Targeting Irritable Bowel Syndrome Through Diet and Mechanism-Based Therapies: A Pathophysiological Approach
Abstract
1. Introduction
2. Mechanistic Insights for Targeted IBS Therapies
2.1. Serotonergic Modulation and Receptor Targets
2.2. Gut Microbiome in IBS
2.3. Immune Activation and Neuroimmune Pathways
2.4. Bile Acid Modulation and Gut Barrier Dysfunction
2.5. Vitamin D as a Mechanism-Based Therapeutic Target in IBS
3. Dietary and Nutritional Interventions
3.1. Low-FODMAP and Targeted Nutritional Strategies
3.2. Psychobiotics and Microbiota-Gut-Brain Axis Modulation
3.3. Combined and Personalized Dietary Therapies
3.4. Toward Mechanism-Based and Personalized Treatment
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ford, A.C.; Sperber, A.D.; Corsetti, M. Camilleri Irritable bowel syndrome. Lancet 2020, 396, 1675–1688. [Google Scholar] [CrossRef]
- Mearin, F.; Lacy, B.E.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel Disorders. Gastroenterology 2016, 150, 1393–1407. [Google Scholar] [CrossRef]
- Oka, P.; Parr, H.; Barberio, B.; Black, C.J.; Savarino, E.V.; Ford, A.C. Global prevalence of irritable bowel syndrome according to Rome III or IV criteria: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2020, 5, 908–917. [Google Scholar] [CrossRef]
- Endo, Y.; Shoji, T.; Fukudo, S. Epidemiology of irritable bowel syndrome. Ann. Gastroenterol. 2015, 28, 158–159. [Google Scholar]
- Arif, T.B.; Ali, S.H.; Bhojwani, K.D.; Sadiq, M.; Siddiqui, A.A.; Ur-Rahman, A.; Khan, M.Z.; Hasan, F.; Shahzil, M. Global prevalence and risk factors of irritable bowel syndrome from 2006 to 2024 using the Rome III and IV criteria: A meta-analysis. Eur. J. Gastroenterol. Hepatol 2025. [Google Scholar] [CrossRef]
- Black, C.J.; Ford, A.C. Global burden of irritable bowel syndrome: Trends, predictions and risk factors. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 473–486. [Google Scholar] [CrossRef]
- Drossman, D.A.; Hasler, W.L. Rome IV-Functional GI Disorders: Disorders of Gut-Brain Interaction. Gastroenterology 2016, 150, 1257–1261. [Google Scholar] [CrossRef] [PubMed]
- Holtmann, G.J.; Ford, A.C.; Talley, N.J. Pathophysiology of irritable bowel syndrome. Lancet Gastroenterol. Hepatol. 2016, 1, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Dothel, G.; Barbaro, M.R.; Di Vito, A.; Ravegnini, G. New insights into irritable bowel syndrome pathophysiological mechanisms: Contribution of epigenetics. J. Gastroenterol. 2023, 58, 605–621. [Google Scholar] [CrossRef] [PubMed]
- Pastras, P.; Aggeletopoulou, I.; Triantos, C. Impact of Enteric Nervous Cells on Irritable Bowel Syndrome: Potential Treatment Options. Microorganisms 2024, 12, 2036. [Google Scholar] [CrossRef]
- Fayyaz, M.; Lackner, J.M. Serotonin receptor modulators in the treatment of irritable bowel syndrome. Ther. Clin. Risk Manag. 2008, 4, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.C.; Cao, H.L.; Xu, M.Q.; Wang, S.N.; Wang, Y.M.; Yan, F.; Wang, B.M. Regulation of the serotonin transporter in the pathogenesis of irritable bowel syndrome. World J. Gastroenterol. 2016, 22, 8137–8148. [Google Scholar] [CrossRef] [PubMed]
- Mishima, Y.; Ishihara, S. Enteric Microbiota-Mediated Serotonergic Signaling in Pathogenesis of Irritable Bowel Syndrome. Int. J. Mol. Sci. 2021, 22, 10235. [Google Scholar] [CrossRef] [PubMed]
- Binienda, A.; Storr, M.; Fichna, J.; Salaga, M. Efficacy and Safety of Serotonin Receptor Ligands in the Treatment of Irritable Bowel Syndrome: A Review. Curr. Drug Targets 2018, 19, 1774–1781. [Google Scholar] [CrossRef]
- Remes-Troche, J.M.; Coss-Adame, E.; Schmulson, M.; García-Zermeño, K.R.; Amieva-Balmori, M.; Carmona-Sánchez, R.; Gómez-Escudero, O.; Gómez-Castaños, P.C.; Icaza-Chávez, M.E.; López-Colombo, A.; et al. Pharmacologic treatment of irritable bowel syndrome. Position statement of the Asociación Mexicana de Gastroenterología, 2024. Rev. Gastroenterol. México 2025, 90, 77–110. [Google Scholar] [CrossRef]
- Guzel, T.; Mirowska-Guzel, D. The Role of Serotonin Neurotransmission in Gastrointestinal Tract and Pharmacotherapy. Molecules 2022, 27, 1680. [Google Scholar] [CrossRef]
- Marciani, L.; Wright, J.; Foley, S.; Hoad, C.L.; Totman, J.J.; Bush, D.; Hartley, C.; Armstrong, A.; Manby, P.; Blackshaw, E.; et al. Effects of a 5-HT(3) antagonist, ondansetron, on fasting and postprandial small bowel water content assessed by magnetic resonance imaging. Aliment. Pharmacol. Ther. 2010, 32, 655–663. [Google Scholar] [CrossRef]
- Talley, N.J. Serotoninergic neuroenteric modulators. Lancet 2001, 358, 2061–2068. [Google Scholar] [CrossRef]
- Gunn, D.; Topan, R.; Barnard, L.; Fried, R.; Holloway, I.; Brindle, R.; Corsetti, M.; Scott, M.; Farmer, A.; Kapur, K.; et al. Randomised, placebo-controlled trial and meta-analysis show benefit of ondansetron for irritable bowel syndrome with diarrhoea: The TRITON trial. Aliment. Pharmacol. Ther. 2023, 57, 1258–1271. [Google Scholar] [CrossRef]
- Kanazawa, M.; Watanabe, S.; Tana, C.; Komuro, H.; Aoki, M.; Fukudo, S. Effect of 5-HT4 receptor agonist mosapride citrate on rectosigmoid sensorimotor function in patients with irritable bowel syndrome. Neurogastroenterol. Motil. 2011, 23, 754-e332. [Google Scholar] [CrossRef]
- Staller, K.; Hinson, J.; Kerstens, R.; Spalding, W.; Lembo, A. Efficacy of Prucalopride for Chronic Idiopathic Constipation: An Analysis of Participants with Moderate to Very Severe Abdominal Bloating. Am. J. Gastroenterol. 2022, 117, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.H.; Kwon, J.G.; Kim, S.K.; Myung, S.J.; Park, K.S.; Sohn, C.I.; Rhee, P.L.; Lee, K.J.; Lee, O.Y.; Jung, H.K.; et al. Efficacy of combination therapy with probiotics and mosapride in patients with IBS without diarrhea: A randomized, double-blind, placebo-controlled, multicenter, phase II trial. Neurogastroenterol. Motil. 2015, 27, 705–716. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Wu, K.; Wu, T.; Xu, P.; Yang, C.; Fan, Y.; Li, Q.; Dong, X. Assessing the association between drug use and ischaemic colitis: A retrospective pharmacovigilance study using FDA Adverse Event data. BMJ Open 2025, 15, e088512. [Google Scholar] [CrossRef] [PubMed]
- Tack, J.; Camilleri, M.; Chang, L.; Chey, W.D.; Galligan, J.J.; Lacy, B.E.; Müller-Lissner, S.; Quigley, E.M.; Schuurkes, J.; De Maeyer, J.H.; et al. Systematic review: Cardiovascular safety profile of 5-HT(4) agonists developed for gastrointestinal disorders. Aliment. Pharmacol. Ther. 2012, 35, 745–767. [Google Scholar] [CrossRef]
- Tack, J.; Derakhchan, K.; Gabriel, A.; Spalding, W.; Terreri, B.; Youssef, A.; Kreidieh, B.; Kowey, P.R.; Boules, M. A Review of the Cardiovascular Safety of Prucalopride in Patients with Chronic Idiopathic Constipation. Am. J. Gastroenterol. 2023, 118, 955–960. [Google Scholar] [CrossRef]
- Chu, A.; Wadhwa, R. Selective Serotonin Reuptake Inhibitors. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Camilleri, M. Management Options for Irritable Bowel Syndrome. Mayo Clin. Proc. 2018, 93, 1858–1872. [Google Scholar] [CrossRef]
- Drossman, D.A.; Tack, J.; Ford, A.C.; Szigethy, E.; Törnblom, H.; Van Oudenhove, L. Neuromodulators for Functional Gastrointestinal Disorders (Disorders of Gut-Brain Interaction): A Rome Foundation Working Team Report. Gastroenterology 2018, 154, 1140–1171.e1141. [Google Scholar] [CrossRef]
- Khasawneh, M.; Mokhtare, M.; Moayyedi, P.; Black, C.J.; Ford, A.C. Efficacy of gut-brain neuromodulators in irritable bowel syndrome: An updated systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2025, 10, 537–549. [Google Scholar] [CrossRef]
- Jafari, S.; Sajedi, B.; Jameshorani, M.; Salarpour, F. Comparison of fluoxetine and duloxetine hydrochloride therapeutic effects on patients with constipation-predominant irritable bowel syndrome. Gastroenterol. Hepatol. Bed Bench 2022, 15, 45–52. [Google Scholar]
- Birkinshaw, H.; Friedrich, C.M.; Cole, P.; Eccleston, C.; Serfaty, M.; Stewart, G.; White, S.; Moore, R.A.; Phillippo, D.; Pincus, T. Antidepressants for pain management in adults with chronic pain: A network meta-analysis. Cochrane Database Syst. Rev. 2023, 5, Cd014682. [Google Scholar] [CrossRef]
- Bardoni, R. Serotonergic 5-HT(7) Receptors as Modulators of the Nociceptive System. Curr. Neuropharmacol. 2023, 21, 1548–1557. [Google Scholar] [CrossRef] [PubMed]
- Osman, U.; Latha Kumar, A.; Sadagopan, A.; Mahmoud, A.; Begg, M.; Tarhuni, M.; Fotso, M.N.; Gonzalez, N.A.; Sanivarapu, R.R. The Effects of Serotonin Receptor Type 7 Modulation on Bowel Sensitivity and Smooth Muscle Tone in Patients with Irritable Bowel Syndrome. Cureus 2023, 15, e42532. [Google Scholar] [CrossRef] [PubMed]
- Aggeletopoulou, I.; Triantos, C. Microbiome Shifts and Their Impact on Gut Physiology in Irritable Bowel Syndrome. Int. J. Mol. Sci. 2024, 25, 12395. [Google Scholar] [CrossRef] [PubMed]
- Bruno, G.; Zaccari, P.; Rocco, G.; Scalese, G.; Panetta, C.; Porowska, B.; Pontone, S.; Severi, C. Proton pump inhibitors and dysbiosis: Current knowledge and aspects to be clarified. World J. Gastroenterol. 2019, 25, 2706–2719. [Google Scholar] [CrossRef]
- Alagiakrishnan, K.; Morgadinho, J.; Halverson, T. Approach to the diagnosis and management of dysbiosis. Front. Nutr. 2024, 11, 1330903. [Google Scholar] [CrossRef]
- Cheng, X.; Ren, C.; Mei, X.; Jiang, Y.; Zhou, Y. Gut microbiota and irritable bowel syndrome: Status and prospect. Front. Med. 2024, 11, 1429133. [Google Scholar] [CrossRef]
- Ahmed, T.; Lemberg, D.A.; Day, A.S.; Leach, S.T. The Interplay Between Immunological Status and Gut Microbial Dysbiosis in the Development of the Symptoms of Irritable Bowel Syndrome: A Systematic Review with Meta-Analysis. Dig. Dis. Sci. 2025, 1–35. [Google Scholar] [CrossRef]
- Alshehri, D.; Saadah, O.; Mosli, M.; Edris, S.; Alhindi, R.; Bahieldin, A. Dysbiosis of gut microbiota in inflammatory bowel disease: Current therapies and potential for microbiota-modulating therapeutic approaches. Bosn. J. Basic. Med. Sci. 2021, 21, 270–283. [Google Scholar] [CrossRef]
- Major, G.; Spiller, R. Irritable bowel syndrome, inflammatory bowel disease and the microbiome. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 15–21. [Google Scholar] [CrossRef]
- Lacy, B.E.; Chang, L.; Rao, S.S.C.; Heimanson, Z.; Sayuk, G.S. Rifaximin Treatment for Individual and Multiple Symptoms of Irritable Bowel Syndrome with Diarrhea: An Analysis Using New End Points. Clin. Ther. 2023, 45, 198–209. [Google Scholar] [CrossRef]
- Azpiroz, F.; Dubray, C.; Bernalier-Donadille, A.; Cardot, J.M.; Accarino, A.; Serra, J.; Wagner, A.; Respondek, F.; Dapoigny, M. Effects of scFOS on the composition of fecal microbiota and anxiety in patients with irritable bowel syndrome: A randomized, double blind, placebo controlled study. Neurogastroenterol. Motil. 2017, 29, e12911. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Ren, Y.; Lu, J.; Bartlett, M.; Chen, L.; Zhang, Y.; Guo, X.; Liu, C. A Novel Prebiotic Blend Product Prevents Irritable Bowel Syndrome in Mice by Improving Gut Microbiota and Modulating Immune Response. Nutrients 2017, 9, 1341. [Google Scholar] [CrossRef] [PubMed]
- Sommermeyer, H.; Piątek, J. Synbiotics as Treatment for Irritable Bowel Syndrome: A Review. Microorganisms 2024, 12, 1493. [Google Scholar] [CrossRef] [PubMed]
- Sommermeyer, H.; Chmielowiec, K.; Bernatek, M.; Olszewski, P.; Kopczynski, J.; Piątek, J. Effectiveness of a Balanced Nine-Strain Synbiotic in Primary-Care Irritable Bowel Syndrome Patients-A Multi-Center, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024, 16, 1503. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Zheng, Q.; Li, L. The Efficacy of Probiotics, Prebiotics, Synbiotics, and Fecal Microbiota Transplantation in Irritable Bowel Syndrome: A Systematic Review and Network Meta-Analysis. Nutrients 2024, 16, 2114. [Google Scholar] [CrossRef]
- Cha, R.R.; Sonu, I. Fecal microbiota transplantation: Present and future. Clin. Endosc. 2025, 58, 352–359. [Google Scholar] [CrossRef]
- Jamshidi, P.; Farsi, Y.; Nariman, Z.; Hatamnejad, M.R.; Mohammadzadeh, B.; Akbarialiabad, H.; Nasiri, M.J.; Sechi, L.A. Fecal Microbiota Transplantation in Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Mol. Sci. 2023, 24, 14562. [Google Scholar] [CrossRef]
- Johnsen, P.H.; Hilpüsch, F.; Cavanagh, J.P.; Leikanger, I.S.; Kolstad, C.; Valle, P.C.; Goll, R. Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: A double-blind, randomised, placebo-controlled, parallel-group, single-centre trial. Lancet Gastroenterol. Hepatol. 2018, 3, 17–24. [Google Scholar] [CrossRef]
- Lahtinen, P.; Jalanka, J.; Hartikainen, A.; Mattila, E.; Hillilä, M.; Punkkinen, J.; Koskenpato, J.; Anttila, V.J.; Tillonen, J.; Satokari, R.; et al. Randomised clinical trial: Faecal microbiota transplantation versus autologous placebo administered via colonoscopy in irritable bowel syndrome. Aliment. Pharmacol. Ther. 2020, 51, 1321–1331. [Google Scholar] [CrossRef]
- Aumpan, N.; Chonprasertsuk, S.; Pornthisarn, B.; Siramolpiwat, S.; Bhanthumkomol, P.; Issariyakulkarn, N.; Gamnarai, P.; Bongkotvirawan, P.; Wongcha-Um, A.; Mahachai, V.; et al. Efficacy of encapsulated fecal microbiota transplantation and FMT via rectal enema for irritable bowel syndrome: A double-blind, randomized, placebo-controlled trial (CAP-ENEMA FMT Trial). Front Med. 2025, 12, 1648944. [Google Scholar] [CrossRef]
- Ghoshal, U.C.; Gwee, K.-A. Post-infectious IBS, tropical sprue and small intestinal bacterial overgrowth: The missing link. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Van Remoortel, S.; Hussein, H.; Boeckxstaens, G. Mast cell modulation: A novel therapeutic strategy for abdominal pain in irritable bowel syndrome. Cell Rep. Med. 2024, 5, 101780. [Google Scholar] [CrossRef] [PubMed]
- Holzer, P.; Farzi, A.; Hassan, A.M.; Zenz, G.; Jačan, A.; Reichmann, F. Visceral Inflammation and Immune Activation Stress the Brain. Front. Immunol. 2017, 8, 1613. [Google Scholar] [CrossRef] [PubMed]
- Klooker, T.K.; Braak, B.; Koopman, K.E.; Welting, O.; Wouters, M.M.; van der Heide, S.; Schemann, M.; Bischoff, S.C.; van den Wijngaard, R.M.; Boeckxstaens, G.E. The mast cell stabiliser ketotifen decreases visceral hypersensitivity and improves intestinal symptoms in patients with irritable bowel syndrome. Gut 2010, 59, 1213–1221. [Google Scholar] [CrossRef]
- Lobo, B.; Ramos, L.; Martínez, C.; Guilarte, M.; González-Castro, A.M.; Alonso-Cotoner, C.; Pigrau, M.; de Torres, I.; Rodiño-Janeiro, B.K.; Salvo-Romero, E.; et al. Downregulation of mucosal mast cell activation and immune response in diarrhoea-irritable bowel syndrome by oral disodium cromoglycate: A pilot study. United Eur. Gastroenterol. J. 2017, 5, 887–897. [Google Scholar] [CrossRef]
- Decraecker, L.; De Looze, D.; Hirsch, D.P.; De Schepper, H.; Arts, J.; Caenepeel, P.; Bredenoord, A.J.; Kolkman, J.; Bellens, K.; Van Beek, K.; et al. Treatment of non-constipated irritable bowel syndrome with the histamine 1 receptor antagonist ebastine: A randomised, double-blind, placebo-controlled trial. Gut 2024, 73, 459–469. [Google Scholar] [CrossRef]
- Tack, J.; Schumacher, K.; Tonini, G.; Scartoni, S.; Capriati, A.; Maggi, C.A. The neurokinin-2 receptor antagonist ibodutant improves overall symptoms, abdominal pain and stool pattern in female patients in a phase II study of diarrhoea-predominant IBS. Gut 2017, 66, 1403–1413. [Google Scholar] [CrossRef]
- Goodoory, V.C.; Tuteja, A.K.; Black, C.J.; Ford, A.C. Systematic Review and Meta-analysis: Efficacy of Mesalamine in Irritable Bowel Syndrome. Clin. Gastroenterol. Hepatol. 2024, 22, 243–251.e245. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zhou, H.; Gu, W.; Wang, X.; Yang, J. Clinical efficacy and safety of ketotifen in treating irritable bowel syndrome with diarrhea. Eur. J. Gastroenterol. Hepatol. 2020, 32, 706–712. [Google Scholar] [CrossRef]
- Panarelli, N.C.; Hornick, J.L.; Yantiss, R.K. What Is the Value of Counting Mast Cells in Gastrointestinal Mucosal Biopsies? Mod. Pathol. 2023, 36, 100005. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Khalil, M.; Baffy, G.; Portincasa, P. Advances in the pathophysiology, diagnosis and management of chronic diarrhoea from bile acid malabsorption: A systematic review. Eur. J. Intern. Med. 2024, 128, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Biagioli, M.; Carino, A. The Bile Acid Receptor GPBAR1 Regulates the M1/M2 Phenotype of Intestinal Macrophages and Activation of GPBAR1 Rescues Mice from Murine Colitis. J. Immunol. 2017, 199, 718–733. [Google Scholar] [CrossRef] [PubMed]
- Fleishman, J.S.; Kumar, S. Bile acid metabolism and signaling in health and disease: Molecular mechanisms and therapeutic targets. Signal Transduct. Target. Ther. 2024, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Vijayvargiya, P.; Camilleri, M.; Carlson, P.; Nair, A.; Nord, S.L.; Ryks, M.; Rhoten, D.; Burton, D.; Busciglio, I.; Lueke, A.; et al. Effects of Colesevelam on Bowel Symptoms, Biomarkers, and Colonic Mucosal Gene Expression in Patients With Bile Acid Diarrhea in a Randomized Trial. Clin. Gastroenterol. Hepatol. 2020, 18, 2962–2970.e2966. [Google Scholar] [CrossRef]
- Chen, M.; Wei, W.; Li, Y.; Ge, S.; Shen, J.; Guo, J.; Zhang, Y.; Huang, X.; Sun, X.; Cheng, D.; et al. Cholestyramine alleviates bone and muscle loss in irritable bowel syndrome via regulating bile acid metabolism. Cell Prolif. 2024, 57, e13638. [Google Scholar] [CrossRef]
- Gu, Y.; Li, L.; Yang, M.; Liu, T.; Song, X.; Qin, X.; Xu, X.; Liu, J.; Wang, B.; Cao, H. Bile acid-gut microbiota crosstalk in irritable bowel syndrome. Crit. Rev. Microbiol. 2023, 49, 350–369. [Google Scholar] [CrossRef]
- Deng, X.; Xiao, L.; Luo, M.; Xie, P.; Xiong, L. Intestinal crosstalk between bile acids and microbiota in irritable bowel syndrome. J. Gastroenterol. Hepatol. 2023, 38, 1072–1082. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, X. Low-level inflammation, immunity, and brain-gut axis in IBS: Unraveling the complex relationships. Gut Microbes 2023, 15, 2263209. [Google Scholar] [CrossRef]
- Hodgkinson, K.; El Abbar, F.; Dobranowski, P.; Manoogian, J.; Butcher, J.; Figeys, D.; Mack, D.; Stintzi, A. Butyrate’s role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin. Nutr. 2023, 42, 61–75. [Google Scholar] [CrossRef]
- Veres-Székely, A.; Szász, C.; Pap, D.; Szebeni, B.; Bokrossy, P.; Vannay, Á. Zonulin as a Potential Therapeutic Target in Microbiota-Gut-Brain Axis Disorders: Encouraging Results and Emerging Questions. Int. J. Mol. Sci. 2023, 24, 7548. [Google Scholar] [CrossRef]
- Kalkan, A.E.; BinMowyna, M.N.; Raposo, A.; Ahmad, M.F.; Ahmed, F.; Otayf, A.Y.; Carrascosa, C.; Saraiva, A.; Karav, S. Beyond the Gut: Unveiling Butyrate’s Global Health Impact Through Gut Health and Dysbiosis-Related Conditions: A Narrative Review. Nutrients 2025, 17, 1305. [Google Scholar] [CrossRef]
- Singh, P.; Sayuk, G.S.; Rosenbaum, D.P.; Edelstein, S.; Kozuka, K.; Chang, L. An Overview of the Effects of Tenapanor on Visceral Hypersensitivity in the Treatment of Irritable Bowel Syndrome with Constipation. Clin. Exp. Gastroenterol. 2024, 17, 87–96. [Google Scholar] [CrossRef]
- King, A.J.; Chang, L.; Li, Q.; Liu, L.; Zhu, Y.; Pasricha, P.J.; Wang, J.; Siegel, M.; Caldwell, J.S.; Edelstein, S.; et al. NHE3 inhibitor tenapanor maintains intestinal barrier function, decreases visceral hypersensitivity, and attenuates TRPV1 signaling in colonic sensory neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 2024, 326, G543–G554. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhao, J.; Zhang, W.; Nie, C. Impacts of sodium butyrate on intestinal mucosal barrier and intestinal microbial community in a weaned piglet model. Front. Microbiol. 2023, 13, 1041885. [Google Scholar] [CrossRef] [PubMed]
- Aggeletopoulou, I.; Geramoutsos, G.; Pastras, P.; Triantos, C. Vitamin D in Irritable Bowel Syndrome: Exploring Its Role in Symptom Relief and Pathophysiology. Nutrients 2025, 17, 1028. [Google Scholar] [CrossRef]
- Bostan, Z.Z.; Şare Bulut, M.; Gezmen Karadağ, M. Can Vıtamın D Reduce the Need for SSRI by Modulatıng Serotonın Synthesıs?: A Revıew of Recent Lıterature. Curr. Nutr. Rep. 2025, 14, 39. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, Y.G. Vitamin D Receptor Influences Intestinal Barriers in Health and Disease. Cells 2022, 11, 1129. [Google Scholar] [CrossRef]
- Bishop, E.L.; Ismailova, A.; Dimeloe, S.; Hewison, M.; White, J.H. Vitamin D and Immune Regulation: Antibacterial, Antiviral, Anti-Inflammatory. JBMR Plus 2020, 5, e10405. [Google Scholar] [CrossRef]
- Eslamian, G.; Ardehali, S.H.; Hajimohammadebrahim-Ketabforoush, M.; Vahdat Shariatpanahi, Z. Association of intestinal permeability with admission vitamin D deficiency in patients who are critically ill. J. Investig. Med. 2020, 68, 397–402. [Google Scholar] [CrossRef]
- Aggeletopoulou, I.; Tsounis, E.P.; Mouzaki, A.; Triantos, C. Exploring the Role of Vitamin D and the Vitamin D Receptor in the Composition of the Gut Microbiota. Front. Biosci. 2023, 28, 116. [Google Scholar] [CrossRef]
- Hafkamp, F.M.J.; Taanman-Kueter, E.W.M.; van Capel, T.M.M.; Kormelink, T.G.; de Jong, E.C. Vitamin D3 Priming of Dendritic Cells Shifts Human Neutrophil-Dependent Th17 Cell Development to Regulatory T Cells. Front. Immunol. 2022, 13, 872665. [Google Scholar] [CrossRef] [PubMed]
- Patrick, R.P.; Ames, B.N. Vitamin D hormone regulates serotonin synthesis. Part 1: Relevance for autism. FASEB J. 2014, 28, 2398–2413. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, I.; Sabir, M.S.; Dussik, C.M.; Whitfield, G.K.; Karrys, A.; Hsieh, J.C.; Haussler, M.R.; Meyer, M.B.; Pike, J.W.; Jurutka, P.W. 1,25-Dihydroxyvitamin D regulates expression of the tryptophan hydroxylase 2 and leptin genes: Implication for behavioral influences of vitamin D. FASEB J. 2015, 29, 4023–4035. [Google Scholar] [CrossRef] [PubMed]
- Akimbekov, N.S.; Digel, I.; Sherelkhan, D.K.; Lutfor, A.B.; Razzaque, M.S. Vitamin D and the Host-Gut Microbiome: A Brief Overview. Acta Histochem. Cytochem. 2020, 53, 33–42. [Google Scholar] [CrossRef]
- Chong, R.I.H.; Yaow, C.Y.L.; Loh, C.Y.L.; Teoh, S.E.; Masuda, Y.; Ng, W.K.; Lim, Y.L.; Ng, Q.X. Vitamin D supplementation for irritable bowel syndrome: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2022, 37, 993–1003. [Google Scholar] [CrossRef]
- Huang, H.; Lu, L.; Chen, Y.; Zeng, Y.; Xu, C. The efficacy of vitamin D supplementation for irritable bowel syndrome: A systematic review with meta-analysis. Nutr. J. 2022, 21, 24. [Google Scholar] [CrossRef]
- Abuelazm, M.; Muhammad, S.; Gamal, M.; Labieb, F.; Amin, M.A.; Abdelazeem, B.; Brašić, J.R. The Effect of Vitamin D Supplementation on the Severity of Symptoms and the Quality of Life in Irritable Bowel Syndrome Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022, 14, 2618. [Google Scholar] [CrossRef]
- Bin, Y.; Kang, L.; Lili, Y. Vitamin D status in irritable bowel syndrome and the impact of supplementation on symptoms: A systematic review and meta-analysis. Nutr. Hosp. 2022, 39, 1144–1152. [Google Scholar] [CrossRef]
- Cara, K.C.; Taylor, S.F.; Alhmly, H.F.; Wallace, T.C. The effects of vitamin D intake and status on symptom severity and quality-of-life in adults with irritable bowel syndrome (IBS): A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2025, 65, 4994–5007. [Google Scholar] [CrossRef]
- Bertin, L.; Zanconato, M. The Role of the FODMAP Diet in IBS. Nutrients 2024, 16, 370. [Google Scholar] [CrossRef]
- Weber, H.C. Irritable bowel syndrome and diet. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 29, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Varjú, P.; Farkas, N.; Hegyi, P.; Garami, A.; Szabó, I.; Illés, A.; Solymár, M.; Vincze, Á.; Balaskó, M.; Pár, G.; et al. Low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet improves symptoms in adults suffering from irritable bowel syndrome (IBS) compared to standard IBS diet: A meta-analysis of clinical studies. PLoS ONE 2017, 12, e0182942. [Google Scholar] [CrossRef] [PubMed]
- Altobelli, E.; Del Negro, V.; Angeletti, P.M.; Latella, G. Low-FODMAP Diet Improves Irritable Bowel Syndrome Symptoms: A Meta-Analysis. Nutrients 2017, 9, 940. [Google Scholar] [CrossRef]
- Van Lanen, A.S.; de Bree, A.; Greyling, A. Efficacy of a low-FODMAP diet in adult irritable bowel syndrome: A systematic review and meta-analysis. Eur. J. Nutr. 2021, 60, 3505–3522. [Google Scholar] [CrossRef]
- Black, C.J.; Staudacher, H.M.; Ford, A.C. Efficacy of a low FODMAP diet in irritable bowel syndrome: Systematic review and network meta-analysis. Gut 2022, 71, 1117–1126. [Google Scholar] [CrossRef]
- Hillestad, E.M.R.; van der Meeren, A.; Nagaraja, B.H.; Bjørsvik, B.R.; Haleem, N.; Benitez-Paez, A.; Sanz, Y.; Hausken, T.; Lied, G.A.; Lundervold, A.; et al. Gut bless you: The microbiota-gut-brain axis in irritable bowel syndrome. World J. Gastroenterol. 2022, 28, 412–431. [Google Scholar] [CrossRef]
- Dinan, T.G.; Stanton, C.; Cryan, J.F. Psychobiotics: A novel class of psychotropic. Biol. Psychiatry 2013, 74, 720–726. [Google Scholar] [CrossRef]
- Deepika; Shukla, A.K.; Kumari, A.; Kumar, A. Gut brain regulation using psychobiotics for improved neuropsychological illness. Dev. Psychobiol. 2023, 65, e22404. [Google Scholar] [CrossRef]
- Kamal, N.; Saharan, B.S.; Duhan, J.S.; Kumar, A.; Chaudhary, P.; Goyal, C.; Kumar, M.; Goyat, N.; Sindhu, M.; Mudgil, P. Exploring the promise of psychobiotics: Bridging gut microbiota and mental health for a flourishing society. Med. Microecol. 2025, 23, 100118. [Google Scholar] [CrossRef]
- Gwioździk, W.; Helisz, P.; Grajek, M.; Krupa-Kotara, K. Psychobiotics as an Intervention in the Treatment of Irritable Bowel Syndrome: A Systematic Review. Appl. Microbiol. 2023, 3, 465–475. [Google Scholar] [CrossRef]
- Sarkar, A.; Lehto, S.M.; Harty, S.; Dinan, T.G.; Cryan, J.F.; Burnet, P.W.J. Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals. Trends Neurosci. 2016, 39, 763–781. [Google Scholar] [CrossRef] [PubMed]
- Chojnacki, C.; Błońska, A.; Konrad, P.; Chojnacki, M.; Podogrocki, M.; Poplawski, T. Changes in Tryptophan Metabolism on Serotonin and Kynurenine Pathways in Patients with Irritable Bowel Syndrome. Nutrients 2023, 15, 1262. [Google Scholar] [CrossRef] [PubMed]
- Sarkawi, M.; Raja Ali, R.A.; Abdul Wahab, N.; Abdul Rathi, N.D.; Mokhtar, N.M. A randomized, double-blinded, placebo-controlled clinical trial on Lactobacillus-containing cultured milk drink as adjuvant therapy for depression in irritable bowel syndrome. Sci. Rep. 2024, 14, 9478. [Google Scholar] [CrossRef] [PubMed]
- Le Morvan de Sequeira, C.; Kaeber, M.; Cekin, S.E.; Enck, P.; Mack, I. The Effect of Probiotics on Quality of Life, Depression and Anxiety in Patients with Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 3497. [Google Scholar] [CrossRef]
- Nybacka, S.; Törnblom, H.; Josefsson, A.; Hreinsson, J.P.; Böhn, L.; Frändemark, A.; Weznaver, C.; Störsrud, S.; Simrén, M. A low FODMAP diet plus traditional dietary advice versus a low-carbohydrate diet versus pharmacological treatment in irritable bowel syndrome (CARIBS): A single-centre, single-blind, randomised controlled trial. Lancet Gastroenterol. Hepatol. 2024, 9, 507–520. [Google Scholar] [CrossRef]
- Kasti, A.N.; Katsas, K.; Pavlidis, D.E.; Stylianakis, E.; Petsis, K.I.; Lambrinou, S.; Nikolaki, M.D.; Papanikolaou, I.S.; Hatziagelaki, E.; Papadimitriou, K.; et al. Clinical Trial: A Mediterranean Low-FODMAP Diet Alleviates Symptoms of Non-Constipation IBS—Randomized Controlled Study and Volatomics Analysis. Nutrients 2025, 17, 1545. [Google Scholar] [CrossRef]
- Singh, P.; Dean, G.; Iram, S.; Peng, W.; Chey, S.W.; Rifkin, S.; Lothen-Kline, C.; Muir, J.; Lee, A.A.; Eswaran, S.; et al. Efficacy of Mediterranean Diet vs. Low-FODMAP Diet in Patients with Nonconstipated Irritable Bowel Syndrome: A Pilot Randomized Controlled Trial. Neurogastroenterol. Motil. 2025, 37, e70060. [Google Scholar] [CrossRef]
- Baghdadi, G.; Feyzpour, M.; Shahrokhi, S.A.; Amiri, R.; Rahimlou, M. The association between the Mediterranean Diet and the prime diet quality score and new-diagnosed irritable bowel syndrome: A matched case-control study. Front. Med. 2025, 12, 1529374. [Google Scholar] [CrossRef]
- Lindsell, H.B.; Williams, N.C.; Magistro, D.; Corsetti, M.; Walton, G.E.; Hunter, K.A. Could the Therapeutic Effect of Physical Activity on Irritable Bowel Syndrome Be Mediated Through Changes to the Gut Microbiome? A Narrative and Hypothesis Generating Review. Neurogastroenterol. Motil. 2025, 37, e70004. [Google Scholar] [CrossRef]
- Prospero, L.; Riezzo, G.; D’Attoma, B.; Ignazzi, A.; Bianco, A.; Franco, I.; Curci, R.; Campanella, A.; Bagnato, C.B.; Porcelli, P.; et al. The impact of locus of control on somatic and psychological profiles of patients with irritable bowel syndrome engaging in aerobic exercise. Sci. Rep. 2025, 15, 3966. [Google Scholar] [CrossRef]
- Abalo, R.; Gallego-Barceló, P.; Gabbia, D. Natural Remedies for Irritable Bowel Syndrome: A Comprehensive Review of Herbal-Based Therapies. Int. J. Mol. Sci. 2025, 26, 9345. [Google Scholar] [CrossRef]
- Chumpitazi, B.P.; Kearns, G.L.; Shulman, R.J. Review article: The physiological effects and safety of peppermint oil and its efficacy in irritable bowel syndrome and other functional disorders. Aliment. Pharmacol. Ther. 2018, 47, 738–752. [Google Scholar] [CrossRef]
- Allescher, H.D.; Burgell, R.; Malfertheiner, P.; Mearin, F. Multi-target Treatment for Irritable Bowel Syndrome with STW 5: Pharmacological Modes of Action. J. Gastrointestin Liver Dis. 2020, 29, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Thavorn, K.; Wolfe, D.; Faust, L.; Shorr, R.; Akkawi, M.; Isaranuwatchai, W.; Klinger, C.; Chai-Adisaksopa, C.; Tanvejsilp, P.; Nochaiwong, S.; et al. A systematic review of the efficacy and safety of turmeric in the treatment of digestive disorders. Phytother. Res. 2024, 38, 2687–2706. [Google Scholar] [CrossRef]

| Therapeutic Category | Representative Interventions | Mechanistic Target/Pathway | Key Findings |
|---|---|---|---|
| Serotonergic Modulation | 5-HT3 antagonists (ondansetron, alosetron); 5-HT4 agonists (prucalopride, mosapride); SSRIs, SNRIs | Regulation of gut motility, visceral sensitivity, serotonin reuptake | Improves stool frequency, urgency, abdominal pain in IBS-D; enhances colonic transit in IBS-C; neuromodulators show consistent but modest benefit |
| Gut Microbiome–Directed Therapies | Rifaximin, probiotics, prebiotics, synbiotics, FMT | Modulation of dysbiosis, TLR signaling, and microbial homeostasis | Rifaximin reduces bacterial overgrowth and inflammation; probiotics and synbiotics improve IBS symptom scores; FMT increases microbial diversity with variable efficacy |
| Immune and Neuroimmune Modulators | Ketotifen, cromolyn sodium, ebastine, ibodutant, mesalamine | Mast cell stabilization, cytokine inhibition, NK2 receptor blockade | Reduce visceral hypersensitivity and abdominal pain in selected patients; clinical benefit remains inconsistent across studies |
| Bile Acid and Barrier–Targeted Therapies | Colesevelam, cholestyramine, butyrate, zonulin inhibitors, tenapanor | FXR/TGR5 signaling, epithelial integrity, intestinal permeability | Bile acid sequestrants improve stool consistency and barrier function; butyrate and tenapanor strengthen epithelial junctions and reduce hypersensitivity |
| Vitamin D Supplementation | Vitamin D3 (cholecalciferol) | Serotonin metabolism, barrier and immune regulation | Improves symptom severity and quality of life, particularly in vitamin D deficient individuals |
| Dietary Interventions | Low-FODMAP, Mediterranean–Low-FODMAP diets | Reduction of luminal fermentation and osmotic load | Reduce bloating and abdominal pain; associated with favorable modulation of gut microbial metabolites |
| Lifestyle Measures | Regular physical activity | Gut–brain axis modulation | Decreases IBS symptom severity and improves quality of life |
| Natural Products and Phytotherapy | Peppermint oil, Iberogast (STW 5), Curcumin | Smooth muscle relaxation; modulation of motility and visceral sensitivity; anti-inflammatory effects | Provide mild-to-moderate symptom relief; improve motility and comfort; good safety profile; variable efficacy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aggeletopoulou, I.; Karaivazoglou, K.; Kalafateli, M.; Triantos, C. Targeting Irritable Bowel Syndrome Through Diet and Mechanism-Based Therapies: A Pathophysiological Approach. Nutrients 2025, 17, 3595. https://doi.org/10.3390/nu17223595
Aggeletopoulou I, Karaivazoglou K, Kalafateli M, Triantos C. Targeting Irritable Bowel Syndrome Through Diet and Mechanism-Based Therapies: A Pathophysiological Approach. Nutrients. 2025; 17(22):3595. https://doi.org/10.3390/nu17223595
Chicago/Turabian StyleAggeletopoulou, Ioanna, Katerina Karaivazoglou, Maria Kalafateli, and Christos Triantos. 2025. "Targeting Irritable Bowel Syndrome Through Diet and Mechanism-Based Therapies: A Pathophysiological Approach" Nutrients 17, no. 22: 3595. https://doi.org/10.3390/nu17223595
APA StyleAggeletopoulou, I., Karaivazoglou, K., Kalafateli, M., & Triantos, C. (2025). Targeting Irritable Bowel Syndrome Through Diet and Mechanism-Based Therapies: A Pathophysiological Approach. Nutrients, 17(22), 3595. https://doi.org/10.3390/nu17223595

