Long-Term Neurodevelopmental Outcomes of Late Preterm Children: A Pilot Study on the Role of Early Nutrition
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Procedure
2.3. Ethics
2.4. Measures
2.4.1. Clinical and Demographic Characteristics
2.4.2. Cognitive Development
2.4.3. Child Psychological Profile
2.5. Statistical Analysis
3. Results
3.1. Differences Among Feeding Groups on Cognitive Level of Development
3.2. Potential Predictors of WISC Scores
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohuma, E.O.; Moller, A.B.; Bradley, E.; Chakwera, S.; Hussain-Alkhateeb, L.; Lewin, A.; Okwaraji, Y.B.; Mahanani, W.R.; Johansson, E.W.; Moran, A.C.; et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: A systematic analysis. Lancet 2023, 402, 1261–1271. [Google Scholar] [CrossRef]
- Perin, J.; Mulick, A.; Yeung, D.; Villavicencio, F.; Lopez, G.; Strong, K.L.; Prieto-Merino, D.; Cousens, S.; E Black, R.; Liu, L. Global, regional, and national causes of under-5 mortality in 2000-19: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child Adolesc. Health 2022, 6, 106–115. [Google Scholar] [CrossRef]
- Biasini, A.; Monti, F.; Laguardia, M.C.; Stella, M.; Marvulli, L.; Neri, E. High protein intake in human/maternal milk fortification for ≤1250 gr infants: Intrahospital growth and neurodevelopmental outcome at two years. Acta Biomed. 2017, 88, 470–476. [Google Scholar] [CrossRef]
- Sarda, S.P.; Sarri, G.; Siffel, C. Global prevalence of long-term neurodevelopmental impairment following extremely preterm birth: A systematic literature review. J. Int. Med. Res. 2021, 49, 3000605211028026. [Google Scholar] [CrossRef]
- Morniroli, D.; Tiraferri, V.; Maiocco, G.; De Rose, D.U.; Cresi, F.; Coscia, A.; Mosca, F.; Giannì, M.L. Beyond survival: The lasting effects of premature birth. Front. Pediatr. 2023, 11, 1213243. [Google Scholar] [CrossRef]
- Kaempf, J.W.; Guillen, U.; Litt, J.S.; Zupancic, J.A.F.; Kirpalani, H. Change in neurodevelopmental outcomes for extremely premature infants over time: A systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2023, 108, 458–463. [Google Scholar] [CrossRef]
- McBryde, M.; Fitzallen, G.C.; Liley, H.G.; Taylor, H.G.; Bora, S. Academic outcomes of school-aged children born preterm: A systematic review and meta-analysis. JAMA 2020, 3, e202027. [Google Scholar] [CrossRef]
- Doyle, L.W.; Spittle, A.; Anderson, P.J.; Cheong, J.L.Y. School-aged neurodevelopmental outcomes for children born extremely preterm. Arch. Dis. Child. 2021, 106, 834–838. [Google Scholar] [CrossRef]
- Montagna, A.; Nosarti, C. Socio-Emotional Development Following Very Preterm Birth: Pathways to Psychopathology. Front. Psychol. 2016, 7, 80. [Google Scholar] [CrossRef]
- Bilgin, A.; Brylka, A.; Wolke, D.; Trower, H.; Baumann, N.; Lemola, S. Subjective well-being and self-esteem in preterm born adolescents: An individual participant data meta-analysis. J. Dev. Behav. Pediatr. 2021, 42, 613–620. [Google Scholar] [CrossRef]
- Della Longa, L.; Nosarti, C.; Farroni, T. Emotion Recognition in Preterm and Full-Term School-Age Children. Int. J. Environ. Res. Public Health 2022, 19, 6507. [Google Scholar] [CrossRef]
- Raju, T.N.K.R. The “Late Preterm” Birth-Ten Years Later. Pediatrics 2017, 139, e20163331. [Google Scholar] [CrossRef]
- Woythaler, M. Neurodevelopmental outcomes of the late preterm infant. Semin. Fetal Neonatal Med. 2019, 24, 54–59. [Google Scholar] [CrossRef]
- Chen, Z.; Xiong, C.; Liu, H.; Duan, J.; Kang, C.; Yao, C.; Chen, K.; Chen, Y.; Liu, Y.; Zhou, A.; et al. Impact of early term and late preterm birth on infants’ neurodevelopment: Evidence from a cohort study in Wuhan, China. BMC Pediatr. 2022, 22, 251. [Google Scholar] [CrossRef]
- Martínez-Nadal, S.; Bosch, L. Cognitive and Learning Outcomes in Late Preterm Infants at School Age: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 18, 74. [Google Scholar] [CrossRef]
- World Health Organization; UNICEF. Global Strategy for Infant and Young Child Feeding; World Health Organization: Geneva, Switzerland, 2003; Available online: https://www.globalbreastfeedingcollective.org/global-breastfeeding-scorecard (accessed on 1 January 2025).
- Binns, C.; Lee, M.; Low, W.Y. The long-term public health benefits of breastfeeding. Asia Pac. J. Public Health 2016, 28, 7–14. [Google Scholar] [CrossRef]
- Victora, C.G.; Bahl, R.; Barros, A.J.; França, G.V.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C.; et al. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef]
- Young, B.E. Breastfeeding and human milk: Short and long-term health benefits to the recipient infant. In Early Nutrition and Long-Term Health; Woodhead Publishing: Sawston, UK, 2017; pp. 25–53. [Google Scholar]
- Ong, C.; Wong, A.A.; Wong, S.T.; Zheng, Y.; Pang, C.P.C.; Jayagobi, P.A.; Yeo, J.G.; Yeo, K.T.; Chua, M.C. Enhanced versus standard fortification of pasteurized donor human milk for growth in very low birth weight infants: A randomized controlled trial. Front. Nutr. 2025, 12, 1582519. [Google Scholar] [CrossRef]
- Giannì, M.L.; Consonni, D.; Liotto, N.; Roggero, P.; Morlacchi, L.; Piemontese, P.; Menis, C.; Mosca, F. Does human milk modulate body composition in late preterm infants at term-corrected age? Nutrients 2016, 8, 664. [Google Scholar] [CrossRef]
- Heinonen, K.; Eriksson, J.G.; Lahti, J.; Kajantie, E.; Pesonen, A.K.; Tuovinen, S.; Osmond, C.; Raikkonen, K. Late preterm birth and neurocognitive performance in late adulthood: A birth cohort study. Pediatrics 2015, 135, e818–e825. [Google Scholar] [CrossRef]
- Huddy, C.L.; Johnson, A.; Hope, P.L. Educational and behavioural problems in babies of 32-35 weeks gestation. Arch. Dis. Child. Fetal Neonatal Ed. 2001, 85, F23–F28. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Intelligence Scale for Children, 3rd ed.; The Psychological Corporation: Singapore, 1991. [Google Scholar]
- Orsini, A.; Picone, L. WISC-III. Contributo Alla Taratura Italiana; Giunti OS: Firenze, Italy, 2006. [Google Scholar]
- Achenback, T.M.; Rescorla, L.A. Manual for the ASEBA School-Age Forms & Profiles; University of Vermont Research Centre for Children, Youth and Families: Burlington, VT, USA, 2001; p. 80. [Google Scholar]
- d’Orlando, F.; Grassi, M.; Di Blas, L. Uno studio di validazione del CBCL/6-18 e del TRF/6-18 nella tarda infanzia. G. Ital. Psicol. 2010, 37, 919–944. [Google Scholar]
- Austin, P.C.; Steyerberg, E.W. The number of subjects per variable required in linear regression analyses. J. Clin. Epidemiol. 2015, 68, 627–636. [Google Scholar] [CrossRef]
- Henley, S.S.; Golden, R.M.; Kashner, T.M. Statistical modeling methods: Challenges and strategies. Biostat. Epidemiol. 2020, 4, 105–139. [Google Scholar] [CrossRef]
- Jenkins, D.G.; Quintana-Ascencio, P.F. A solution to minimum sample size for regressions. PLoS ONE 2020, 15, e0229345. [Google Scholar]
- Mick, R.; Ratain, M.J. Bootstrap validation of pharmacodynamic models defined via stepwise linear regression. Clin. Pharmacol. Ther. 1994, 56, 217–222. [Google Scholar] [CrossRef]
- Griffith, T.; Singh, A.; Naber, M.; Hummel, P.; Bartholomew, C.; Amin, S.; White-Traut, R.; Garfield, L. Scoping review of interventions to support families with preterm infants post-NICU discharge. J. Pediatr. Nurs. 2022, 67, e135–e149. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, L.; Pascoe, L.; Mainzer, R.M.; Ellis, R.; Olsen, J.E.; Spittle, A.J.; Doyle, L.W.; Cheong, J.L.; Anderson, P.J. Executive Function Outcomes at School Age in Children Born Moderate-to-Late Preterm. J. Pediatr. 2025, 284, 114634. [Google Scholar] [CrossRef] [PubMed]
- Quigley, M.A.; Hockley, C.; Carson, C.; Kelly, Y.; Renfrew, M.J.; Sacker, A. Breastfeeding is associated with improved child cognitive development: A population-based cohort study. J. Pediatr. 2012, 160, 25–32. [Google Scholar] [CrossRef]
- Kim, K.M.; Choi, J.W. Associations between breastfeeding and cognitive function in children from early childhood to school age: A prospective birth cohort study. Int. Breastfeed. J. 2020, 15, 83. [Google Scholar] [CrossRef]
- Gibertoni, D.; Corvaglia, L.; Vandini, S.; Rucci, P.; Savini, S.; Alessandroni, R.; Sansavini, A.; Fantini, M.P.; Faldella, G. Positive effect of human milk feeding during NICU hospitalization on 24 month neurodevelopment of very low birth weight infants: An Italian cohort study. PLoS ONE 2015, 10, e0116552. [Google Scholar] [CrossRef]
- Lapidaire, W.; Lucas, A.; Clayden, J.D.; Clark, C.; Fewtrell, M.S. Human milk feeding and cognitive outcome in preterm infants: The role of infection and NEC reduction. Pediatr. Res. 2022, 91, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, N.G.; Balan, T.A.; van der Merwe, L.F.; Pang, W.W.; Michaelis, L.J.; Shek, L.P.; Vandenplas, Y.; Teoh, O.H.; On Behalf of the Tempo Study Group; On Behalf of the Venus Study Group; et al. Mixed Milk Feeding: A New Approach to Describe Feeding Patterns in the First Year of Life Based on Individual Participant Data from Two Randomised Controlled Trials. Nutrients 2022, 14, 2190. [Google Scholar] [CrossRef]
- Jackson, L.; De Pascalis, L.; Harrold, J.; Fallon, V. Guilt, shame, and postpartum infant feeding outcomes: A systematic review. Matern. Child Nutr. 2021, 17, e13141. [Google Scholar] [CrossRef]
- Moss-Racusin, C.A.; Schofield, C.A.; Brown, S.S.; O’Brien, K.A. Breast is (viewed as) best: Demonstrating formula feeding stigma. Psychol. Women Q. 2020, 44, 503–520. [Google Scholar] [CrossRef]
- Monge-Montero, C.; van der Merwe, L.F.; Tagliamonte, S.; Agostoni, C.; Vitaglione, P. Why do mothers mix milk feed their infants? Results from a systematic review. Nutr. Rev. 2024, 82, 1355–1371. [Google Scholar] [CrossRef] [PubMed]
- Dijokienė, I.; Žemaitienė, R.; Stonienė, D. Late Preterm Newborns: Breastfeeding and Complementary Feeding Practices. Children 2024, 11, 401. [Google Scholar] [CrossRef] [PubMed]
- Keir, A.; Rumbold, A.; Collins, C.T.; McPhee, A.J.; Varghese, J.; Morris, S.; Sullivan, T.R.; Leemaqz, S.; Middleton, P.; Best, K.P.; et al. Breastfeeding outcomes in late preterm infants: A multi-centre prospective cohort study. PLoS ONE 2022, 17, e0272583. [Google Scholar] [CrossRef]
- Monge-Montero, C.; van der Merwe, L.F.; Papadimitropoulou, K.; Agostoni, C.; Vitaglione, P. Mixed milk feeding: A systematic review and meta-analysis of its prevalence and drivers. Nutr. Rev. 2020, 78, 914–927. [Google Scholar] [CrossRef]
- Szczuko, M.; Szabunia, N.; Radkiewicz, J.; Jamioł-Milc, D.; Machałowski, T.; Ziętek, M. Relationship of SCFAs to Maternal and Child Anthropometric Measurements. Int. J. Mol. Sci. 2025, 26, 6424. [Google Scholar] [CrossRef]
- Dai, K.; Ding, L.; Yang, X.; Wang, S.; Rong, Z. Gut Microbiota and Neurodevelopment in Preterm Infants: Mechanistic Insights and Prospects for Clinical Translation. Microorganisms 2025, 13, 2213. [Google Scholar] [CrossRef] [PubMed]
- Blair, C.; Calkins, S.; Kopp, L. Self-regulation as the interface of emotional and cognitive development: Implications for education and academic achievement. In Handbook of Personality and Self-Regulation; Wiley: Hoboken, NJ, USA, 2010; pp. 64–90. [Google Scholar]
- Edossa, A.K.; Schroeders, U.; Weinert, S.; Artelt, C. The development of emotional and behavioral self-regulation and their effects on academic achievement in childhood. Int. J. Behav. Dev. 2018, 42, 192–202. [Google Scholar] [CrossRef]
- Garcia, I.L.; Fernald, L.C.H.; Aboud, F.E.; Otieno, R.; Alu, E.; Luoto, J.E. Father involvement and early child development in a low-resource setting. Soc. Sci. Med. 2022, 302, 114933. [Google Scholar] [CrossRef] [PubMed]
- Rollè, L.; Gullotta, G.; Trombetta, T.; Curti, L.; Gerino, E.; Brustia, P.; Caldarera, A.M. Father involvement and cognitive development in early and middle childhood: A systematic review. Front. Psychol. 2019, 10, 2405. [Google Scholar] [CrossRef]
| HMG (n = 20) | MMG (n = 22) | FMG (n = 20) | F/X2 | p | |
|---|---|---|---|---|---|
| Neonatal Variables | |||||
| Birth weight, grams, mean (SD) | 2569.25 (414.04) | 2023.64 (350.24) | 2399.25 (197.98) | 14.804 | <0.0005 |
| Gestational age, weeks, mean (SD) | 34.70 (0.47) | 34.59 (0.50) | 34.69 (0.48) | 0.336 | 0.716 |
| Length, cm, mean (SD) | 45.89 (5.49) | 45.85 (2.41) | 46.19 (1.44) | 0.036 | 0.965 |
| Cranial circumference, cm, mean (SD) | 34.66 (6.79) | 31.84 (1.07) | 32.13 (1.41) | 1.780 | 0.187 |
| APGAR, mean (SD) | 9.60 (0.60) | 8.58 (1.47) | 9.17 (0.99) | 4.451 | 0.016 |
| Hospitalization, n (%) | 4.127 | 0.127 | |||
| Yes | 5 (26.3) | 10 (52.6) | 5 (25.0) | ||
| No | 14 (73.7) | 9 (47.4) | 15 (75.0) | ||
| Gender, n (%) | 0.544 | 0.762 | |||
| Male | 12 (60.0) | 11 (50.0) | 10 (50.0) | ||
| Female | 8 (40.0) | 11 (50.0) | 10 (50.0) | ||
| Current Variables | |||||
| Age, years, mean (SD) | 10.25 (0.78) | 10.18 (0.91) | 10.45 (1.19) | 0.422 | 0.657 |
| Weight, kg, mean (SD) | 41.58 (14.78) | 35.21 (12.01) | 37.69 (8.04) | 1.449 | 0.243 |
| Height, cc, mean (SD) | 144.20 (8.59) | 138.90 (9.70) | 140.77 (9.32) | 1.705 | 0.191 |
| CC, cm, mean (SD) | 54.41 (1.79) | 53.62 (2.13) | 52.48 (5.90) | 1.163 | 0.321 |
| Metabolic disease/condition, n (%) | 1 (5.0) | 3 (13.6) | 0 (0.0) | 3.331 | 0.189 |
| Mothers | |||||
| Age, years, mean (SD) | 43.70 (4.70) | 44.35 (4.61) | 44.90 (2.51) | 0.461 | 0.633 |
| Education, % | 1.209 | 0.877 | |||
| Primary/Secondary school | 35% | 30% | 30% | ||
| High school | 45% | 55% | 60% | ||
| University | 20% | 15% | 10% | ||
| Civil status, % | 5.967 | 0.202 | |||
| Married | 90% | 60% | 80% | ||
| Cohabiting | 5% | 20% | 15% | ||
| Separated/Divorced/Widowed | 5% | 20% | 5% | ||
| CBCL Internalizing symptoms, mean (SD) | 49.85 (12.34) | 53.14 (8.76) | 54.05 (12.37) | 0.781 | 0.462 |
| CBCL Externalizing symptoms, mean (SD) | 44.46 (6.76) | 46.55 (9.79) | 44.80 (6.04) | 0.442 | 0.645 |
| Fathers | |||||
| Age, years, mean (SD) | 46.60 (6.33) | 45.65 (5.00) | 47.10 (5.08) | 0.3580 | 0.701 |
| Education, % | 5.345 | 0.254 | |||
| Primary/Secondary school | 20% | 30% | 50% | ||
| High school | 60% | 60% | 45% | ||
| University | 20% | 10% | 10% | ||
| CBCL Internalizing symptoms, mean (SD) | 47.95 (13.12) | 45.23 (9.25) | 49.35 (12.25) | 0.692 | 0.504 |
| CBCL Externalizing symptoms, mean (SD) | 40.10 (7.21) | 35.77 (10.78) | 38.20 (9.00) | 1.176 | 0.316 |
| HMG (n = 20) | MMG (n = 22) | FMG (n = 20) | Total Sample (n = 62) | F | p | η2 | |
|---|---|---|---|---|---|---|---|
| Verbal IQ-VIQ | 103.45 (14.70) | 89.64 (18.88) | 101.95 (13.98) | 98.06 (17.06) | 4.712 | 0.013 ab | 0.138 |
| Performance IQ-PIQ | 106.10 (10.67) | 94.77 (11.11) | 101.10 (13.18) | 100.47 (12.42) | 4.968 | 0.010 a | 0.144 |
| Total IQ | 105.05 (13.26) | 91.14 (14.77) | 101.70 (13.79) | 99.03 (15.03) | 5.724 | 0.005 ab | 0.162 |
| VC | 102.45 (13.87) | 90.59 (18.83) | 102.45 (13.40) | 98.24 (16.45) | 4.060 | 0.022 ab | 0.121 |
| PO | 110.15 (12.25) | 95.91 (12.74) | 103.85 (12.39) | 103.06 (13.62) | 6.891 | 0.002 a | 0.189 |
| FD | 104.30 (17.74) | 90.91 (12.83) | 101.45 (19.45) | 98.63 (17.53) | 3.750 | 0.029 a | 0.113 |
| PS | 100.30 (10.50) | 93.18 (15.05) | 100.70 (12.45) | 97.90 (13.15) | 2.294 | 0.110 | 0.072 |
| HMG (n = 20) | MMG (n = 22) | FMG (n = 20) | Total Sample (n = 62) | X2 | p | |
|---|---|---|---|---|---|---|
| Verbal IQ-VIQ | 6 (30.0) | 7 (31.8) | 4 (20.0) | 17 (27.4) | 0.854 | 0.659 |
| Performance IQ-PIQ | 1 (5.0) | 7 (31.8) | 3 (15.0) | 11 (17.7) | 5.315 | 0.070 |
| Total IQ | 3 (15.0) | 8 (36.4) | 3 (15.0) | 14 (22.6) | 3.706 | 0.157 |
| VC | 3 (15.0) | 7 (31.8) | 2 (10.0) | 12 (19.4) | 3.554 | 0.169 |
| PO | 1 (5.0) | 8 (36.4) | 2 (10.0) | 11 (17.7) | 8.274 | 0.016 a |
| FD | 4 (20.0) | 9 (40.9) | 5 (25.0) | 18 (29.0) | 2.456 | 0.293 |
| PS | 3 (15.0) | 8 (36.4) | 5 (25.0) | 16 (25.8) | 2.507 | 0.285 |
| R2Adj | F | p | B | SE | t | p | |
|---|---|---|---|---|---|---|---|
| Verbal quotients | 0.209 | 4.375 | 0.002 | ||||
| Constant | 96.388 | 13.994 | 6.888 | <0.001 | |||
| HMG and MMG vs. FMG | −0.010 | 0.010 | −0.953 | 0.345 | |||
| Maternal CBCL Internalizing symptoms | 0.479 | 0.311 | 1.540 | 0.129 | |||
| Maternal CBCL Externalizing symptoms | −0.976 | 0.315 | −3.095 | 0.003 | |||
| Paternal CBCL Internalizing symptoms | −0.461 | 0.322 | −1.429 | 0.158 | |||
| Paternal CBCL Externalizing symptoms | 1.124 | 0.292 | 3.855 | <0.001 | |||
| Performance quotients | 0.101 | 2.441 | 0.045 | ||||
| Constant | 103.767 | 10.980 | 9.451 | <0.001 | |||
| HMG and MMG vs. FMG | −0.013 | 0.008 | −1.662 | 0.102 | |||
| Maternal CBCL Internalizing symptoms | 0.170 | 0.244 | 0.697 | 0.489 | |||
| Maternal CBCL Externalizing symptoms | −0.533 | 0.247 | −2.155 | 0.035 | |||
| Paternal CBCL Internalizing symptoms | −0.157 | 0.253 | −0.622 | 0.536 | |||
| Paternal CBCL Externalizing symptoms | 0.512 | 0.229 | 2.2.36 | 0.029 | |||
| TOTAL IQ | 0.196 | 4.124 | 0.003 | ||||
| Constant | 99.776 | 12.489 | 7.989 | <0.001 | |||
| HMG and MMG vs. FMG | −0.012 | 0.009 | −1.365 | 0.177 | |||
| Maternal CBCL Internalizing symptoms | 0.371 | 0.277 | 1.337 | 0.186 | |||
| Maternal CBCL Externalizing symptoms | −0.843 | 0.281 | −2.994 | 0.004 | |||
| Paternal CBCL Internalizing symptoms | −0.346 | 0.288 | −1.202 | 0.234 | |||
| Paternal CBCL Externalizing symptoms | 0.907 | 0.260 | 3.484 | 0.001 | |||
| Verbal Comprehension | 0.161 | 3.460 | 0.008 | ||||
| Constant | 89.318 | 13.832 | 6.457 | <0.001 | |||
| HMG and MMG vs. FMG | −0.007 | 0.010 | −0.704 | 0.484 | |||
| Maternal CBCL Internalizing symptoms | 0.435 | 0.307 | 1.415 | 0.162 | |||
| Maternal CBCL Externalizing symptoms | −0.782 | 0.312 | −2.508 | 0.015 | |||
| Paternal CBCL Internalizing symptoms | −0.311 | 0.319 | −0.977 | 0.333 | |||
| Paternal CBCL Externalizing symptoms | 0.957 | 0.532 | 3.321 | 0.002 | |||
| Perceptual Organization | 0.152 | 3.288 | 0.011 | ||||
| Constant | 105.119 | 11.922 | 8.818 | <0.001 | |||
| HMG and MMG vs. FMG | −0.019 | −0.255 | −2.188 | 0.033 | |||
| Maternal CBCL Internalizing symptoms | 0.366 | 0.289 | 1.384 | 0.172 | |||
| Maternal CBCL Externalizing symptoms | −0.676 | −0.366 | −2.517 | 0.015 | |||
| Paternal CBCL Internalizing symptoms | −0.340 | −0.278 | −1.236 | 0.221 | |||
| Paternal CBCL Externalizing symptoms | 0.672 | 0.435 | 2.703 | 0.009 | |||
| Freedom from Distractibility | 0.122 | 2.780 | 0.025 | ||||
| Constant | 121.860 | 15.017 | 8.115 | <0.001 | |||
| HMG and MMG vs. FMG | −0.012 | 0.011 | −1.065 | 0.291 | |||
| Maternal CBCL Internalizing symptoms | 0.222 | 0.334 | 0.666 | 0.508 | |||
| Maternal CBCL Externalizing symptoms | −0.908 | 0.338 | −2.684 | 0.009 | |||
| Paternal CBCL Internalizing symptoms | −0.545 | 0.346 | −1.574 | 0.121 | |||
| Paternal CBCL Externalizing symptoms | 0.846 | 0.313 | 2.703 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biasini, A.; Agostini, F.; Stella, M.; Mariani, E.; Malaigia, L.; Rizzo, V.; Monti, F.; Neri, E. Long-Term Neurodevelopmental Outcomes of Late Preterm Children: A Pilot Study on the Role of Early Nutrition. Nutrients 2025, 17, 3558. https://doi.org/10.3390/nu17223558
Biasini A, Agostini F, Stella M, Mariani E, Malaigia L, Rizzo V, Monti F, Neri E. Long-Term Neurodevelopmental Outcomes of Late Preterm Children: A Pilot Study on the Role of Early Nutrition. Nutrients. 2025; 17(22):3558. https://doi.org/10.3390/nu17223558
Chicago/Turabian StyleBiasini, Augusto, Francesca Agostini, Marcello Stella, Elisa Mariani, Laura Malaigia, Vittoria Rizzo, Fiorella Monti, and Erica Neri. 2025. "Long-Term Neurodevelopmental Outcomes of Late Preterm Children: A Pilot Study on the Role of Early Nutrition" Nutrients 17, no. 22: 3558. https://doi.org/10.3390/nu17223558
APA StyleBiasini, A., Agostini, F., Stella, M., Mariani, E., Malaigia, L., Rizzo, V., Monti, F., & Neri, E. (2025). Long-Term Neurodevelopmental Outcomes of Late Preterm Children: A Pilot Study on the Role of Early Nutrition. Nutrients, 17(22), 3558. https://doi.org/10.3390/nu17223558

