A Cross-Sectional Study of the Relationship Between Dietary Micronutrient Intake, Cognition and Academic Performance Among School-Aged Children in Taabo, Côte d’Ivoire
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Area
2.2. Sample Size and Sampling Procedure
2.3. Inclusion and Exclusion Criteria
2.4. Sociodemographics and Anthropometrics
2.5. Dietary Intake Assessment
2.6. Cognitive Skills Assessment
2.7. Academic Performance Assessment
2.8. Statistical Analysis
3. Results
3.1. Sociodemographic and Anthropometric Characteristics
3.2. Cognitive and School Performance
3.3. Cognitive and Academic Performance by Sociodemographic Background
3.4. Cognitive and Academic Performance by Anthropometric Characteristics
3.5. Associations Between Nutrient Intake and Cognition or Academic Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collins, W.A. School And Children: The Middle Childhood Years. In Development During Middle Childhood: The Years from Six to Twelve; National Academies Press: Washington, DC, USA, 1984. [Google Scholar]
- Mantey, A.A.; Annan, R.A.; Lutterodt, H.E.; Twumasi, P. Iron Status Predicts Cognitive Test Performance of Primary School Children from Kumasi, Ghana. PLoS ONE 2021, 16, e0251335. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Pinilla, F. Brain Foods: The Effects of Nutrients on Brain Function. Nat. Rev. Neurosci. 2008, 9, 568–578. [Google Scholar] [CrossRef]
- Lassek, W.D.; Gaulin, S.J.C. Sex Differences in the Relationship of Dietary Fatty Acids to Cognitive Measures in American Children. Front. Evol. Neurosci. 2011, 3, 5. [Google Scholar] [CrossRef]
- Richardson, A.J. The Importance of Omega-3 Fatty Acids for Behaviour, Cognition and Mood. Scand. J. Nutr. 2003, 47, 92–98. [Google Scholar] [CrossRef]
- De Moura, J.E.; De Moura, E.N.O.; Alves, C.X.; De Lima Vale, S.H.; Dantas, M.M.G.; De Araújo Silva, A.; Das Graças Almeida, M.; Leite, L.D.; Brandão-Neto, J. Oral Zinc Supplementation May Improve Cognitive Function in Schoolchildren. Biol. Trace Elem. Res. 2013, 155, 23–28. [Google Scholar] [CrossRef]
- Falkingham, M.; Abdelhamid, A.; Curtis, P.; Fairweather-Tait, S.; Dye, L.; Hooper, L. The Effects of Oral Iron Supplementation on Cognition in Older Children and Adults: A Systematic Review and Meta-Analysis. Nutr. J. 2010, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Nyaradi, A.; Li, J.; Hickling, S.; Foster, J.; Oddy, W.H. The Role of Nutrition in Children’s Neurocognitive Development, from Pregnancy through Childhood. Front. Hum. Neurosci. 2013, 7, 97. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Connolly, K.; Bozo, M.; Bridson, J.; Rohner, F.; Grimci, L. Iodine Supplementation Improves Cognition in Iodine-Deficient Schoolchildren in Albania: A Randomized, Controlled, Double-Blind Study. Am. J. Clin. Nutr. 2006, 83, 108–114. [Google Scholar] [CrossRef]
- Hürlimann, E.; Yapi, R.B.; Houngbedji, C.A.; Schmidlin, T.; Kouadio, B.A.; Silué, K.D.; Ouattara, M.; N’Goran, E.K.; Utzinger, J.; Raso, G. The Epidemiology of Polyparasitism and Implications for Morbidity in Two Rural Communities of Côte d’Ivoire. Parasit. Vectors 2014, 7, 81. [Google Scholar] [CrossRef]
- Yapi, H.F.; Ahiboh, H.; Ago, K.; Aké, M.; Monnet, D. Profil Protéique et Vitamine A Chez l’enfant d’âge Scolaire En Côte d’Ivoire. Ann. Biol. Clin. 2005, 63, 291–295. [Google Scholar]
- Monti, J.M.; Moulton, C.J.; Cohen, N.J. The Role of Nutrition on Cognition and Brain Health in Ageing: A Targeted Approach|Nutrition Research Reviews. Camb. Core 2015, 28, 167–180. [Google Scholar] [CrossRef]
- Righetti, A.A.; Koua, A.-Y.G.; Adiossan, L.G.; Glinz, D.; Hurrell, R.F.; N’Goran, E.K.; Niamké, S.; Wegmüller, R.; Utzinger, J. Etiology of Anemia Among Infants, School-Aged Children, and Young Non-Pregnant Women in Different Settings of South-Central Côte d’Ivoire. Am. J. Trop. Med. Hyg. 2012, 87, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Rohner, F.; Zimmermann, M.B.; Wegmueller, R.; Tschannen, A.B.; Hurrell, R.F. Mild Riboflavin Deficiency Is Highly Prevalent in School-Age Children but Does Not Increase Risk for Anaemia in Cote d’Ivoire. Br. J. Nutr. 2007, 97, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Fifi, T.M.; Sylvère, Z.K.Y.A.; Fossou, A.F.; Bitty, M.L.A.; Séraphin, K.-C. Assessment of the Nutritional Status of Schoolchildren in the Commune of Abobo. EAS J. Nutr. Food Sci. 2023, 5, 132–141. [Google Scholar] [CrossRef]
- Yapo, P. Nutritional Status, Sociodemographic Status and Academic Performance of Students in Two Selected Secondary Schools in Yopougon, Abidjan (Côte d’Ivoire). Age 2018, 10, 70. [Google Scholar] [CrossRef]
- Koné, S.; Baikoro, N.; N’Guessan, Y.; Jaeger, F.N.; Silué, K.D.; Fürst, T.; Hürlimann, E.; Ouattara, M.; Séka, M.-C.Y.; N’Guessan, N.A.; et al. Health & Demographic Surveillance System Profile: The Taabo Health and Demographic Surveillance System, Côte d’Ivoire. Int. J. Epidemiol. 2015, 44, 87–97. [Google Scholar] [CrossRef]
- Diomande, M.; Dongo, K.; Dje, K.B.; Kouadio, K.K.H.; Kone, D.; Biemi, J.; Bonfoh, B. Vers Un Changement Du Calendrier Cultural Dans l’ecotone Foret-Savane de La Côte D’Ivoire. Agron. Afr. 2013, 25, 133–147. [Google Scholar]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO Growth Reference for School-Aged Children and Adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Gibson, R.S.; Ferguson, E.L. An Interactive 24-Hour Recall for Assessing the Adequacy of Iron and Zinc Intakes in Developing Countries; International Food Policy Research Institute: Washington, DC, USA, 2008. [Google Scholar]
- Anderegg, S.C. Evaluation and Interpretation of a Three-Day Weighed Food Record from South-Central Côte d’Ivoire with a Focus on Iron Intake and Absorption. Bachelor’sThesis, ETH Zurich, Zurich, Switzerland, 2008. [Google Scholar]
- WHO/FAO. Vitamin and Mineral Requirements in Human Nutrition; FAO: Rome, Italy, 2004. [Google Scholar]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Fats, Including Saturated Fatty Acids, Polyunsaturated Fatty Acids, Monounsaturated Fatty Acids, Trans Fatty Acids, and Cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar] [CrossRef]
- Gewa, C.A.; Weiss, R.E.; Bwibo, N.O.; Whaley, S.; Sigman, M.; Murphy, S.P.; Harrison, G.; Neumann, C.G. Dietary Micronutrients Are Associated with Higher Cognitive Function Gains among Primary School Children in Rural Kenya. Br. J. Nutr. 2009, 101, 1378–1387. [Google Scholar] [CrossRef]
- Raven, J.C. Guide to Using the Coloured Progressive Matrices; H. K. Lewis & Co.: Oxford, UK, 1958; p. 40. [Google Scholar]
- Ayalew, M.; Bayray, A.; Bekele, A.; Handebo, S. Nutritional Status and Educational Performance of School-Aged Children in Lalibela Town Primary Schools, Northern Ethiopia. Int. J. Pediatr. 2020, 2020, e5956732. [Google Scholar] [CrossRef]
- Ateillah, K.; Aboussaleh, Y.; Sbaibi, R.; Ahami, A.O.T. Évaluation Anthropométrique et Son Impact Sur La Performance Scolaire Des Lycéens de La Commune Urbaine Kenitra (Nord-Ouest Marocain). Antropo 2018, 39, 71–76. [Google Scholar]
- Toffoli, L.; Stefanelli, G.; Manca, G.; Del Popolo Cristaldi, F.; Duma, G.M.; Guidi, M.; Incagli, F.; Sbernini, L.; Tarantino, V.; Mento, G. Adaptive Cognitive Control in 4 to 7-Year-Old Children and Potential Effects of School-Based Yoga-Mindfulness Interventions: An Exploratory Study in Italy. Front. Psychol. 2025, 16, 1379241. [Google Scholar] [CrossRef]
- Navarro, J.-J.; García-Rubio, J.; Olivares, P.R. The Relative Age Effect and Its Influence on Academic Performance. PLoS ONE 2015, 10, e0141895. [Google Scholar] [CrossRef]
- Thoren, K.; Heinig, E.; Brunner, M. Relative Age Effects in Mathematics and Reading: Investigating the Generalizability across Students, Time and Classes. Front. Psychol. 2016, 7, 679. [Google Scholar] [CrossRef]
- Urruticoechea, A.; Oliveri, A.; Vernazza, E.; Giménez-Dasí, M.; Martínez-Arias, R.; Martín-Babarro, J. The Relative Age Effects in Educational Development: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 8966. [Google Scholar] [CrossRef]
- Grantham-McGregor, S. A Review of Studies of the Effect of Severe Malnutrition on Mental Development. J. Nutr. 1995, 125, 2233S–2238S. [Google Scholar] [CrossRef] [PubMed]
- Asmare, B.; Taddele, M.; Berihun, S.; Wagnew, F. Nutritional Status and Correlation with Academic Performance among Primary School Children, Northwest Ethiopia. BMC Res. Notes 2018, 11, 805. [Google Scholar] [CrossRef] [PubMed]
- Grantham-McGregor, S.; Cheung, Y.B.; Cueto, S.; Glewwe, P.; Richter, L.; Strupp, B.; International Child Development Steering Group. Developmental Potential in the First 5 Years for Children in Developing Countries. Lancet 2007, 369, 60–70. [Google Scholar] [CrossRef] [PubMed]
- GAIN. Iodine Deficiency in Côte d’Ivoire: Achievements and Remaining Challenges; GAIN: Geneva, Switzerland, 2007. [Google Scholar]
- Tia, A.; Hauser, J.; Konan, A.G.; Ciclet, O.; Grzywinski, Y.; Mainardi, F.; Visconti, G.; Frézal, A.; Nindjin, C. Unraveling the Relationship between Nutritional Status, Cognitive Function, and School Performance among School-Aged Children in Taabo, Côte d’Ivoire: A School-Based Observational Study. Front. Nutr. 2025, 12, 1630497. [Google Scholar] [CrossRef]
- Kang, E.Y.; Kim, D.; Kim, H.K.; Shin, W.; Park, Y.; Kim, T.H.; Kim, W.; Cao, L.; Lee, S.; Gang, G.; et al. Modified Korean MIND Diet: A Nutritional Intervention for Improved Cognitive Function in Elderly Women through Mitochondrial Respiration, Inflammation Suppression, and Amino Acid Metabolism Regulation. Mol. Nutr. Food Res. 2023, 67, 2300329. [Google Scholar] [CrossRef]
- Annan, R.A.; Apprey, C.; Asamoah-Boakye, O.; Okonogi, S.; Yamauchi, T.; Sakurai, T. The Relationship between Dietary Micronutrients Intake and Cognition Test Performance among School-aged Children in Government-owned Primary Schools in Kumasi Metropolis, Ghana. Food Sci. Nutr. 2019, 7, 3042–3051. [Google Scholar] [CrossRef] [PubMed]
- Aljaadi, A.M.; Devlin, A.M.; Green, T.J. Riboflavin Intake and Status and Relationship to Anemia. Nutr. Rev. 2022, 81, 114–132. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J. How Energy Supports Our Brain to Yield Consciousness: Insights From Neuroimaging Based on the Neuroenergetics Hypothesis. Front. Syst. Neurosci. 2021, 15, 648860. [Google Scholar] [CrossRef] [PubMed]
- Naninck, E.F.G.; Stijger, P.C.; Brouwer-Brolsma, E.M. The Importance of Maternal Folate Status for Brain Development and Function of Offspring. Adv. Nutr. 2019, 10, 502–519. [Google Scholar] [CrossRef]
- Beard, J.L. Iron Biology in Immune Function, Muscle Metabolism and Neuronal Functioning. J. Nutr. 2001, 131, 568S–580S. [Google Scholar] [CrossRef]
- Black, M.M. The Evidence Linking Zinc Deficiency with Children’s Cognitive and Motor Functioning. J. Nutr. 2003, 133, 1473S–1476S. [Google Scholar] [CrossRef]
- Corcoran, J.P.T.; Mey, J. Editorial: The Role of Retinoic Acid Signaling in Maintenance and Regeneration of the CNS: From Mechanisms to Therapeutic Targeting. Front. Mol. Neurosci. 2024, 17, 1491745. [Google Scholar] [CrossRef]
- Butterworth, R.F. Thiamin Deficiency and Brain Disorders. Nutr. Res. Rev. 2003, 16, 277–284. [Google Scholar] [CrossRef]
- Powers, H.J. Riboflavin (Vitamin B-2) and Health. Am. J. Clin. Nutr. 2003, 77, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Crider, K.S.; Yang, T.P.; Berry, R.J.; Bailey, L.B. Folate and DNA Methylation: A Review of Molecular Mechanisms and the Evidence for Folate’s Role. Adv. Nutr. 2012, 3, 21–38. [Google Scholar] [CrossRef]
- Mocchegiani, E.; Romeo, J.; Malavolta, M.; Costarelli, L.; Giacconi, R.; Diaz, L.-E.; Marcos, A. Zinc: Dietary Intake and Impact of Supplementation on Immune Function in Elderly. AGE 2013, 35, 839–860. [Google Scholar] [CrossRef]
- Gutema, B.T.; Levecke, B.; Sorrie, M.B.; Megersa, N.D.; Zewdie, T.H.; Yesera, G.E.; De Henauw, S.; Abubakar, A.; Abbeddou, S. Effectiveness of Intermittent Iron and High-Dose Vitamin A Supplementation on Cognitive Development of School Children in Southern Ethiopia: A Randomized Placebo-Controlled Trial. Am. J. Clin. Nutr. 2024, 119, 470–484. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, J.; Smuts, C.M.; Malan, L.; Kvalsvig, J.; van Stuijvenberg, M.E.; Hurrell, R.F.; Zimmermann, M.B. Effects of Iron and N-3 Fatty Acid Supplementation, Alone and in Combination, on Cognition in School Children: A Randomized, Double-Blind, Placebo-Controlled Intervention in South Africa. Am. J. Clin. Nutr. 2012, 96, 1327–1338. [Google Scholar] [CrossRef]
- van den Briel, T.; West, C.E.; Bleichrodt, N.; van de Vijver, F.J.; Ategbo, E.A.; Hautvast, J.G. Improved Iodine Status Is Associated with Improved Mental Performance of Schoolchildren in Benin. Am. J. Clin. Nutr. 2000, 72, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Okai-Mensah, P.; Brkić, D.; Hauser, J. The Importance of Lipids for Neurodevelopment in Low and Middle Income Countries. Front. Nutr. 2025, 12, 1488647. [Google Scholar] [CrossRef] [PubMed]
- Bangirana, P.; Menk, J.; John, C.C.; Boivin, M.J.; Hodges, J.S. The Association between Cognition and Academic Performance in Ugandan Children Surviving Malaria with Neurological Involvement. PLoS ONE 2013, 8, e55653. [Google Scholar] [CrossRef]

| Sociodemographic Variables | Cognition | Mathematics | Literature | |||||
|---|---|---|---|---|---|---|---|---|
| N | % | Mean ± SD | p-Value | Mean ± SD | p-Value | Mean ± SD | p-Value | |
| Gender | ||||||||
| Female | 116 | 46.2 | 14.9 ± 4.5 b | 0.046 | 5.9 ± 2.3 | 0.807 | 5.5 ± 1.8 | 0.624 |
| Male | 135 | 53.8 | 15.8 ± 4.3 a | 6.0 ± 2.4 | 5.4 ± 1.8 | |||
| Age | ||||||||
| 6–8 years | 88 | 35.1 | 13.1 ± 2.7 b | <0.001 | 6.8 ± 2.8 a | <0.001 | 5.9 ± 1.9 a | 0.002 |
| 9–10 years | 76 | 30.3 | 15.9 ± 4.9 a | 5.4 ± 2.1 b | 5.4 ± 1.8 ab | |||
| 11–12 years | 87 | 34.7 | 17.1 ± 4.4 a | 5.6 ± 1.9 b | 5.0 ± 1.6 b | |||
| Absence in class | ||||||||
| Never | 70 | 27.9 | 15.5 ± 4.9 | 0.807 | 6.0 ± 2.6 | 0.516 | 5.5 ± 2.0 | 0.874 |
| 1–3 days | 157 | 62.5 | 15.3 ± 4.2 | 6.0 ± 2.2 | 5.4 ± 1.7 | |||
| More than 3 days | 24 | 9.6 | 15.6 ± 3.8 | 5.4 ± 2.4 | 5.3 ± 1.8 | |||
| Grade repetition | ||||||||
| Never | 141 | 56.2 | 15.3 ± 4.3 | 0.753 | 6.0 ± 2.5 | 0.114 | 5.7 ± 1.9 a | 0.04 |
| Once | 87 | 34.7 | 15.2 ± 3.9 | 6.1 ± 2.1 | 5.2 ± 1.6 a | |||
| More than once | 23 | 9.2 | 16.5 ± 6.1 | 5.1 ± 2.2 | 4.9 ± 1.6 a | |||
| Household size | ||||||||
| Small (≤5) | 49 | 19.5 | 15.7 ± 5.0 | 0.953 | 6.1 ± 2.3 | 0.682 | 5.6 ± 1.9 | 0.692 |
| Large (>5) | 202 | 80. | 15.3 ± 4.2 | 5.9 ± 2.4 | 5.4 ± 1.8 | |||
| Duration (min) | ||||||||
| Short (≤30 min) | 7 | 2.8 | 13.9 ± 2.3 | 0.284 | 6.6 ± 2.9 | 0.720 | 5.0 ± 1.6 | 0.284 |
| Medium (30–60 min) | 226 | 90.0 | 15.3 ± 4.3 | 5.9 ± 2.4 | 5.4 ± 1.8 | |||
| Long (≥60 min) | 18 | 7.2 | 17.1 ± 5.4 | 6.2 ± 1.5 | 5.8 ± 1.6 | |||
| School canteen | ||||||||
| No | 69 | 27.5 | 14.8 ± 4.4 | 0.085 | 5.8 ± 2.6 | 0.962 | 5.5 ± 2.1 | 0.966 |
| Yes | 182 | 72.5 | 15.6 ± 4.4 | 6.0 ± 2.3 | 5.4 ± 1.7 | |||
| Live with parents | ||||||||
| No | 7 | 2.8 | 15.3 ± 4.6 | 0.930 | 4.8 ± 1.9 | 0.194 | 4.9 ± 1.1 | 0.534 |
| Yes | 244 | 97.2 | 15.4 ± 4.4 | 6.0 ± 2.4 | 5.4 ± 1.8 | |||
| Mother’s occupation | ||||||||
| Tertiary sector | 24 | 9.6 | 15.9 ± 4.8 | 0.566 | 6.2 ± 2.3 | 0.680 | 5.4 ± 1.8 | 0.664 |
| Housewife | 227 | 90.4 | 15.3 ± 4.3 | 5.9 ± 2.4 | 5.4 ± 1.9 | |||
| Mother’s education | ||||||||
| Higher | 5 | 2.0 | 17.8 ± 7. 1 a | 0.018 | 5.7 ± 1.2 | 0.419 | 5.8 ± 1.6 | 0.619 |
| Illiterate | 114 | 45.4 | 14.6 ± 4.2 a | 6.1 ± 2.4 | 5.4 ± 1.8 | |||
| Primary | 88 | 35.1 | 15.8 ± 4.3 a | 5.7 ± 2.4 | 5.3 ± 1.8 | |||
| Secondary | 44 | 17.5 | 16.3 ± 4.3 a | 6.1 ± 2.2 | 5.8 ± 1.9 | |||
| Father’s occupation | ||||||||
| Primary sector | 200 | 79.7 | 15.2 ± 4.5 | 0.272 | 6.0 ± 2.4 | 0.322 | 5.4 ± 1.8 a | 0.023 |
| Secondary sector | 10 | 4.0 | 16.2 ± 5.2 | 4.9 ± 2.4 | 4.3 ± 1.2 b | |||
| Tertiary sector | 41 | 16.3 | 15.8 ± 3.5 | 6.2 ± 2.3 | 5.9 ± 1.7 a | |||
| Father’s education | ||||||||
| Higher | 21 | 8.4 | 16.2 ± 4.5 | 0.575 | 6.3 ± 2.3 | 0.688 | 5.9 ± 1.7 | 0.094 |
| Illiterate | 65 | 25.9 | 15.0 ± 4.5 | 6.1 ± 2.5 | 5.4 ± 1.7 | |||
| Primary | 102 | 40.6 | 15.2 ± 4.4 | 5.8 ± 2.4 | 5.1 ± 1.8 | |||
| Secondary | 63 | 25.1 | 15.8 ± 4.3 | 6.0 ± 2.3 | 5.8 ± 1.8 | |||
| School grade | ||||||||
| Grade 1 | 42 | 16.7 | 13.0 ± 2.0 b | <0.001 | 6.8 ± 3.2 a | <0.001 | 5.9 ± 2.0 a | 0.004 |
| Grade 2 | 42 | 16.7 | 12.6 ± 2.4 b | 6.8 ± 2.4 ab | 5.9 ± 1.2 a | |||
| Grade 3 | 42 | 16.7 | 14.5 ± 3.3 b | 5.0 ± 2.1 c | 4.9 ± 1.9 b | |||
| Grade 4 | 41 | 16.3 | 16.1 ± 4.2 a | 5.2 ± 2.1 b | 5.0 ± 1.6 b | |||
| Grade 5 | 42 | 16.7 | 18.1 ± 5.5 a | 5.8 ± 1.7 ab | 5.3 ± 2.0 b | |||
| Grade 6 | 42 | 16.7 | 18.0 ± 4.4 a | 6.3 ± 1.8 ab | 5.5 ± 1.7 b | |||
| Nutrient Intake | Mean ± SD | Adequate | Inadequate | 1st Tertile | 2nd Tertile | 3rd Tertile | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| N | % | N | % | N | % | N | % | N | % | ||
| Vitamin A (µg) | 1170.7 ± 1278.1 | 140 | 55.8 | 111 | 44.2 | 84 | 33.5 | 84 | 33.5 | 83 | 33.1 |
| Vitamin B1 (mg) | 0.4 ± 0.2 | 2 | 0.8 | 249 | 99.2 | 98 | 39.0 | 113 | 45 | 40 | 15. 9 |
| Vitamin B2 (mg) | 0.3 ± 0.2 | 1 | 0.4 | 250 | 99.6 | 94 | 37.5 | 112 | 44.6 | 45 | 17. 9 |
| Folic acid (µg) | 116.1 ± 67.3 | 1 | 0.4 | 250 | 99.6 | 84 | 33.5 | 85 | 33.9 | 82 | 32.7 |
| Vitamin B12 (µg) | 2.6 ± 1.8 | 153 | 61.0 | 98 | 39. 0 | 92 | 36.7 | 77 | 30.7 | 82 | 32.7 |
| Vitamin B6 (mg) | 3.6 ± 4.6 | 160 | 63.7 | 91 | 36.3 | 98 | 39.0 | 72 | 28.7 | 81 | 32.3 |
| Iron (mg) | 2.0 ± 1.7 | 8 | 3.2 | 242 | 96.8 | 83 | 33.1 | 85 | 33.9 | 83 | 33.1 |
| Zinc (mg) | 2.3 ± 1.0 | 0 | 0 | 251 | 100 | 85 | 33.3 | 86 | 34.3 | 80 | 31.9 |
| Iodine (µg) | 691.1 ± 416.9 | 251 | 100 | 0 | 0 | 83 | 33.1 | 85 | 33.9 | 83 | 33.1 |
| Omega-3 fatty acids (g) | 0.4 ± 0.4 | 176 | 70.1 | 75 | 29.9 | 128 | 51.0 | 61 | 24.3 | 62 | 24.7 |
| Nutrient blend | 123.0 ± 69.3 | NA | NA | NA | NA | 84 | 33.5 | 84 | 33.5 | 83 | 33.1 |
| Nutrient Intakes | Cognition | ꭓ2 | p | Mathematics | ꭓ2 | p | Literature | ꭓ2 | p | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Above 75th | 50th–75th | Below 50th | Above 7/10 | 5/10–7/10 | Below 5/10 | Above 7/10 | 5/10–7/10 | Below 5/10 | |||||||
| Vitamin A (µg) | |||||||||||||||
| Higher | 27 (32.5) | 30 (36.1) | 26 (31.3) | 3.4 | 0.181 | 18 (21.7) | 40 (48.2) | 25 (30.1) | 3.6 | 0.166 | 14 (16.9) | 33 (39.7) | 36 (43.4) | 3.0 | 0.228 |
| Lower | 22 (26.2) | 24 (28.6) | 38 (45.2) | 29 (34.5) | 36 (42.9) | 19 (22.6) | 15 (51.7) | 43 (56.6) | 26 (41.9) | ||||||
| Vitamin B1 (mg) | |||||||||||||||
| Higher | 20 (50.0) | 13 (32.5) | 7 (17.5) | 20.8 | <0.001 | 8 (20.0) | 20 (50.0) | 12 (30.0) | 2.5 | 0.274 | 5 (12.5) | 13 (32.5) | 22 (55.0) | 7.9 | 0.019 |
| Lower | 18 (18.4) | 24 (24.5) | 56 (57.4) | 33 (33.7) | 42 (42.9) | 23 (23.5) | 18 (18.4) | 51 (52.0) | 29 (29.6) | ||||||
| Vitamin B2 (mg) | |||||||||||||||
| Higher | 19 (42.2) | 13 (28.9) | 13 (28.9) | 12.6 | 0.002 | 10 (22.2) | 23 (51.1) | 12 (26.7) | 1.3 | 0.522 | 6 (13.3) | 18 (40.0) | 21 (46.7) | 2.9 | 0.238 |
| Lower | 16 (17.0) | 25 (26.6) | 53 (56.4) | 29 (30.9) | 40 (42.6) | 25 (26.6) | 15 (16.0) | 49 (52.1) | 31 (31.9) | ||||||
| Folate (µg) | |||||||||||||||
| Higher | 32 (39.0) | 21 (25.6) | 29 (35.4) | 10.4 | 0.006 | 22 (26.8) | 36 (43.9) | 24 (29.3) | 0.4 | 0.833 | 14 (17.1) | 34 (41.5) | 34 (41.5) | 2.1 | 0.350 |
| Lower | 14 (16.7) | 28(33.3) | 42 (50.0) | 26 (31.0) | 34 (40.5) | 24 (28.6) | 13 (15.5) | 44 (52.4) | 27 (32.1) | ||||||
| Vitamin B12 (µg) | |||||||||||||||
| Higher | 23 (28.0) | 23 (28.0) | 36 (43.9) | 0.2 | 0.886 | 22 (26.8) | 37 (45.1) | 23 (28.0) | 0.1 | 0.977 | 13 (15.9) | 38 (46.3) | 31 (37.8) | 0.1 | 0.964 |
| Lower | 23 (25.0) | 41 (44.6) | 28 (30.4) | 26 (28.3) | 41 (44.6) | 25 (28.3) | 16 (17.4) | 42 (45.7) | 34 (37.0) | ||||||
| Vitamin B6 (mg) | |||||||||||||||
| Higher | 18 (22.2) | 21 (25.9) | 42 (51.9) | 1.5 | 0.482 | 18 (22.2) | 41 (50.6) | 22 (27.2) | 3.2 | 0.207 | 12 (14.8) | 38 (46.9) | 31 (38.3) | 0.7 | 0.719 |
| Lower | 25 (25.1) | 31 (31.6) | 42 (42. 9) | 30 (30.6) | 37 (37.8) | 31 (31.6) | 17 (17.4) | 49 (50.0) | 32 (32.6) | ||||||
| Iron (mg) | |||||||||||||||
| Higher | 45 (30.0) | 49 (32.7) | 56 (37.3) | 7.1 | 0.029 | 38 (25.3) | 66 (44.0) | 46 (30.7) | 0.3 | 0.856 | 26 (17.3) | 67 (42.1) | 56 (37.3) | 2.2 | 0.337 |
| Lower | 12 (14.5) | 25 (30.1) | 46 (55.4) | 22 (26.5) | 46 (47.0) | 22 (26.5) | 11 (13.3) | 43 (51.8) | 29 (34.9) | ||||||
| Zinc (mg) | |||||||||||||||
| Higher | 30 (37.5) | 25 (31.3) | 25 (41.5) | 6.8 | 0.033 | 20 (25.0) | 38 (47.5) | 22 (27.5) | 1.2 | 0.548 | 12 (15.0) | 29 (36.3) | 39 (48.8) | 9.7 | 0.008 |
| Lower | 17(20.0) | 29 (34.1) | 39 (45.9) | 27 (31.8) | 34 (40.0) | 24 (28.2) | 10 (11.8) | 51 (60.0) | 24 (28.2) | ||||||
| Iodine (µg) | |||||||||||||||
| Higher | 26 (31.3) | 24 (28.9) | 33 (39.8) | 1.0 | 0.605 | 20 (24.1) | 38 (45.8) | 25 (30.1) | 2.0 | 0.366 | 10 (12.0) | 45 (54.2) | 28 (33.7) | 2.9 | 0.236 |
| Lower | 21 (25.3) | 29 (34.9) | 33 (39.8) | 28 (33.7) | 35 (42.2) | 20 (24.1) | 17 (20.5) | 36 (43.4) | 30 (36.1) | ||||||
| Omega-3 fatty acids (g) | |||||||||||||||
| Higher | 20 (32.3) | 13 (21.0) | 64 (46.8) | 4.0 | 0.133 | 16 (25.8) | 26 (41.9) | 20 (32.3) | 0.4 | 0.816 | 7 (11.3) | 31 (50.0) | 24 (38.7) | 1.1 | 0.567 |
| Lower | 45 (23.8) | 64 (33.9) | 80 (42.3) | 51 (27.0) | 85 (44.9) | 53 (28.0) | 32 (16.9) | 89 (47.1) | 68 (36.0) | ||||||
| Nutrient Blend | |||||||||||||||
| Higher | 31 (37.3) | 22 (26.5) | 30 (36.1) | 10.3 | 0.006 | 23 (27.7) | 36 (43.4) | 24 (28.9) | 0.3 | 0.849 | 15 (18.1) | 34 (41.0) | 34 (41.0) | 2.2 | 0.329 |
| Lower | 13 (15.5) | 29 (34.5) | 42 (50.0) | 26 (30.9) | 33 (39.3) | 25 (29.8) | 13 (15.5) | 44 (52.4) | 27 (32.1) | ||||||
| Variable | Cognition | Mathematics | Literature | ||||||
|---|---|---|---|---|---|---|---|---|---|
| AOR | 95% CI | p-Value | AOR | 95% CI | p-Value | AOR | 95% CI | p-Value | |
| Gender | |||||||||
| Girls | 0.6 | (0.3–0.9) | 0.048 | 1.2 | (0.7–2.1) | 0.584 | 1.2 | (0.7–2.0) | 0.541 |
| Boys | Reference | ||||||||
| Age groups | |||||||||
| 6–8 years | 0.4 | (0.2–08) | 0.010 | 1.9 | (0.9–3.3) | 0.073 | 1.8 | (0.9–3.5) | 0.103 |
| 11–12 years | 2.2 | (1.1–4.2) | 0.024 | 1.1 | (0.6–2.1) | 0.784 | 0.5 | (3.0–1.0) | 0.054 |
| 9–10 years | Reference | ||||||||
| School grade | |||||||||
| Grade one | 0.1 | (0.5–0.4) | <0.001 | 0.8 | (0.3–2.2) | 0.59 | 1.2 | (0.7–4.6) | 0.235 |
| Grade two | 0.1 | (0.–0.3) | <0.001 | 1.7 | (0.5–5.8) | 0.369 | 4.1 | (1.3–12.7) | 0.014 |
| Grade three | 0.2 | (0.1–0.5) | <0.001 | 0.2 | (0.1–0.6) | 0.004 | 0.7 | (0.3–1.6) | 0.375 |
| Grade four | 0.4 | (0.1–1.1) | 0.072 | 0.3 | (0.1–0.9) | 0.029 | 0.4 | (0.2–1.1) | 0.064 |
| Grade five | 0.6 | (0.2–1.6) | 0.291 | 0.6 | (0.2–1.6) | 0.308 | 0.6 | (0.3–1.5) | 0.270 |
| Grade six | Reference | ||||||||
| Weight-for-age | |||||||||
| Under/overweight | Reference | ||||||||
| Normal | 0.4 | (0.1–1.1) | 0.066 | 1.7 | (0.6–5.0) | 0.342 | 1.7 | (0.6–5.1) | 0.332 |
| Vitamin B1 intake | |||||||||
| Lower | Reference | ||||||||
| Higher | 6.3 | (2.5–16.0) | <0.001 | 0.7 | (0.3–1.6) | 0.676 | 0.3 | (0.1–0.6) | 0.02 |
| Vitamin B2 intake | |||||||||
| Lower | Reference | ||||||||
| Higher | 2.2 | (1.5–7.8) | 0.003 | 1.0 | (0.4–2.2) | 0.961 | 0.5 | (0.3–1.1) | 0.099 |
| Folate intake | |||||||||
| Lower | Reference | ||||||||
| Higher | 1.8 | (0.9–3.3) | 0.086 | 1.0 | (0.5–2.0) | 0.935 | 0.7 | (0.3–1.2) | 0.196 |
| Iron intake | |||||||||
| Lower | Reference | ||||||||
| Higher | 1.9 | (1.0–3.6) | 0.056 | 0.9 | (0.4–1.8) | 0.727 | 0.9 | (0.5–1.7) | 0.750 |
| Zinc intake | |||||||||
| Lower | Reference | ||||||||
| Higher | 1.7 | (0.8–3.3) | 0.130 | 1.1 | (0.5–2.2) | 0.820 | 0.4 | (0.2–0.7) | 0.005 |
| Nutrient blend intake | |||||||||
| Lower | Reference | ||||||||
| Higher | 1.7 | (0.9–3.3) | 0.101 | 1.0 | (0.5–2.1) | 0.918 | 0.6 | (0.3–1.2) | 0.136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tia, A.; Konan, A.G.; Hauser, J.; Ndri, K.Y.; Ciclet, O.; Esso, L.E.; Nindjin, C. A Cross-Sectional Study of the Relationship Between Dietary Micronutrient Intake, Cognition and Academic Performance Among School-Aged Children in Taabo, Côte d’Ivoire. Nutrients 2025, 17, 3602. https://doi.org/10.3390/nu17223602
Tia A, Konan AG, Hauser J, Ndri KY, Ciclet O, Esso LE, Nindjin C. A Cross-Sectional Study of the Relationship Between Dietary Micronutrient Intake, Cognition and Academic Performance Among School-Aged Children in Taabo, Côte d’Ivoire. Nutrients. 2025; 17(22):3602. https://doi.org/10.3390/nu17223602
Chicago/Turabian StyleTia, Achil, Amoin G. Konan, Jonas Hauser, Kouassi Y. Ndri, Olivier Ciclet, Lasme E. Esso, and Charlemagne Nindjin. 2025. "A Cross-Sectional Study of the Relationship Between Dietary Micronutrient Intake, Cognition and Academic Performance Among School-Aged Children in Taabo, Côte d’Ivoire" Nutrients 17, no. 22: 3602. https://doi.org/10.3390/nu17223602
APA StyleTia, A., Konan, A. G., Hauser, J., Ndri, K. Y., Ciclet, O., Esso, L. E., & Nindjin, C. (2025). A Cross-Sectional Study of the Relationship Between Dietary Micronutrient Intake, Cognition and Academic Performance Among School-Aged Children in Taabo, Côte d’Ivoire. Nutrients, 17(22), 3602. https://doi.org/10.3390/nu17223602

