Adaptive Ketogenic–Mediterranean Protocol (AKMP) in Real Clinical Practice: 14-Week Pre–Post Cohort Study on Glucolipid Markers and Safety
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Considerations
2.2. Participants
2.3. Dietary Intervention
2.4. Collection and Handling of Biological Samples
2.5. Biochemical Determinations
2.6. Derived Indices
2.7. Units and Derived Variables (Thyroid Panel)
2.8. Body Composition (BIA)
2.9. Statistical Analysis
2.10. Quality Control
2.11. Safety
3. Results
3.1. Sample and Adherence
3.2. Primary Outcome, Conditional Co-Primary, and Secondary Outcomes
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI for d (Cohen) | %Δ | p | p Between Sexes (Δ) |
|---|---|---|---|---|---|---|---|---|
| HOMA-IR | 105 | 3.40 ± 2.58 | 1.61 ± 1.06 | −1.80 | 0.708–1.168 | −52.8 | <0.001 | 0.663 |
| Glucose (mg/dL) | 105 | 98.39 ± 16.23 | 84.72 ± 8.24 | −13.67 | 0.803–1.279 | −13.9 | <0.001 | 0.165 |
| Insulin (µU/L) | 105 | 13.41 ± 8.54 | 7.50 ± 4.60 | −5.91 | 0.758–1.227 | −44.1 | <0.001 | 0.839 |
| TyG (ln[TG × Glu/2]) | 105 | 3.82 ± 0.24 | 3.59 ± 0.18 | −0.23 | 1.014–1.529 | −6.0 | <0.001 | 0.107 |
| TG/HDL-c | 105 | 3.24 ± 2.48 | 2.03 ± 0.88 | −1.21 | 0.349–0.760 | −37.3 | <0.001 | 0.196 |
| Remnant cholesterol (mg/dL) | 105 | 30.33 ± 18.17 | 19.68 ± 7.75 | −10.64 | 0.456–0.880 | −35.1 | <0.001 | 0.171 |
| Body fat mass (kg) | 105 | 45.68 ± 13.53 | 33.62 ± 13.17 | −12.06 | 2.837–3.812 | −26.4 | <0.001 | 0.086 |
| Trunk fat (kg) | 105 | 22.04 ± 4.89 | 17.15 ± 6.00 | −4.88 | 1.507–2.132 | −22.2 | <0.001 | 0.877 |
| Weight (kg) | 105 | 100.84 ± 20.52 | 85.99 ± 18.12 | −14.85 | 2.812–3.781 | −14.7 | <0.001 | 0.01 |
| BMI (kg/m2) | 105 | 37.00 ± 7.41 | 31.55 ± 6.59 | −5.45 | 2.919–3.918 | −14.7 | <0.001 | 0.396 |
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI for d (Cohen) | %Δ | p |
|---|---|---|---|---|---|---|---|
| HOMA-IR | 77 | 3.30 ± 2.56 | 1.62 ± 1.11 | −1.68 | 0.646–1.179 | −51.0 | <0.001 |
| Glucose (mg/dL) | 77 | 97.39 ± 15.59 | 83.91 ± 8.38 | −13.48 | 0.792–1.354 | −13.8 | <0.001 |
| Insulin (µU/L) | 77 | 13.14 ± 8.69 | 7.63 ± 4.85 | −5.52 | 0.677–1.216 | −41.9 | <0.001 |
| TyG (ln[TG × Glu/2]) | 77 | 3.79 ± 0.23 | 3.58 ± 0.17 | −0.22 | 0.960–1.560 | −5.5 | <0.001 |
| TG/HDL-c | 77 | 3.05 ± 2.53 | 2.00 ± 0.89 | −1.06 | 0.241–0.712 | −34.4 | <0.001 |
| Remnant cholesterol (mg/dL) | 77 | 28.97 ± 18.65 | 19.18 ± 7.12 | −9.79 | 0.356–0.841 | −33.8 | <0.001 |
| Body fat mass (kg) | 77 | 46.75 ± 14.50 | 35.23 ± 14.03 | −11.52 | 2.904–4.103 | −24.6 | <0.001 |
| Trunk fat (kg) | 77 | 21.84 ± 4.80 | 17.45 ± 6.01 | −4.39 | 1.279–1.961 | −20.1 | <0.001 |
| Weight (kg) | 77 | 97.64 ± 20.82 | 83.43 ± 18.89 | −14.21 | 3.035–4.278 | −14.6 | <0.001 |
| BMI (kg/m2) | 77 | 37.36 ± 8.14 | 31.90 ± 7.28 | −5.46 | 2.871–4.059 | −14.6 | <0.001 |
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI of d (Cohen) | %Δ | p |
|---|---|---|---|---|---|---|---|
| HOMA-IR | 28 | 3.68 ± 2.67 | 1.57 ± 0.93 | −2.11 | 0.541–1.453 | −57.4 | <0.001 |
| Glucose (mg/dL) | 28 | 101.14 ± 17.89 | 86.96 ± 7.53 | −14.18 | 0.504–1.403 | −14.0 | <0.001 |
| Insulin (µU/L) | 28 | 14.16 ± 8.20 | 7.17 ± 3.90 | −7.00 | 0.635–1.583 | −49.4 | <0.001 |
| TyG (ln[TG × Glu/2]) | 28 | 3.88 ± 0.24 | 3.62 ± 0.19 | −0.26 | 0.794–1.809 | −6.7 | <0.001 |
| TG/HDL-c | 28 | 3.77 ± 2.32 | 2.14 ± 0.82 | −1.63 | 0.359–1.210 | −43.2 | <0.001 |
| Remnant cholesterol (mg/dL) | 28 | 34.06 ± 16.50 | 21.06 ± 9.28 | −13.00 | 0.436–1.312 | −38.2 | <0.001 |
| Body fat mass (kg) | 28 | 42.76 ± 10.06 | 29.18 ± 9.31 | −13.58 | 2.340–4.237 | −31.8 | <0.001 |
| Trunk fat (kg) | 28 | 22.57 ± 5.19 | 16.35 ± 6.00 | −6.22 | 2.065–3.788 | −27.6 | <0.001 |
| Weight (kg) | 28 | 109.65 ± 17.08 | 93.05 ± 13.77 | −16.60 | 2.099–3.842 | −15.1 | <0.001 |
| BMI (kg/m2) | 28 | 36.03 ± 4.88 | 30.60 ± 4.07 | −5.43 | 2.308–4.185 | −15.1 | <0.001 |
3.2.1. Conventional Lipids
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI for d (Cohen) | %Δ | p |
|---|---|---|---|---|---|---|---|
| TG (mg/dL) | 77 | 144.88 ± 93.06 | 95.94 ± 35.95 | −48.94 | 0.356–0.841 | −33.8 | <0.001 |
| TC (mg/dL) | 77 | 206.05 ± 44.36 | 180.24 ± 35.41 | −25.81 | 0.636–1.167 | −12.5 | <0.001 |
| LDL-c (mg/dL) | 77 | 125.10 ± 36.84 | 110.47 ± 28.73 | −14.63 | 0.258–0.732 | −11.7 | <0.001 |
| HDL-c (mg/dL) | 77 | 52.00 ± 13.17 | 50.61 ± 10.73 | −1.39 | −0.082–0.367 | −2.7 | 0.215 |
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI for d (Cohen) | %Δ | p |
|---|---|---|---|---|---|---|---|
| TG (mg/dL) | 28 | 170.29 ± 82.52 | 105.29 ± 46.41 | −65.00 | 0.436–1.312 | −38.2 | <0.001 |
| TC (mg/dL) | 28 | 205.57 ± 31.69 | 182.18 ± 39.33 | −23.39 | 0.370–1.225 | −11.4 | <0.001 |
| LDL-c (mg/dL) | 28 | 122.80 ± 29.22 | 110.80 ± 28.91 | −12.00 | 0.068–0.849 | −9.8 | 0.021 |
| HDL-c (mg/dL) | 28 | 48.71 ± 10.31 | 50.32 ± 11.26 | 1.61 | −0.611–0.140 | 3.3 | 0.219 |
3.2.2. Liver Function
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI for d (Cohen) | %Δ | p |
|---|---|---|---|---|---|---|---|
| GGT (U/L) | 77 | 23.34 ± 18.65 | 12.22 ± 6.95 | −11.12 | 0.438–0.935 | −47.6 | <0.001 |
| Alkaline phosphatase (U/L) | 77 | 155.12 ± 38.90 | 141.87 ± 43.37 | −13.25 | 0.228–0.698 | −8.5 | <0.001 |
| Total bilirubin (mg/dL) | 77 | 0.52 ± 0.27 | 0.44 ± 0.22 | −0.08 | 0.093–0.551 | −15.7 | 0.006 |
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI for d (Cohen) | %Δ | p |
|---|---|---|---|---|---|---|---|
| GGT (U/L) | 28 | 53.43 ± 29.82 | 28.75 ± 21.11 | −24.68 | 0.551–1.468 | −46.2 | <0.001 |
| Alkaline phosphatase (U/L) | 28 | 158.50 ± 42.31 | 154.68 ± 43.89 | −3.82 | −0.183–0.565 | −2.4 | 0.317 |
| Total bilirubin (mg/dL) | 28 | 0.74 ± 0.43 | 0.57 ± 0.28 | −0.17 | 0.066–0.846 | −23.0 | 0.022 |
3.2.3. Renal Function and Metabolites
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI for d (Cohen) | %Δ | p |
|---|---|---|---|---|---|---|---|
| Urea (mg/dL) | 77 | 40.65 ± 9.64 | 36.44 ± 7.78 | −4.21 | 0.258–0.732 | −10.4 | <0.001 |
| Creatinine (mg/dL) | 77 | 0.96 ± 0.33 | 0.84 ± 0.15 | −0.12 | 0.161–0.625 | −12.8 | <0.001 |
| eGFR (mL/min/1.73 m2) | 77 | 79.38 ± 17.99 | 88.76 ± 16.41 | 9.38 | 0.304–0.783 | 11.8 | <0.001 |
| Uric acid (mg/dL) | 77 | 6.83 ± 1.98 | 5.90 ± 1.49 | −0.93 | 0.354–0.840 | −13.6 | <0.001 |
| Magnesium (mg/dL) | 77 | 1.969 ± 0.294 | 1.954 ± 0.280 | −0.015 | −0.176–0.271 | −0.8 | 0.677 |
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI for d (Cohen) | %Δ | p |
|---|---|---|---|---|---|---|---|
| Urea (mg/dL) | 28 | 43.96 ± 10.03 | 40.79 ± 8.93 | −3.18 | 0.050–0.827 | −7.2 | 0.027 |
| Creatinine (mg/dL) | 28 | 1.17 ± 0.25 | 1.08 ± 0.21 | −0.08 | 0.180–0.983 | −7.1 | 0.004 |
| eGFR (mL/min/1.73 m2) | 28 | 80.62 ± 17.86 | 87.55 ± 18.90 | 6.94 | 0.279–1.108 | 8.6 | <0.001 |
| Uric acid (mg/dL) | 28 | 8.17 ± 1.85 | 7.16 ± 1.43 | −1.00 | 0.288–1.119 | −12.3 | <0.001 |
| Magnesium (mg/dL) | 28 | 2.086 ± 0.195 | 2.022 ± 0.162 | −0.063 | −0.124–0.629 | −3.0 | 0.189 |
3.2.4. C-Reactive Protein (CRP)
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI for d (Cohen) | %Δ | p |
|---|---|---|---|---|---|---|---|
| Standard CRP (non–hs-CRP, mg/L) | 77 | 8.00 ± 10.44 | 5.86 ± 8.90 | −2.14 | −0.034–0.417 | −26.8 | 0.095 |
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI for d (Cohen) | %Δ | p |
|---|---|---|---|---|---|---|---|
| Standard CRP (non–hs-CRP, mg/L) | 28 | 3.81 ± 2.36 | 3.34 ± 3.27 | −0.47 | −0.197–0.550 | −12.3 | 0.355 |
3.2.5. Thyroid/Hormonal Panel
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI for d (Cohen) | %Δ | p |
|---|---|---|---|---|---|---|---|
| TSH (µIU/mL) | 77 | 2.37 ± 1.92 | 2.64 ± 2.73 | 0.27 | −0.311–0.136 | 11.4 | 0.444 |
| Free T4 (ng/dL) | 77 | 1.24 ± 0.23 | 1.21 ± 0.17 | −0.03 | −0.087–0.362 | −2.0 | 0.231 |
| Free T3 (pg/mL) | 77 | 3.15 ± 0.35 | 3.08 ± 0.41 | −0.06 | −0.059–0.391 | −2.0 | 0.149 |
| Cortisol (µg/dL) | 77 | 14.02 ± 5.20 | 13.37 ± 4.66 | −0.65 | −0.095–0.354 | −4.7 | 0.257 |
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI for d (Cohen) | %Δ | p |
|---|---|---|---|---|---|---|---|
| TSH (µIU/mL) | 28 | 3.76 ± 7.41 | 2.92 ± 3.76 | −0.84 | −0.154–0.597 | −22.4 | 0.247 |
| Free T4 (ng/dL) | 28 | 1.31 ± 0.25 | 1.28 ± 0.21 | −0.03 | −0.225–0.520 | −2.3 | 0.437 |
| Free T3 (pg/mL) | 28 | 3.28 ± 0.46 | 3.14 ± 0.43 | −0.14 | −0.002–0.767 | −4.3 | 0.051 |
| Cortisol (µg/dL) | 28 | 12.74 ± 4.63 | 12.59 ± 3.65 | −0.16 | −0.334–0.407 | −1.2 | 0.845 |
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI of d (Cohen) | %Δ | p |
|---|---|---|---|---|---|---|---|
| FT3 (pmol/L) | 77 | 4.84 ± 0.53 | 4.74 ± 0.62 | −0.10 | −0.059–0.391 | −2.0 | 0.149 |
| FT4 (pmol/L) | 77 | 15.93 ± 2.97 | 15.60 ± 2.15 | −0.33 | −0.050–0.400 | −2.0 | 0.127 |
| FT3/FT4 | 77 | 0.309 ± 0.070 | 0.239 ± 0.057 | −0.070 | 0.541–1.055 | −22.6 | <0.001 |
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI of d (Cohen) | %Δ | p |
|---|---|---|---|---|---|---|---|
| FT3 (pmol/L) | 28 | 5.04 ± 0.71 | 4.82 ± 0.66 | −0.22 | −0.002–0.767 | −4.3 | 0.051 |
| FT4 (pmol/L) | 28 | 16.85 ± 3.26 | 16.50 ± 2.73 | −0.34 | −0.333–0.408 | −2.0 | 0.844 |
| FT3/FT4 | 28 | 0.311 ± 0.069 | 0.211 ± 0.052 | −0.100 | 0.674–1.638 | −32.2 | <0.001 |
3.3. Associations Between Changes (Δ~Δ)
3.4. Safety and Adverse Events
4. Discussion
4.1. Glucose–Insulin Axis (Primary Outcome)
4.2. Lipid Profile and Composite Indices (With Remnant Cholesterol [RC] as the Conditional Co-Primary Outcome)
- (a)
- Remnant cholesterol (RC = TC − LDL-c − HDL-c; conditional co-primary).
- (b)
- TyG index (ln[TG × glucose/2]) and TG/HDL-c ratio.
Comparison with Hybrid and Ketogenic Models
4.3. Anthropometry and Body Composition
4.4. Hepatobiliary Markers (GGT, ALP, Bilirubin)
4.5. Renal Function and Uric Acid
4.5.1. Renal Function
4.5.2. Uric Acid
4.6. Systemic Inflammation (CRP)
4.7. Cortisol
4.8. Thyroid Panel
4.9. Correlation Analyses (Section 3.3)
4.10. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hotamisligil, G.S. Inflammation and Metabolic Disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Shoelson, S.E. Inflammation and Insulin Resistance. J. Clin. Investig. 2006, 116, 1793–1801. [Google Scholar] [CrossRef]
- McLaughlin, T.; Reaven, G.; Abbasi, F.; Lamendola, C.; Saad, M.; Waters, D.; Simon, J.; Krauss, R.M. Is There a Simple Way to Identify Insulin-Resistant Individuals at Increased Risk of Cardiovascular Disease? Am. J. Cardiol. 2005, 96, 399–404. [Google Scholar] [CrossRef]
- Simental-Mendía, L.E.; Rodríguez-Morán, M.; Guerrero-Romero, F. The Product of Fasting Glucose and Triglycerides As Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metab. Syndr. Relat. Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef]
- Varbo, A.; Benn, M.; Tybjærg-Hansen, A.; Jørgensen, A.B.; Frikke-Schmidt, R.; Nordestgaard, B.G. Remnant Cholesterol as a Causal Risk Factor for Ischemic Heart Disease. J. Am. Coll. Cardiol. 2013, 61, 427–436. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Simental-Mendía, L.E.; González-Ortiz, M.; Martínez-Abundis, E.; Ramos-Zavala, M.G.; Hernández-González, S.O.; Jacques-Camarena, O.; Rodríguez-Morán, M. The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3347–3351. [Google Scholar] [CrossRef] [PubMed]
- Bonora, E.; Targher, G.; Alberiche, M.; Bonadonna, R.C.; Saggiani, F.; Zenere, M.B.; Monauni, T.; Muggeo, M. Homeostasis Model Assessment Closely Mirrors the Glucose Clamp Technique in the Assessment of Insulin Sensitivity: Studies in Subjects with Various Degrees of Glucose Tolerance and Insulin Sensitivity. Diabetes Care 2000, 23, 57–63. [Google Scholar] [CrossRef]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and Abuse of HOMA Modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Bueno, N.B.; de Melo, I.S.V.; de Oliveira, S.L.; da Rocha Ataide, T. Very-Low-Carbohydrate Ketogenic Diet vs Low-Fat Diet for Long-Term Weight Loss: A Meta-Analysis of Randomised Controlled Trials. Br. J. Nutr. 2013, 110, 1178–1187. [Google Scholar] [CrossRef]
- Brinkworth, G.D.; Noakes, M.; Buckley, J.D.; Keogh, J.B.; Clifton, P.M. Long-Term Effects of a Very-Low-Carbohydrate Weight Loss Diet Compared with an Isocaloric Low-Fat Diet after 12 Mo. Am. J. Clin. Nutr. 2009, 90, 23–32. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Sumithran, P.; Prendergast, L.A.; Delbridge, E.; Purcell, K.; Shulkes, A.; Kriketos, A.; Proietto, J. Ketosis and Appetite-Mediating Nutrients and Hormones after Weight Loss. Eur. J. Clin. Nutr. 2013, 67, 759–764. [Google Scholar] [CrossRef]
- García-Gorrita, C.; San Onofre, N.; Merino-Torres, J.F.; Soriano, J.M. Beyond GLP-1 Agonists: An Adaptive Ketogenic–Mediterranean Protocol to Counter Metabolic Adaptation in Obesity Management. Nutrients 2025, 17, 2699. [Google Scholar] [CrossRef]
- Gardner, C.D.; Landry, M.J.; Perelman, D.; Petlura, C.; Durand, L.R.; Aronica, L.; Crimarco, A.; Cunanan, K.M.; Chang, A.; Dant, C.C.; et al. Effect of a Ketogenic Diet versus Mediterranean Diet on Glycated Hemoglobin in Individuals with Prediabetes and Type 2 Diabetes Mellitus: The Interventional Keto-Med Randomized Crossover Trial. Am. J. Clin. Nutr. 2022, 116, 640–652. [Google Scholar] [CrossRef]
- Gardner, C.D.; Trepanowski, J.F.; Del Gobbo, L.C.; Hauser, M.E.; Rigdon, J.; Ioannidis, J.P.A.; Desai, M.; King, A.C. Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern or Insulin Secretion. JAMA 2018, 319, 667–679. [Google Scholar] [CrossRef]
- Sacks, F.M.; Bray, G.A.; Carey, V.J.; Smith, S.R.; Ryan, D.H.; Anton, S.D.; McManus, K.; Champagne, C.M.; Bishop, L.M.; Laranjo, N.; et al. Comparison of Weight-Loss Diets with Different Compositions of Fat, Protein, and Carbohydrates. N. Engl. J. Med. 2009, 360, 859–873. [Google Scholar] [CrossRef]
- Landry, M.J.; Crimarco, A.; Perelman, D.; Durand, L.R.; Petlura, C.; Aronica, L.; Robinson, J.L.; Kim, S.H.; Gardner, C.D. Adherence to Ketogenic and Mediterranean Study Diets in a Crossover Trial: The Keto–Med Randomized Trial. Nutrients 2021, 13, 967. [Google Scholar] [CrossRef] [PubMed]
- Ebbeling, C.B.; Feldman, H.A.; Klein, G.L.; Wong, J.M.W.; Bielak, L.; Steltz, S.K.; Luoto, P.K.; Wolfe, R.R.; Wong, W.W.; Ludwig, D.S. Effects of a Low Carbohydrate Diet on Energy Expenditure during Weight Loss Maintenance: Randomized Trial. BMJ 2018, 363, k4583. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Dickinson, S.L.; Henschel, B.; Ebbeling, C.B.; Allison, D.B. Do Lower-Carbohydrate Diets Increase Total Energy Expenditure? An Updated and Reanalyzed Meta-Analysis of 29 Controlled-Feeding Studies. J. Nutr. 2021, 151, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, B.J.; Cox, P.J.; Evans, R.D.; Cyranka, M.; Clarke, K.; de Wet, H. A Ketone Ester Drink Lowers Human Ghrelin and Appetite. Obesity 2018, 26, 269–273. [Google Scholar] [CrossRef]
- Johnstone, A.M.; Horgan, G.W.; Murison, S.D.; Bremner, D.M.; Lobley, G.E. Effects of a High-Protein Ketogenic Diet on Hunger, Appetite, and Weight Loss in Obese Men Feeding Ad Libitum. Am. J. Clin. Nutr. 2008, 87, 44–55. [Google Scholar] [CrossRef]
- Paddon-Jones, D.; Westman, E.; Mattes, R.D.; Wolfe, R.R.; Astrup, A.; Westerterp-Plantenga, M. Protein, Weight Management, and Satiety. Am. J. Clin. Nutr. 2008, 87, 1558S–1561S. [Google Scholar] [CrossRef] [PubMed]
- Ebbeling, C.B.; Swain, J.F.; Feldman, H.A.; Wong, W.W.; Hachey, D.L.; Garcia-Lago, E.; Ludwig, D.S. Effects of Dietary Composition on Energy Expenditure During Weight-Loss Maintenance. JAMA 2012, 307, 2627–2634. [Google Scholar] [CrossRef]
- Brownstein, A.J.; Veliova, M.; Acin-Perez, R.; Liesa, M.; Shirihai, O.S. ATP-Consuming Futile Cycles as Energy Dissipating Mechanisms to Counteract Obesity. Rev. Endocr. Metab. Disord. 2022, 23, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Frerman, F.E.; Kim, J.-J.P. Structure of Electron Transfer Flavoprotein-Ubiquinone Oxidoreductase and Electron Transfer to the Mitochondrial Ubiquinone Pool. Proc. Natl. Acad. Sci. USA 2006, 103, 16212–16217. [Google Scholar] [CrossRef]
- Watmough, N.J.; Frerman, F.E. The Electron Transfer Flavoprotein: Ubiquinone Oxidoreductases. Biochim. Biophys. Acta-Bioenerg. 2010, 1797, 1910–1916. [Google Scholar] [CrossRef]
- Brand, M.D.; Chien, L.F.; Diolez, P. Experimental Discrimination between Proton Leak and Redox Slip during Mitochondrial Electron Transport. Biochem. J. 1994, 297, 27–29. [Google Scholar] [CrossRef]
- Divakaruni, A.S.; Brand, M.D. The Regulation and Physiology of Mitochondrial Proton Leak. Physiology 2011, 26, 192–205. [Google Scholar] [CrossRef]
- Mookerjee, S.A.; Gerencser, A.A.; Nicholls, D.G.; Brand, M.D. Quantifying Intracellular Rates of Glycolytic and Oxidative ATP Production and Consumption Using Extracellular Flux Measurements. J. Biol. Chem. 2017, 292, 7189–7207. [Google Scholar] [CrossRef] [PubMed]
- Brand, M.D.; Harper, M.E.; Taylor, H.C. Control of the Effective P/O Ratio of Oxidative Phosphorylation in Liver Mitochondria and Hepatocytes. Biochem. J. 1993, 291, 739–748. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Sparks, L.M. Metabolic Flexibility in Health and Disease. Cell Metab. 2017, 25, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Saslow, L.R.; Kim, S.; Daubenmier, J.J.; Moskowitz, J.T.; Phinney, S.D.; Goldman, V.; Murphy, E.J.; Cox, R.M.; Moran, P.; Hecht, F.M. A Randomized Pilot Trial of a Moderate Carbohydrate Diet Compared to a Very Low Carbohydrate Diet in Overweight or Obese Individuals with Type 2 Diabetes Mellitus or Prediabetes. PLoS ONE 2014, 9, e91027. [Google Scholar] [CrossRef]
- Caprio, M.; Moriconi, E.; Camajani, E.; Feraco, A.; Marzolla, V.; Vitiello, L.; Proietti, S.; Armani, A.; Gorini, S.; Mammi, C.; et al. Very-Low-Calorie Ketogenic Diet vs Hypocaloric Balanced Diet in the Prevention of High-Frequency Episodic Migraine: The EMIKETO Randomized, Controlled Trial. J. Transl. Med. 2023, 21, 692. [Google Scholar] [CrossRef]
- Rondanelli, M.; Gasparri, C.; Pirola, M.; Barrile, G.C.; Moroni, A.; Sajoux, I.; Perna, S. Does the Ketogenic Diet Mediate Inflammation Markers in Obese and Overweight Adults? A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients 2024, 16, 4002. [Google Scholar] [CrossRef] [PubMed]
- Hue, L.; Taegtmeyer, H. The Randle Cycle Revisited: A New Head for an Old Hat. Am. J. Physiol.-Endocrinol. Metab. 2009, 297, E578–E591. [Google Scholar] [CrossRef] [PubMed]
- Jansen, L.T.; Yang, N.; Wong, J.M.W.; Mehta, T.; Allison, D.B.; Ludwig, D.S.; Ebbeling, C.B. Prolonged Glycemic Adaptation Following Transition From a Low- to High-Carbohydrate Diet: A Randomized Controlled Feeding Trial. Diabetes Care 2022, 45, 576–584. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Ekhlaspour, L.; Gaglia, J.L.; Hilliard, M.E.; Johnson, E.L.; Khunti, K.; et al. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S20–S42. [Google Scholar] [CrossRef]
- ISO 15189:2022; Medical Laboratories—Requirements for Quality and Competence. International Organization for Standardization: Geneva, Switzerland, 2022.
- ISO 9001:2015; Quality Management Systems—Requirements. International Organization for Standardization: Geneva, Switzerland, 2015.
- Mifflin, M.; St Jeor, S.; Hill, L.; Scott, B.; Daugherty, S.; Koh, Y. A New Predictive Equation for Resting Energy Expenditure in Healthy Individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef]
- Simental-Mendía, L.E.; Guerrero-Romero, F. The Correct Formula for the Triglycerides and Glucose Index. Eur. J. Pediatr. 2020, 179, 1171. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Sampson, M.; Ling, C.; Sun, Q.; Harb, R.; Ashmaig, M.; Warnick, R.; Sethi, A.; Fleming, J.K.; Otvos, J.D.; Meeusen, J.W.; et al. A New Equation for Calculation of Low-Density Lipoprotein Cholesterol in Patients With Normolipidemia and/or Hypertriglyceridemia. JAMA Cardiol. 2020, 5, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C–Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef] [PubMed]
- Westman, E.C.; Yancy, W.S.; Mavropoulos, J.C.; Marquart, M.; McDuffie, J.R. The Effect of a Low-Carbohydrate, Ketogenic Diet versus a Low-Glycemic Index Diet on Glycemic Control in Type 2 Diabetes Mellitus. Nutr. Metab. 2008, 5, 36. [Google Scholar] [CrossRef]
- Saslow, L.R.; Daubenmier, J.J.; Moskowitz, J.T.; Kim, S.; Murphy, E.J.; Phinney, S.D.; Ploutz-Snyder, R.; Goldman, V.; Cox, R.M.; Mason, A.E.; et al. Twelve-Month Outcomes of a Randomized Trial of a Moderate-Carbohydrate versus Very Low-Carbohydrate Diet in Overweight Adults with Type 2 Diabetes Mellitus or Prediabetes. Nutr. Diabetes 2017, 7, 304. [Google Scholar] [CrossRef]
- Goday, A.; Bellido, D.; Sajoux, I.; Crujeiras, A.B.; Burguera, B.; García-Luna, P.P.; Oleaga, A.; Moreno, B.; Casanueva, F.F. Short-Term Safety, Tolerability and Efficacy of a Very Low-Calorie-Ketogenic Diet Interventional Weight Loss Program versus Hypocaloric Diet in Patients with Type 2 Diabetes Mellitus. Nutr. Diabetes 2016, 6, e230. [Google Scholar] [CrossRef] [PubMed]
- Tay, J.; Luscombe-Marsh, N.D.; Thompson, C.H.; Noakes, M.; Buckley, J.D.; Wittert, G.A.; Yancy, W.S.; Brinkworth, G.D. Comparison of Low- and High-Carbohydrate Diets for Type 2 Diabetes Management: A Randomized Trial. Am. J. Clin. Nutr. 2015, 102, 780–790. [Google Scholar] [CrossRef]
- Tay, J.; Luscombe-Marsh, N.D.; Thompson, C.H.; Noakes, M.; Buckley, J.D.; Wittert, G.A.; Yancy, W.S.; Brinkworth, G.D. A Very Low-Carbohydrate, Low–Saturated Fat Diet for Type 2 Diabetes Management: A Randomized Trial. Diabetes Care 2014, 37, 2909–2918. [Google Scholar] [CrossRef]
- Tay, J.; Thompson, C.H.; Luscombe-Marsh, N.D.; Wycherley, T.P.; Noakes, M.; Buckley, J.D.; Wittert, G.A.; Yancy, W.S.; Brinkworth, G.D. Effects of an Energy-restricted Low-carbohydrate, High Unsaturated Fat/Low Saturated Fat Diet versus a High-carbohydrate, Low-fat Diet in Type 2 Diabetes: A 2-year Randomized Clinical Trial. Diabetes Obes. Metab. 2018, 20, 858–871. [Google Scholar] [CrossRef]
- Lennerz, B.; Lennerz, J.K. Food Addiction, High-Glycemic-Index Carbohydrates, and Obesity. Clin. Chem. 2018, 64, 64–71. [Google Scholar] [CrossRef]
- Lennerz, B.S.; Alsop, D.C.; Holsen, L.M.; Stern, E.; Rojas, R.; Ebbeling, C.B.; Goldstein, J.M.; Ludwig, D.S. Effects of Dietary Glycemic Index on Brain Regions Related to Reward and Craving in Men. Am. J. Clin. Nutr. 2013, 98, 641–647. [Google Scholar] [CrossRef]
- Wang, G.-J.; Volkow, N.D.; Logan, J.; Pappas, N.R.; Wong, C.T.; Zhu, W.; Netusll, N.; Fowler, J.S. Brain Dopamine and Obesity. Lancet 2001, 357, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Schulte, E.M.; Avena, N.M.; Gearhardt, A.N. Which Foods May Be Addictive? The Roles of Processing, Fat Content, and Glycemic Load. PLoS ONE 2015, 10, e0117959. [Google Scholar] [CrossRef]
- Gearhardt, A.N.; White, M.A.; Potenza, M.N. Binge Eating Disorder and Food Addiction. Curr. Drug Abus. Rev. 2011, 4, 201–207. [Google Scholar] [CrossRef]
- Harvey, C.J.d.C.; Schofield, G.M.; Zinn, C.; Thornley, S. Effects of Differing Levels of Carbohydrate Restriction on Mood Achievement of Nutritional Ketosis, and Symptoms of Carbohydrate Withdrawal in Healthy Adults: A Randomized Clinical Trial. Nutrition 2019, 67–68, 100005. [Google Scholar] [CrossRef]
- Deemer, S.E.; Plaisance, E.P.; Martins, C. Impact of Ketosis on Appetite Regulation—A Review. Nutr. Res. 2020, 77, 1–11. [Google Scholar] [CrossRef]
- Merovci, A.; Finley, B.; Hansis-Diarte, A.; Neppala, S.; Abdul-Ghani, M.A.; Cersosimo, E.; Triplitt, C.; DeFronzo, R.A. Effect of Weight-Maintaining Ketogenic Diet on Glycemic Control and Insulin Sensitivity in Obese T2D Subjects. BMJ Open Diabetes Res. Care 2024, 12, e004199. [Google Scholar] [CrossRef] [PubMed]
- Dorans, K.S.; Bazzano, L.A.; Qi, L.; He, H.; Chen, J.; Appel, L.J.; Chen, C.-S.; Hsieh, M.-H.; Hu, F.B.; Mills, K.T.; et al. Effects of a Low-Carbohydrate Dietary Intervention on Hemoglobin A1c. JAMA Netw. Open 2022, 5, e2238645. [Google Scholar] [CrossRef]
- Esposito, K.; Maiorino, M.I.; Petrizzo, M.; Bellastella, G.; Giugliano, D. The Effects of a Mediterranean Diet on the Need for Diabetes Drugs and Remission of Newly Diagnosed Type 2 Diabetes: Follow-up of a Randomized Trial. Diabetes Care 2014, 37, 1824–1830. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvadó, J.; Bulló, M.; Babio, N.; Martínez-González, M.Á.; Ibarrola-Jurado, N.; Basora, J.; Estruch, R.; Covas, M.I.; Corella, D.; Arós, F.; et al. Reduction in the Incidence of Type 2 Diabetes With the Mediterranean Diet. Diabetes Care 2011, 34, 14–19. [Google Scholar] [CrossRef]
- Castañer, O.; Pintó, X.; Subirana, I.; Amor, A.J.; Ros, E.; Hernáez, Á.; Martínez-González, M.Á.; Corella, D.; Salas-Salvadó, J.; Estruch, R.; et al. Remnant Cholesterol, Not LDL Cholesterol, Is Associated With Incident Cardiovascular Disease. J. Am. Coll. Cardiol. 2020, 76, 2712–2724. [Google Scholar] [CrossRef]
- Ikezaki, H.; Lim, E.; Cupples, L.A.; Liu, C.; Asztalos, B.F.; Schaefer, E.J. Small Dense Low-Density Lipoprotein Cholesterol Is the Most Atherogenic Lipoprotein Parameter in the Prospective Framingham Offspring Study. J. Am. Heart Assoc. 2021, 10, e019140. [Google Scholar] [CrossRef] [PubMed]
- Athinarayanan, S.J.; Hallberg, S.J.; McKenzie, A.L.; Lechner, K.; King, S.; McCarter, J.P.; Volek, J.S.; Phinney, S.D.; Krauss, R.M. Impact of a 2-Year Trial of Nutritional Ketosis on Indices of Cardiovascular Disease Risk in Patients with Type 2 Diabetes. Cardiovasc. Diabetol. 2020, 19, 208. [Google Scholar] [CrossRef]
- Elhayany, A.; Lustman, A.; Abel, R.; Attal-Singer, J.; Vinker, S. A Low Carbohydrate Mediterranean Diet Improves Cardiovascular Risk Factors and Diabetes Control among Overweight Patients with Type 2 Diabetes Mellitus: A 1-year Prospective Randomized Intervention Study. Diabetes Obes. Metab. 2010, 12, 204–209. [Google Scholar] [CrossRef]
- Paoli, A.; Bianco, A.; Grimaldi, K.; Lodi, A.; Bosco, G. Long Term Successful Weight Loss with a Combination Biphasic Ketogenic Mediterranean Diet and Mediterranean Diet Maintenance Protocol. Nutrients 2013, 5, 5205–5217. [Google Scholar] [CrossRef]
- Pérez-Guisado, J.; Muñoz-Serrano, A.; Alonso-Moraga, Á. Spanish Ketogenic Mediterranean Diet: A Healthy Cardiovascular Diet for Weight Loss. Nutr. J. 2008, 7, 30. [Google Scholar] [CrossRef]
- Shai, I.; Schwarzfuchs, D.; Henkin, Y.; Shahar, D.R.; Witkow, S.; Greenberg, I.; Golan, R.; Fraser, D.; Bolotin, A.; Vardi, H.; et al. Weight Loss with a Low-Carbohydrate, Mediterranean, or Low-Fat Diet. N. Engl. J. Med. 2008, 359, 229–241. [Google Scholar] [CrossRef]
- Bazzano, L.A.; Hu, T.; Reynolds, K.; Yao, L.; Bunol, C.; Liu, Y.; Chen, C.-S.; Klag, M.J.; Whelton, P.K.; He, J. Effects of Low-Carbohydrate and Low-Fat Diets. Ann. Intern. Med. 2014, 161, 309–318. [Google Scholar] [CrossRef]
- Konieczna, J.; Ruiz-Canela, M.; Galmes-Panades, A.M.; Abete, I.; Babio, N.; Fiol, M.; Martín-Sánchez, V.; Estruch, R.; Vidal, J.; Buil-Cosiales, P.; et al. An Energy-Reduced Mediterranean Diet, Physical Activity, and Body Composition. JAMA Netw. Open 2023, 6, e2337994. [Google Scholar] [CrossRef] [PubMed]
- Pratt, D.S.; Kaplan, M.M. Evaluation of Abnormal Liver-Enzyme Results in Asymptomatic Patients. N. Engl. J. Med. 2000, 342, 1266–1271. [Google Scholar] [CrossRef] [PubMed]
- Newsome, P.N.; Cramb, R.; Davison, S.M.; Dillon, J.F.; Foulerton, M.; Godfrey, E.M.; Hall, R.; Harrower, U.; Hudson, M.; Langford, A.; et al. Guidelines on the Management of Abnormal Liver Blood Tests. Gut 2018, 67, 6–19. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of Cholestatic Liver Diseases. J. Hepatol. 2009, 51, 237–267. [Google Scholar] [CrossRef]
- Ho, F.K.; Ferguson, L.D.; Celis-Morales, C.A.; Gray, S.R.; Forrest, E.; Alazawi, W.; Gill, J.M.; Katikireddi, S.V.; Cleland, J.G.; Welsh, P.; et al. Association of Gamma-Glutamyltransferase Levels with Total Mortality, Liver-Related and Cardiovascular Outcomes: A Prospective Cohort Study in the UK Biobank. eClinicalMedicine 2022, 48, 101435. [Google Scholar] [CrossRef]
- Fraser, A.; Harris, R.; Sattar, N.; Ebrahim, S.; Smith, G.D.; Lawlor, D.A. Gamma-Glutamyltransferase Is Associated With Incident Vascular Events Independently of Alcohol Intake. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2729–2735. [Google Scholar] [CrossRef] [PubMed]
- Ruttmann, E.; Brant, L.J.; Concin, H.; Diem, G.; Rapp, K.; Ulmer, H. γ-Glutamyltransferase as a Risk Factor for Cardiovascular Disease Mortality. Circulation 2005, 112, 2130–2137. [Google Scholar] [CrossRef]
- Tonelli, M.; Curhan, G.; Pfeffer, M.; Sacks, F.; Thadhani, R.; Melamed, M.L.; Wiebe, N.; Muntner, P. Relation Between Alkaline Phosphatase, Serum Phosphate, and All-Cause or Cardiovascular Mortality. Circulation 2009, 120, 1784–1792. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Sattar, N.; Papcosta, O.; Lennon, L.; Whincup, P.H. Alkaline Phosphatase, Serum Phosphate, and Incident Cardiovascular Disease and Total Mortality in Older Men. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1070–1076. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Bakker, S.J.L.; Gansevoort, R.T.; Chowdhury, R.; Dullaart, R.P.F. Circulating Total Bilirubin and Risk of Incident Cardiovascular Disease in the General Population. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 716–724. [Google Scholar] [CrossRef]
- Hallberg, S.J.; McKenzie, A.L.; Williams, P.T.; Bhanpuri, N.H.; Peters, A.L.; Campbell, W.W.; Hazbun, T.L.; Volk, B.M.; McCarter, J.P.; Phinney, S.D.; et al. Effectiveness and Safety of a Novel Care Model for the Management of Type 2 Diabetes at 1 Year: An Open-Label, Non-Randomized, Controlled Study. Diabetes Ther. 2018, 9, 583–612. [Google Scholar] [CrossRef] [PubMed]
- Athinarayanan, S.J.; Adams, R.N.; Hallberg, S.J.; McKenzie, A.L.; Bhanpuri, N.H.; Campbell, W.W.; Volek, J.S.; Phinney, S.D.; McCarter, J.P. Long-Term Effects of a Novel Continuous Remote Care Intervention Including Nutritional Ketosis for the Management of Type 2 Diabetes: A 2-Year Non-Randomized Clinical Trial. Front. Endocrinol. 2019, 10, 348. [Google Scholar] [CrossRef] [PubMed]
- Skytte, M.J.; Samkani, A.; Petersen, A.D.; Thomsen, M.N.; Astrup, A.; Chabanova, E.; Frystyk, J.; Holst, J.J.; Thomsen, H.S.; Madsbad, S.; et al. A Carbohydrate-Reduced High-Protein Diet Improves HbA1c and Liver Fat Content in Weight Stable Participants with Type 2 Diabetes: A Randomised Controlled Trial. Diabetologia 2019, 62, 2066–2078. [Google Scholar] [CrossRef]
- Campanella, A.; Iacovazzi, P.A.; Misciagna, G.; Bonfiglio, C.; Mirizzi, A.; Franco, I.; Bianco, A.; Sorino, P.; Caruso, M.G.; Cisternino, A.M.; et al. The Effect of Three Mediterranean Diets on Remnant Cholesterol and Non-Alcoholic Fatty Liver Disease: A Secondary Analysis. Nutrients 2020, 12, 1674. [Google Scholar] [CrossRef]
- Hengist, A.; Davies, R.G.; Walhin, J.-P.; Buniam, J.; Merrell, L.H.; Rogers, L.; Bradshaw, L.; Moreno-Cabañas, A.; Rogers, P.J.; Brunstrom, J.M.; et al. Ketogenic Diet but Not Free-Sugar Restriction Alters Glucose Tolerance, Lipid Metabolism, Peripheral Tissue Phenotype, and Gut Microbiome: RCT. Cell Rep. Med. 2024, 5, 101667. [Google Scholar] [CrossRef]
- Luukkonen, P.K.; Dufour, S.; Lyu, K.; Zhang, X.-M.; Hakkarainen, A.; Lehtimäki, T.E.; Cline, G.W.; Petersen, K.F.; Shulman, G.I.; Yki-Järvinen, H. Effect of a Ketogenic Diet on Hepatic Steatosis and Hepatic Mitochondrial Metabolism in Nonalcoholic Fatty Liver Disease. Proc. Natl. Acad. Sci. USA 2020, 117, 7347–7354. [Google Scholar] [CrossRef]
- Schini, M.; Vilaca, T.; Gossiel, F.; Salam, S.; Eastell, R. Bone Turnover Markers: Basic Biology to Clinical Applications. Endocr. Rev. 2023, 44, 417–473. [Google Scholar] [CrossRef]
- Friedman, A.N.; Ogden, L.G.; Foster, G.D.; Klein, S.; Stein, R.; Miller, B.; Hill, J.O.; Brill, C.; Bailer, B.; Rosenbaum, D.R.; et al. Comparative Effects of Low-Carbohydrate High-Protein Versus Low-Fat Diets on the Kidney. Clin. J. Am. Soc. Nephrol. 2012, 7, 1103–1111. [Google Scholar] [CrossRef]
- Tay, J.; Thompson, C.H.; Luscombe-Marsh, N.D.; Noakes, M.; Buckley, J.D.; Wittert, G.A.; Brinkworth, G.D. Long-Term Effects of a Very Low Carbohydrate Compared With a High Carbohydrate Diet on Renal Function in Individuals With Type 2 Diabetes. Medicine 2015, 94, e2181. [Google Scholar] [CrossRef]
- Podadera-Herreros, A.; Alcala-Diaz, J.F.; Gutierrez-Mariscal, F.M.; Jimenez-Torres, J.; de la Cruz-Ares, S.; Arenas-de Larriva, A.P.; Cardelo, M.P.; Torres-Peña, J.D.; Luque, R.M.; Ordovas, J.M.; et al. Long-Term Consumption of a Mediterranean Diet or a Low-Fat Diet on Kidney Function in Coronary Heart Disease Patients: The CORDIOPREV Randomized Controlled Trial. Clin. Nutr. 2022, 41, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Gohari, S.; Ghobadi, S.; Jafari, A.; Ahangar, H.; Gohari, S.; Mahjani, M. The Effect of Dietary Approaches to Stop Hypertension and Ketogenic Diets Intervention on Serum Uric Acid Concentration: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sci. Rep. 2023, 13, 10492. [Google Scholar] [CrossRef] [PubMed]
- Juraschek, S.P.; Gelber, A.C.; Choi, H.K.; Appel, L.J.; Miller, E.R. Effects of the Dietary Approaches to Stop Hypertension (DASH) Diet and Sodium Intake on Serum Uric Acid. Arthritis Rheumatol. 2016, 68, 3002–3009. [Google Scholar] [CrossRef] [PubMed]
- Pepys, M.B.; Hirschfield, G.M. C-Reactive Protein: A Critical Update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar] [CrossRef]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O.; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Markers of Inflammation and Cardiovascular Disease. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef]
- Visser, M. Elevated C-Reactive Protein Levels in Overweight and Obese Adults. JAMA 1999, 282, 2131. [Google Scholar] [CrossRef]
- Bermudez, E.A.; Rifai, N.; Buring, J.; Manson, J.E.; Ridker, P.M. Interrelationships Among Circulating Interleukin-6, C-Reactive Protein, and Traditional Cardiovascular Risk Factors in Women. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1668–1673. [Google Scholar] [CrossRef]
- Park, H.S.; Park, J.Y.; Yu, R. Relationship of Obesity and Visceral Adiposity with Serum Concentrations of CRP, TNF-α and IL-6. Diabetes Res. Clin. Pract. 2005, 69, 29–35. [Google Scholar] [CrossRef]
- Nicklas, J.M.; Sacks, F.M.; Smith, S.R.; LeBoff, M.S.; Rood, J.C.; Bray, G.A.; Ridker, P.M. Effect of Dietary Composition of Weight Loss Diets on High-sensitivity C-reactive Protein: The Randomized POUNDS LOST Trial. Obesity 2013, 21, 681–689. [Google Scholar] [CrossRef]
- Seshadri, P.; Iqbal, N.; Stern, L.; Williams, M.; Chicano, K.L.; Daily, D.A.; McGrory, J.; Gracely, E.J.; Rader, D.J.; Samaha, F.F. A Randomized Study Comparing the Effects of a Low-Carbohydrate Diet and a Conventional Diet on Lipoprotein Subfractions and C-Reactive Protein Levels in Patients with Severe Obesity. Am. J. Med. 2004, 117, 398–405. [Google Scholar] [CrossRef]
- Ruth, M.R.; Port, A.M.; Shah, M.; Bourland, A.C.; Istfan, N.W.; Nelson, K.P.; Gokce, N.; Apovian, C.M. Consuming a Hypocaloric High Fat Low Carbohydrate Diet for 12 Weeks Lowers C-Reactive Protein, and Raises Serum Adiponectin and High Density Lipoprotein-Cholesterol in Obese Subjects. Metabolism 2013, 62, 1779–1787. [Google Scholar] [CrossRef]
- Esposito, K.; Marfella, R.; Ciotola, M.; Di Palo, C.; Giugliano, F.; Giugliano, G.; D’Armiento, M.; D’Andrea, F.; Giugliano, D. Effect of a Mediterranean-Style Diet on Endothelial Dysfunction and Markers of Vascular Inflammation in the Metabolic Syndrome. JAMA 2004, 292, 1440. [Google Scholar] [CrossRef] [PubMed]
- Richard, C.; Couture, P.; Desroches, S.; Lamarche, B. Effect of the Mediterranean Diet with and without Weight Loss on Markers of Inflammation in Men with Metabolic Syndrome. Obesity 2013, 21, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.Q.; Nguyen Di, K.; Quynh Chi, V.T.; Nguyen, H.T.H. Evaluating the Effects of Dietary Patterns on Circulating C-Reactive Protein Levels in the General Adult Population: An Umbrella Review of Meta-Analyses of Interventional and Observational Studies. Br. J. Nutr. 2024, 132, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Kazeminasab, F.; Miraghajani, M.; Khalafi, M.; Sakhaei, M.H.; Rosenkranz, S.K.; Santos, H.O. Effects of Low-Carbohydrate Diets, with and without Caloric Restriction, on Inflammatory Markers in Adults: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Eur. J. Clin. Nutr. 2024, 78, 569–584. [Google Scholar] [CrossRef]
- Whittaker, J.; Harris, M. Low-Carbohydrate Diets and Men’s Cortisol and Testosterone: Systematic Review and Meta-Analysis. Nutr. Health 2022, 28, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Stimson, R.H.; Johnstone, A.M.; Homer, N.Z.M.; Wake, D.J.; Morton, N.M.; Andrew, R.; Lobley, G.E.; Walker, B.R. Dietary Macronutrient Content Alters Cortisol Metabolism Independently of Body Weight Changes in Obese Men. J. Clin. Endocrinol. Metab. 2007, 92, 4480–4484. [Google Scholar] [CrossRef] [PubMed]
- Polito, R.; Messina, G.; Valenzano, A.; Scarinci, A.; Villano, I.; Monda, M.; Cibelli, G.; Porro, C.; Pisanelli, D.; Monda, V.; et al. The Role of Very Low Calorie Ketogenic Diet in Sympathetic Activation through Cortisol Secretion in Male Obese Population. J. Clin. Med. 2021, 10, 4230. [Google Scholar] [CrossRef]
- Alufer, L.; Tsaban, G.; Rinott, E.; Kaplan, A.; Meir, A.Y.; Zelicha, H.; Ceglarek, U.; Isermann, B.; Blüher, M.; Stumvoll, M.; et al. Long-Term Green-Mediterranean Diet May Favor Fasting Morning Cortisol Stress Hormone; the DIRECT-PLUS Clinical Trial. Front. Endocrinol. 2023, 14, 1243910. [Google Scholar] [CrossRef]
- Molteberg, E.; Thorsby, P.M.; Kverneland, M.; Iversen, P.O.; Selmer, K.K.; Nakken, K.O.; Taubøll, E. Effects of Modified Atkins Diet on Thyroid Function in Adult Patients with Pharmacoresistant Epilepsy. Epilepsy Behav. 2020, 111, 107285. [Google Scholar] [CrossRef]
- Agnihothri, R.V.; Courville, A.B.; Linderman, J.D.; Smith, S.; Brychta, R.; Remaley, A.; Chen, K.Y.; Simchowitz, L.; Celi, F.S. Moderate Weight Loss Is Sufficient to Affect Thyroid Hormone Homeostasis and Inhibit Its Peripheral Conversion. Thyroid 2014, 24, 19–26. [Google Scholar] [CrossRef]
- Liu, G.; Liang, L.; Bray, G.A.; Qi, L.; Hu, F.B.; Rood, J.; Sacks, F.M.; Sun, Q. Thyroid Hormones and Changes in Body Weight and Metabolic Parameters in Response to Weight Loss Diets: The POUNDS LOST Trial. Int. J. Obes. 2017, 41, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, J.; Liu, M.; Zhou, X.; Lin, X.; Liang, Q.; Yang, J.; Zhang, M.; Chen, Z.; Li, M.; et al. Time-Restricted Eating with or without a Low-Carbohydrate Diet Improved Myocardial Status and Thyroid Function in Individuals with Metabolic Syndrome: Secondary Analysis of a Randomized Clinical Trial. BMC Med. 2024, 22, 362. [Google Scholar] [CrossRef]
- Basolo, A.; Piaggi, P.; Angeli, V.; Fierabracci, P.; Bologna, C.; Vignali, E.; Troiani, D.; Jaccheri, R.; Pelosini, C.; Paoli, M.; et al. Effects of 1-Month Very-Low-Calorie Ketogenic Diet on 24-Hour Energy Metabolism and Body Composition in Women With Obesity. J. Clin. Endocrinol. Metab. 2025, dgaf196. [Google Scholar] [CrossRef]
- Strączkowski, M.; Stefanowicz, M.; Nikołajuk, A.; Karczewska-Kupczewska, M. The Effect of Diet-Induced Weight-Loss on Subcutaneous Adipose Tissue Expression of Genes Associated with Thyroid Hormone Action. Clin. Nutr. 2024, 43, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Marzullo, P.; Minocci, A.; Mele, C.; Fessehatsion, R.; Tagliaferri, M.; Pagano, L.; Scacchi, M.; Aimaretti, G.; Sartorio, A. The Relationship between Resting Energy Expenditure and Thyroid Hormones in Response to Short-Term Weight Loss in Severe Obesity. PLoS ONE 2018, 13, e0205293. [Google Scholar] [CrossRef]
- Shimizu, Y.; Kawashiri, S.-Y.; Noguchi, Y.; Nakamichi, S.; Nagata, Y.; Hayashida, N.; Maeda, T. Associations among Ratio of Free Triiodothyronine to Free Thyroxine, Chronic Kidney Disease, and Subclinical Hypothyroidism. J. Clin. Med. 2022, 11, 1269. [Google Scholar] [CrossRef]
- Rosenbaum, M. Low-Dose Leptin Reverses Skeletal Muscle, Autonomic, and Neuroendocrine Adaptations to Maintenance of Reduced Weight. J. Clin. Investig. 2005, 115, 3579–3586. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, M.; Murphy, E.M.; Heymsfield, S.B.; Matthews, D.E.; Leibel, R.L. Low Dose Leptin Administration Reverses Effects of Sustained Weight-Reduction on Energy Expenditure and Circulating Concentrations of Thyroid Hormones. J. Clin. Endocrinol. Metab. 2002, 87, 2391–2394. [Google Scholar] [CrossRef]
- Xiao, G.L.; Wang, T.; Kuang, J.; Mai, W.L.; Liu, H.; Ma, S.P.; Sohouli, M.H.; Fatahi, S.; Li, C.; Zou, S. The Effect of Ketogenic Diet on Adipokines Levels: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials. Acta Diabetol. 2024, 61, 1495–1510. [Google Scholar] [CrossRef]
- Cipryan, L.; Dostal, T.; Plews, D.J.; Hofmann, P.; Laursen, P.B. Adiponectin/Leptin Ratio Increases after a 12-Week Very Low-Carbohydrate, High-Fat Diet, and Exercise Training in Healthy Individuals: A Non-Randomized, Parallel Design Study. Nutr. Res. 2021, 87, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Youm, Y.-H.; Nguyen, K.Y.; Grant, R.W.; Goldberg, E.L.; Bodogai, M.; Kim, D.; D’agostino, D.; Planavsky, N.; Lupfer, C.; Kanneganti, T.D. The Ketone Metabolite β-Hydroxybutyrate Blocks NLRP3 Inflammasome–Mediated Inflammatory Disease. Nat. Med. 2015, 21, 263–269. [Google Scholar] [CrossRef]
- Zhou, Y.; Rui, L. Leptin Signaling and Leptin Resistance. Front. Med. 2013, 7, 207–222. [Google Scholar] [CrossRef]
- Wachsmuth, N.B.; Aberer, F.; Haupt, S.; Schierbauer, J.R.; Zimmer, R.T.; Eckstein, M.L.; Zunner, B.; Schmidt, W.; Niedrist, T.; Sourij, H.; et al. The Impact of a High-Carbohydrate/Low Fat vs. Low-Carbohydrate Diet on Performance and Body Composition in Physically Active Adults: A Cross-Over Controlled Trial. Nutrients 2022, 14, 423. [Google Scholar] [CrossRef]
- Sánchez-García, A.; Rodríguez-Gutiérrez, R.; Mancillas-Adame, L.; González-Nava, V.; Díaz González-Colmenero, A.; Solis, R.C.; Álvarez-Villalobos, N.A.; González-González, J.G. Diagnostic Accuracy of the Triglyceride and Glucose Index for Insulin Resistance: A Systematic Review. Int. J. Endocrinol. 2020, 2020, 4678526. [Google Scholar] [CrossRef] [PubMed]
- Quispe, R.; Manalac, R.J.; Faridi, K.F.; Blaha, M.J.; Toth, P.P.; Kulkarni, K.R.; Nasir, K.; Virani, S.S.; Banach, M.; Blumenthal, R.S.; et al. Relationship of the Triglyceride to High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio to the Remainder of the Lipid Profile: The Very Large Database of Lipids-4 (VLDL-4) Study. Atherosclerosis 2015, 242, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Wolska, A.; Remaley, A.T. CRP and High-Sensitivity CRP: “What’s in a Name?”. J. Appl. Lab. Med. 2022, 7, 1255–1258. [Google Scholar] [CrossRef] [PubMed]

| Variable | Baseline Value |
|---|---|
| Age (years) | 46.7 ± 11.4 (range 21–75) |
| Sex | Women: 77 (73%); Men: 28 (27%) |
| Weight (kg) | 100.84 ± 20.52 |
| BMI (kg/m2) | 37.00 ± 7.41 |
| Trunk fat (kg) | 22.04 ± 4.89 (women 21.84 ± 4.80, n = 77; men 22.57 ± 5.19, n = 28) |
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI for d (Cohen) | %Δ | p | p Between Sexes (Δ) |
|---|---|---|---|---|---|---|---|---|
| TG (mg/dL) | 105 | 151.64 ± 90.84 | 98.42 ± 38.77 | −53.22 | 0.456–0.880 | −35.1 | <0.001 | 0.171 |
| TC (mg/dL) | 105 | 205.92 ± 41.34 | 180.76 ± 36.31 | −25.16 | 0.653–1.105 | −12.2 | <0.001 | 0.928 |
| LDL-c (mg/dL) | 105 | 124.56 ± 34.91 | 110.63 ± 28.64 | −13.93 | 0.285–0.690 | −11.2 | <0.001 | 0.865 |
| HDL-c (mg/dL) | 105 | 51.04 ± 12.49 | 50.45 ± 10.82 | −0.59 | −0.127–0.256 | −1.2 | 0.508 | 0.484 |
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI for d (Cohen) | %Δ | p | p Between Sexes (Δ) |
|---|---|---|---|---|---|---|---|---|
| GGT (U/L) | 105 | 31.36 ± 25.76 | 16.63 ± 14.32 | −14.73 | 0.537–0.971 | −47.0 | <0.001 | <0.001 |
| Alkaline phosphatase (U/L) | 105 | 156.02 ± 39.65 | 145.29 ± 43.67 | −10.73 | 0.202–0.599 | −6.9 | <0.001 | 0.356 |
| Total bilirubin (mg/dL) | 105 | 0.58 ± 0.34 | 0.47 ± 0.24 | −0.11 | 0.165–0.560 | −18.2 | <0.001 | 0.002 |
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI for d (Cohen) | %Δ | p | p Between Sexes (Δ) |
|---|---|---|---|---|---|---|---|---|
| Urea (mg/dL) | 105 | 41.53 ± 9.81 | 37.60 ± 8.29 | −3.93 | 0.281–0.685 | −9.5 | <0.001 | 0.032 |
| Creatinine (mg/dL) | 105 | 1.01 ± 0.32 | 0.90 ± 0.20 | −0.11 | 0.206–0.604 | −11.1 | <0.001 | <0.001 |
| eGFR (mL/min/1.73 m2) | 105 | 79.71 ± 17.88 | 88.44 ± 17.02 | 8.73 | 0.353–0.764 | 11 | <0.001 | 0.997 |
| Uric acid (mg/dL) | 105 | 7.19 ± 2.02 | 6.24 ± 1.57 | −0.95 | 0.418–0.836 | −13.2 | <0.001 | <0.001 |
| Magnesium (mg/dL) | 105 | 2.000 ± 0.275 | 1.972 ± 0.255 | −0.028 | −0.098–0.285 | −1.4 | 0.338 | 0.057 |
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI for d (Cohen) | %Δ | p | p Between Sexes (Δ) |
|---|---|---|---|---|---|---|---|---|
| Standard CRP (non–hs-CRP, mg/L) | 105 | 6.88 ± 9.20 | 5.18 ± 7.87 | −1.69 | −0.017–0.368 | −24.6 | <0.001 | 0.031 |
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI for d (Cohen) | %Δ | p | p Between Sexes (Δ) |
|---|---|---|---|---|---|---|---|---|
| TSH (µIU/mL) | 105 | 2.74 ± 4.16 | 2.72 ± 3.02 | −0.03 | −0.183–0.199 | −1.0 | 0.935 | 0.245 |
| Free T4 (ng/dL) | 105 | 1.26 ± 0.24 | 1.23 ± 0.18 | −0.03 | −0.051–0.333 | −2.0 | 0.15 | 0.093 |
| Free T3 (pg/mL) | 105 | 3.18 ± 0.38 | 3.10 ± 0.41 | −0.08 | 0.029–0.416 | −2.7 | 0.024 | 0.201 |
| Cortisol (µg/dL) | 105 | 13.68 ± 5.07 | 13.16 ± 4.41 | −0.52 | −0.084–0.300 | −3.8 | 0.269 | 0.258 |
| Variable | n Pairs | Pre (Mean ± SD) | Post (Mean ± SD) | Δ (Post − Pre) | 95% CI of d (Cohen) | %Δ | p | p Between Sexes (Δ) |
|---|---|---|---|---|---|---|---|---|
| FT3 (pmol/L) | 105 | 4.89 ± 0.59 | 4.76 ± 0.63 | −0.13 | 0.029–0.416 | −2.7 | 0.024 | 0.243 |
| FT4 (pmol/L) | 105 | 16.17 ± 3.06 | 15.84 ± 2.34 | −0.33 | −0.056–0.329 | −2.0 | 0.164 | 0.101 |
| FT3/FT4 | 105 | 0.309 ± 0.070 | 0.231 ± 0.057 | −0.078 | 0.662–1.114 | −25.1 | <0.001 | 0.214 |
| Variable (Δ~Δ) | r | p |
|---|---|---|
| HOMA-IR~TyG | 0.351 | <0.001 |
| HOMA-IR~Trunk fat (kg) | −0.163 | 0.097 |
| GGT~TG/HDL-c | −0.026 | 0.794 |
| CRP (mg/L)~Trunk fat (kg) | 0.01 | 0.917 |
| Remnant cholesterol~HOMA-IR | 0.229 | 0.019 |
| TG/HDL-c~TyG | 0.764 | <0.001 |
| Remnant cholesterol~TyG | 0.825 | <0.001 |
| Remnant cholesterol~TG/HDL-c | 0.962 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Gorrita, C.; San Onofre, N.; Merino-Torres, J.F.; Soriano, J.M. Adaptive Ketogenic–Mediterranean Protocol (AKMP) in Real Clinical Practice: 14-Week Pre–Post Cohort Study on Glucolipid Markers and Safety. Nutrients 2025, 17, 3559. https://doi.org/10.3390/nu17223559
García-Gorrita C, San Onofre N, Merino-Torres JF, Soriano JM. Adaptive Ketogenic–Mediterranean Protocol (AKMP) in Real Clinical Practice: 14-Week Pre–Post Cohort Study on Glucolipid Markers and Safety. Nutrients. 2025; 17(22):3559. https://doi.org/10.3390/nu17223559
Chicago/Turabian StyleGarcía-Gorrita, Cayetano, Nadia San Onofre, Juan F. Merino-Torres, and Jose M. Soriano. 2025. "Adaptive Ketogenic–Mediterranean Protocol (AKMP) in Real Clinical Practice: 14-Week Pre–Post Cohort Study on Glucolipid Markers and Safety" Nutrients 17, no. 22: 3559. https://doi.org/10.3390/nu17223559
APA StyleGarcía-Gorrita, C., San Onofre, N., Merino-Torres, J. F., & Soriano, J. M. (2025). Adaptive Ketogenic–Mediterranean Protocol (AKMP) in Real Clinical Practice: 14-Week Pre–Post Cohort Study on Glucolipid Markers and Safety. Nutrients, 17(22), 3559. https://doi.org/10.3390/nu17223559

