |
| Fasting serum insulin (U/mL) | 6.1 (4.4–8.7) | 8.7 (5.4–12.4) | 10.9 (7.8–16.9) | <0.001 | 0.138 † |
| HbA1c (%) | 5.3 (5.1–5.6) | 5.5 (5.2–5.8) | 5.6 (5.3–6) | <0.001 | 0.041 † |
| HOMA-IR | 1.2 (0.8–1.8) | 1.6 (0.9–2.7) | 2.6 (1.7–4.3) | <0.001 | 0.141 † |
| LIS T1 n = 120 Median (IQR) | LIS T2 n = 127 Median (IQR) | LIS T3 n = 131 Median (IQR) | p | Effect Size | |
|---|---|---|---|---|---|
| Energy (Kcals) | 2157.7 (1682.6–2655.1) | 2083.2 (1619.1–2635.9) | 1829.2 (1495.7–2329.3) | 0.009 | <0.020 † |
| Proteins (% TE) | 14.0 (12.7–15.3) | 14.2 (12.5–15.7) | 14.5 (13.3–15.9) | 0.127 | 0.006 † |
| Carbohydrates (% TE) * | 50.2 ± 7.4 | 49.2 ± 7.8 | 49.2 ± 7.2 | 0.531 | <0.001 † |
| Fats (% TE) | 36.2 (32.6–40.2) | 37 (32–42.4) | 36.6 (32.7–40.8) | 0.684 | <0.001 † |
| Saturated fatty acids (% TE) | 10.8 (9.5–12.2) | 11 (9.7–12) | 11.1 (9.6–12.5) | 0.798 | <0.001 † |
| Monounsaturated fatty acids (% TE) | 14.7 (12.9–16.8) | 14.2 (12.6–16.7) | 14.8 (12.5–16.9) | 0.929 | <0.001 † |
| Polyunsaturated fatty acids (% TE) | 6.4 (5.6–8.1) | 6.8 (5.6–9.6) | 6.7 (6–8.4) | 0.326 | 0.001 † |
| Variable | OR | 95% CI | p |
|---|---|---|---|
| LIS (T1) | Reference | - | - |
| LIS (T2) | 2.004 | 0.667–6.023 | 0.216 |
| LIS (T3) | 3.723 | 1.191–11.640 | 0.024 |
| LIS T1 n = 61 Median (IQR) | LIS T2 n = 90 Median (IQR) | LIS T3 n = 95 Median (IQR) | p | |
|---|---|---|---|---|
| At the end of pregnancy (38 gestational weeks) | ||||
| Age (years) | 33 (28.5–38) | 34 (30–37) | 34 (31–37) | 0.528 |
| Family history of diabetes, n (%) * | 48 (78.7) | 69 (76.7) | 77 (81.1) | 0.664 |
| Cesarean section delivery, n (%) * | 44 (72.1) | 69 (76.7) | 71 (74.7) | 0.769 |
| Gravidity | 2 (1–3) | 2 (1–3) | 2 (1–3) | 0.414 |
| Apgar | 8 (8–8.5) | 8 (8–9) | 8 (8–8) | 0.500 |
| Pregestational BMI (kg/m2) | 23.6 (22.1–24.4) | 27.7 (26.5–29.2) | 33.4 (31.2–35.9) | <0.001 |
| At the end of pregnancy BMI (kg/m2) | 26.4 (25.1–29.0) | 30.8 (29.3–32.5) | 35.2 (32.4–38.2) | <0.001 |
| Physical Activity, n (%) * | ||||
| Physically inactive | 17 (27.9) | 25 (27.8) | 32 (33.7) | 0.001 |
| Moderately active | 27 (44.3) | 58 (64.4) | 62 (65.3) | |
| Heavily active | 17 (27.9) | 7 (7.8) | 1 (1.1) | |
| Actively smoking, n (%) * | 0 (0) | 7 (7.8) | 20 (21.1) | <0.001 |
| Pharmacological treatment during pregnancy, n (%) * | 23 (41.1) | 41 (47.7) | 55 (59.1) | 0.027 |
| Postpartum | ||||
| Weight gain during pregnancy (kg) | 9 (4.7–13) | 8 (4.3–12.5) | 3 (−1, 8) | <0.001 |
| Postpartum BMI ** | 24.9 ± 4.1 | 28.5 ± 3.0 | 33.6 ± 4.4 | <0.001 |
| Fat mass (%) | 32.3 (29.0–35.3) | 36.8 (34.5–39.6) | 43.1 (39.4–45.6) | <0.001 |
| Waist/Hip ratio ** | 0.83 ± 0.05 | 0.86 ± 0.05 | 0.88 ± 0.05 | <0.001 |
| Systolic blood pressure (mmHg) | 110 (103–114.5) | 111.2 (104.7–119.2) | 114 (110–120) | 0.001 |
| Diastolic blood pressure (mmHg) | 70 (65–78) | 74.7 (70–80) | 74 (70–80) | 0.004 |
| Exclusive breastfeeding, n (%) * | 38 (62.3) | 54 (60) | 54 (56.8) | 0.490 |
| LIS T1 n = 61 Median (IQR) | LIS T2 n = 90 Median (IQR) | LIS T3 n = 95 Median (IQR) | p | |
|---|---|---|---|---|
| At the end of pregnancy (38 gestational weeks) | ||||
| Fasting serum glucose (mg/dL) | 73 (62.5–92) | 70 (62–82) | 70 (60–91) | 0.504 |
| Triglycerides (mg/dL) | 333 (272–418) | 338 (281.2–444.7) | 345 (277–410) | 0.719 |
| LDL cholesterol (mg/dL) | 131.7 (104.8–167.4) | 142.1 (112.1–167.6) | 131.3 (102.6–163.4) | 0.723 |
| HDL cholesterol (mg/dL) | 53 (45–61) | 55 (44–64.2) | 52 (41–61) | 0.185 |
| Uric acid (mg/dL) | 5.1 (4.1–6.1) | 5 (4.4–5.8) | 5.3 (4.8–6.1) | 0.048 |
| Fasting serum Insulin (U/mL) | 11.3 (6.8–21.4) | 11.5 (7.3–21.6) | 13.6 (9.1–28.7) | 0.112 |
| HbA1c (%) | 5.5 (5.3–5.8) | 5.7 (5.4–6) | 5.7 (5.4–6.0) | 0.096 |
| HOMA-IR | 1.8 (1.1–5.0) | 1.9 (1.0–4.2) | 2.1 (1.4–7.3) | 0.263 |
| Leptin (pg/mL) | 5620.1 (3548.1–7909.9) | 6303.1 (4590.5–8048) | 6831.2 (4500.6–8179.6) | 0.174 |
| Adiponectin (pg/mL) | 3516.7 (2956.8–4058.9) | 3574 (2784.7–4146.2) | 3696.9 (3211.1–4187.6) | 0.323 |
| Carbonylated proteins (nmol/mL) | 30.9 (26.5–36.4) | 32.9 (27.8–38.4) | 31.5 (26.8–36.3) | 0.256 |
| Postpartum | ||||
| Fasting serum glucose (mg/dL) | 90 (81.5–95.5) | 90 (80.7–99) | 95 (87–102) | 0.007 |
| Glucose 2-h (mg/dL) post OGTT | 102 (85.2–124.5) | 116 (92.7–143.1) | 115.5 (99–143.1) | 0.016 |
| Triglycerides (mg/dL) | 121 (75.5–181.5) | 142.5 (94.7–208.2) | 141 (105–195) | 0.033 |
| LDL cholesterol (mg/dL) | 107.6 (86–121.5) | 114.7 (100.2–135) | 118.7 (102.7–132.5) | 0.028 |
| HDL cholesterol (mg/dL) | 49 (39.5–60) | 47 (40–54) | 46 (38–52) | 0.111 |
| Uric acid (mg/dL) | 4.6 (4–5.3) | 5.1 (4.5–5.7) | 5.4 (4.7–6) | <0.001 |
| Fasting serum insulin (U/mL) | 6.4 (4.6–10.3) | 9.5 (5.8–13) | 11.2 (7.8–17) | <0.001 |
| Insulin 2-h (U/mL) post OGTT | 34.5 (16.1–50.8) | 44.1 (28.9–66.1) | 58.1 (28.3–80) | 0.001 |
| HbA1c (%) | 5.6 (5.3–5.8) | 5.6 (5.4–5.8) | 5.8 (5.4–6.1) | 0.094 |
| HOMA-IR | 1.4 (1–2.2) | 2 (1.3–3) | 2.8 (1.7–4.6) | <0.001 |
| LIS T1 n = 61 Median (IQR) | LIS T2 n = 90 Median (IQR) | LIS T3 n = 95 Median (IQR) | p | |
|---|---|---|---|---|
| Energy (kcals) | 2041.9 (1599.6–2526.6) | 1994.4 (1594.1–2538.9) | 1896.3 (1515.2–2310.1) | 0.363 |
| Proteins (% TE) | 14.6 (13.3–16) | 14.6 (12.7–15.9) | 14.5 (13.3–16.1) | 0.698 |
| Carbohydrates (% TE) * | 48.9 ± 7.3 | 48.3 ± 8.2 | 49.5 ± 7.4 | 0.550 |
| Fats (% TE) | 36.6 (34.7–40.7) | 37.7 (32.2–43.4) | 35.9 (32.2–40.1) | 0.255 |
| Saturated fatty acids (% TE) | 11.6 (10.1–12.6) | 11.2 (9.9–12.5) | 11 (9.6–12.3) | 0.550 |
| Monounsaturated fatty acids (% TE) | 15.1 (13.6–17) | 14.4 (12.9–16.7) | 14.6 (12.4–16.9) | 0.301 |
| Polyunsaturated fatty acids (% TE) | 6.5 (5.6–7.5) | 6.8 (5.7–9.9) | 6.8 (6–8.7) | 0.229 |
| Variable | OR | 95% CI | p |
|---|---|---|---|
| LIS (T1) | Reference | - | - |
| LIS (T2) | 1.836 | 0.880–3.830 | 0.105 |
| LIS (T3) | 2.685 | 1.253–5.755 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Martínez, M.L.; Gómez-Díaz, R.A.; Valdez-González, A.L.; Ramírez-García, L.A.; Acevedo-Rodríguez, G.E.; Ramos-Cervantes, M.T.; Díaz-Velázquez, M.F.; Morales-Pérez, M.A.; Mondragón-González, R.; Wacher, N.H. Association Between the Lifestyle Inflammation Score and Gestational Diabetes Mellitus and Postpartum Glucose Metabolism Alterations. Nutrients 2025, 17, 3717. https://doi.org/10.3390/nu17233717
Ruiz-Martínez ML, Gómez-Díaz RA, Valdez-González AL, Ramírez-García LA, Acevedo-Rodríguez GE, Ramos-Cervantes MT, Díaz-Velázquez MF, Morales-Pérez MA, Mondragón-González R, Wacher NH. Association Between the Lifestyle Inflammation Score and Gestational Diabetes Mellitus and Postpartum Glucose Metabolism Alterations. Nutrients. 2025; 17(23):3717. https://doi.org/10.3390/nu17233717
Chicago/Turabian StyleRuiz-Martínez, Mónica L., Rita A. Gómez-Díaz, Adriana Leticia Valdez-González, Luz Angélica Ramírez-García, Gabriela Eridani Acevedo-Rodríguez, María Teresa Ramos-Cervantes, Mary Flor Díaz-Velázquez, Marco Antonio Morales-Pérez, Rafael Mondragón-González, and Niels H. Wacher. 2025. "Association Between the Lifestyle Inflammation Score and Gestational Diabetes Mellitus and Postpartum Glucose Metabolism Alterations" Nutrients 17, no. 23: 3717. https://doi.org/10.3390/nu17233717
APA StyleRuiz-Martínez, M. L., Gómez-Díaz, R. A., Valdez-González, A. L., Ramírez-García, L. A., Acevedo-Rodríguez, G. E., Ramos-Cervantes, M. T., Díaz-Velázquez, M. F., Morales-Pérez, M. A., Mondragón-González, R., & Wacher, N. H. (2025). Association Between the Lifestyle Inflammation Score and Gestational Diabetes Mellitus and Postpartum Glucose Metabolism Alterations. Nutrients, 17(23), 3717. https://doi.org/10.3390/nu17233717

